1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#############################################################################
##
#W construct.gi Polycyclic Max Horn
##
#############################################################################
##
#M TrivialGroupCons( <IsPcpGroup> )
##
InstallMethod( TrivialGroupCons,
"pcp group",
[ IsPcpGroup and IsFinite ],
function( filter )
return PcpGroupByCollectorNC( FromTheLeftCollector( 0 ) );
end );
#############################################################################
##
#M AbelianGroupCons( <IsPcpGroup>, <ints> )
##
InstallMethod( AbelianGroupCons,
"pcp group",
[ IsPcpGroup, IsList ],
function( filter, ints )
local coll, i, n, r, grp, gens, pos;
if not ForAll( ints, x -> IsInt(x) or IsInfinity(x) ) then
Error( "<ints> must be a list of integers" );
fi;
# We allow 0, and interpret it as indicating an infinite factor.
if not ForAll( ints, x -> 0 <= x ) then
TryNextMethod();
fi;
r := Filtered( ints, x -> x <> 1 );
n := Length(r);
# construct group
coll := FromTheLeftCollector( n );
for i in [1..n] do
if IsBound( r[i] ) and r[i] > 0 and r[i] <> infinity then
SetRelativeOrder( coll, i, r[i] );
fi;
od;
UpdatePolycyclicCollector(coll);
grp := PcpGroupByCollectorNC( coll );
if 1 in ints then
gens:= [];
pos:= 1;
for i in [ 1 .. Length( ints ) ] do
if ints[i] = 1 then
gens[i]:= One( grp );
else
gens[i]:= GeneratorsOfGroup( grp )[ pos ];
pos:= pos + 1;
fi;
od;
grp:= GroupWithGenerators( gens );
fi;
SetIsAbelian( grp, true );
return grp;
end );
#############################################################################
##
#M ElementaryAbelianGroupCons( <IsPcpGroup>, <size> )
##
InstallMethod( ElementaryAbelianGroupCons,
"pcp group",
[ IsPcpGroup and IsFinite, IsPosInt ],
function(filter,size)
local grp;
if size = 1 or IsPrimePowerInt( size ) then
grp := AbelianGroup( filter, Factors(size) );
else
Error( "<n> must be a prime power" );
fi;
SetIsElementaryAbelian( grp, true );
return grp;
end);
#############################################################################
##
#M FreeAbelianGroupCons( <IsPcpGroup>, <rank> )
##
if IsBound(FreeAbelianGroupCons) then
InstallMethod( FreeAbelianGroupCons,
"pcp group",
[ IsPcpGroup, IsInt and IsPosRat ],
function( filter, rank )
local coll, grp;
# construct group
coll := FromTheLeftCollector( rank );
UpdatePolycyclicCollector( coll );
grp := PcpGroupByCollectorNC( coll );
SetIsFreeAbelian( grp, true );
return grp;
end );
fi;
#############################################################################
##
#M CyclicGroupCons( <IsPcpGroup>, <n> )
##
InstallMethod( CyclicGroupCons,
"pcp group",
[ IsPcpGroup and IsFinite, IsPosInt ],
function( filter, n )
local coll, grp;
# construct group
coll := FromTheLeftCollector( 1 );
SetRelativeOrder( coll, 1, n );
UpdatePolycyclicCollector(coll);
grp := PcpGroupByCollectorNC( coll );
if n > 1 then
SetMinimalGeneratingSet(grp, [grp.1]);
else
SetMinimalGeneratingSet(grp, []);
fi;
return grp;
end );
#############################################################################
##
#M CyclicGroupCons( <IsPcpGroup>, infinity )
##
InstallOtherMethod( CyclicGroupCons,
"pcp group",
[ IsPcpGroup, IsInfinity ],
function( filter, n )
local coll, grp;
# construct group
coll := FromTheLeftCollector( 1 );
UpdatePolycyclicCollector(coll);
grp := PcpGroupByCollectorNC( coll );
SetMinimalGeneratingSet(grp, [grp.1]);
return grp;
end );
#############################################################################
##
#M DihedralGroupCons( <IsPcpGroup>, <n> )
##
InstallMethod( DihedralGroupCons,
"pcp group",
[ IsPcpGroup and IsFinite, IsPosInt ],
function( filter, n )
local coll, grp;
if n mod 2 = 1 then
TryNextMethod();
elif n = 2 then
return CyclicGroup( filter, 2 );
fi;
coll := FromTheLeftCollector( 2 );
SetRelativeOrder( coll, 1, 2 );
SetRelativeOrder( coll, 2, n/2 );
SetConjugate( coll, 2, 1, [2,n/2-1] );
UpdatePolycyclicCollector(coll);
grp := PcpGroupByCollectorNC( coll );
return grp;
end );
#############################################################################
##
#M DihedralGroupCons( <IsPcpGroup>, infinity )
##
InstallOtherMethod( DihedralGroupCons,
"pcp group",
[ IsPcpGroup, IsInfinity ],
function( filter, n )
local coll, grp;
coll := FromTheLeftCollector( 2 );
SetRelativeOrder( coll, 1, 2 );
SetConjugate( coll, 2, 1, [2,-1] );
SetConjugate( coll, 2, -1, [2,-1] );
UpdatePolycyclicCollector(coll);
grp := PcpGroupByCollectorNC( coll );
return grp;
end );
#############################################################################
##
#M QuaternionGroupCons( <IsPcpGroup>, <n> )
##
InstallMethod( QuaternionGroupCons,
"pcp group",
[ IsPcpGroup and IsFinite, IsPosInt ],
function( filter, n )
local coll, grp;
if 0 <> n mod 4 then
TryNextMethod();
elif n = 4 then return
CyclicGroup( filter, 4 );
fi;
coll := FromTheLeftCollector( 2 );
SetRelativeOrder( coll, 1, 2 );
SetRelativeOrder( coll, 2, n/2 );
SetPower( coll, 1, [2, n/4] );
SetConjugate( coll, 2, 1, [2,n/2-1] );
UpdatePolycyclicCollector(coll);
grp := PcpGroupByCollectorNC( coll );
return grp;
end );
#############################################################################
##
#M ExtraspecialGroupCons( <IsPcpGroup>, <order>, <exponent> )
##
InstallMethod( ExtraspecialGroupCons,
"pcp group",
[ IsPcpGroup and IsFinite,
IsInt,
IsObject ],
function( filters, order, exp )
local G;
G := ExtraspecialGroupCons( IsPcGroup and IsFinite, order, exp );
return PcGroupToPcpGroup( G );
end );
#############################################################################
##
#M AlternatingGroupCons( <IsPcpGroup>, <deg> )
##
InstallMethod( AlternatingGroupCons,
"pcp group with degree",
[ IsPcpGroup and IsFinite,
IsPosInt ],
function( filter, deg )
local alt;
if 4 < deg then
Error( "<deg> must be at most 4" );
fi;
alt := AlternatingGroupCons(IsPcGroup and IsFinite,deg);
alt := PcGroupToPcpGroup(alt);
SetIsAlternatingGroup( alt, true );
return alt;
end );
#############################################################################
##
#M SymmetricGroupCons( <IsPcpGroup>, <deg> )
##
InstallMethod( SymmetricGroupCons,
"pcp group with degree",
[ IsPcpGroup and IsFinite,
IsPosInt ],
function( filter, deg )
local sym;
if 4 < deg then
Error( "<deg> must be at most 4" );
fi;
sym := SymmetricGroupCons(IsPcGroup and IsFinite,deg);
sym := PcGroupToPcpGroup(sym);
SetIsSymmetricGroup( sym, true );
return sym;
end );
|