File: construct.gi

package info (click to toggle)
gap-polycyclic 2.17-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 2,796 kB
  • sloc: xml: 3,018; javascript: 155; makefile: 124
file content (277 lines) | stat: -rw-r--r-- 7,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#############################################################################
##
#W  construct.gi               Polycyclic                            Max Horn
##


#############################################################################
##
#M  TrivialGroupCons( <IsPcpGroup> )
##
InstallMethod( TrivialGroupCons,
    "pcp group",
    [ IsPcpGroup and IsFinite ],
function( filter )
    return PcpGroupByCollectorNC( FromTheLeftCollector( 0 ) );
end );


#############################################################################
##
#M  AbelianGroupCons( <IsPcpGroup>, <ints> )
##
InstallMethod( AbelianGroupCons,
    "pcp group",
    [ IsPcpGroup, IsList ],
function( filter, ints )
    local coll, i, n, r, grp, gens, pos;

    if not ForAll( ints, x -> IsInt(x) or IsInfinity(x) )  then
        Error( "<ints> must be a list of integers" );
    fi;
    # We allow 0, and interpret it as indicating an infinite factor.
    if not ForAll( ints, x -> 0 <= x )  then
        TryNextMethod();
    fi;

    r := Filtered( ints, x -> x <> 1 );
    n := Length(r);

    # construct group
    coll := FromTheLeftCollector( n );
    for i in [1..n] do
        if IsBound( r[i] ) and r[i] > 0 and r[i] <> infinity then
            SetRelativeOrder( coll, i, r[i] );
        fi;
    od;
    UpdatePolycyclicCollector(coll);
    grp := PcpGroupByCollectorNC( coll );
    if 1 in ints then
        gens:= [];
        pos:= 1;
        for i in [ 1 .. Length( ints ) ] do
            if ints[i] = 1 then
                gens[i]:= One( grp );
            else
                gens[i]:= GeneratorsOfGroup( grp )[ pos ];
                pos:= pos + 1;
            fi;
        od;
        grp:= GroupWithGenerators( gens );
    fi;
    SetIsAbelian( grp, true );
    return grp;
end );


#############################################################################
##
#M  ElementaryAbelianGroupCons( <IsPcpGroup>, <size> )
##
InstallMethod( ElementaryAbelianGroupCons,
	"pcp group",
    [ IsPcpGroup and IsFinite, IsPosInt ],
function(filter,size)

    local grp;

    if size = 1 or IsPrimePowerInt( size )  then
        grp := AbelianGroup( filter, Factors(size) );
    else
        Error( "<n> must be a prime power" );
    fi;
    SetIsElementaryAbelian( grp, true );
    return grp;
end);


#############################################################################
##
#M  FreeAbelianGroupCons( <IsPcpGroup>, <rank> )
##

if IsBound(FreeAbelianGroupCons) then

InstallMethod( FreeAbelianGroupCons,
    "pcp group",
    [ IsPcpGroup,  IsInt and IsPosRat ],
function( filter, rank )
    local coll, grp;
    # construct group
    coll := FromTheLeftCollector( rank );
    UpdatePolycyclicCollector( coll );
    grp := PcpGroupByCollectorNC( coll );
    SetIsFreeAbelian( grp, true );
    return grp;
end );

fi;


#############################################################################
##
#M  CyclicGroupCons( <IsPcpGroup>, <n> )
##
InstallMethod( CyclicGroupCons,
    "pcp group",
    [ IsPcpGroup and IsFinite, IsPosInt ],
function( filter, n )
    local coll, grp;

    # construct group
    coll := FromTheLeftCollector( 1 );
    SetRelativeOrder( coll, 1, n );
    UpdatePolycyclicCollector(coll);
    grp := PcpGroupByCollectorNC( coll );

    if n > 1 then
        SetMinimalGeneratingSet(grp, [grp.1]);
    else
        SetMinimalGeneratingSet(grp, []);
    fi;
    return grp;
end );

#############################################################################
##
#M  CyclicGroupCons( <IsPcpGroup>, infinity )
##
InstallOtherMethod( CyclicGroupCons,
    "pcp group",
    [ IsPcpGroup, IsInfinity ],
function( filter, n )
    local coll, grp;

    # construct group
    coll := FromTheLeftCollector( 1 );
    UpdatePolycyclicCollector(coll);
    grp := PcpGroupByCollectorNC( coll );

    SetMinimalGeneratingSet(grp, [grp.1]);
    return grp;
end );

#############################################################################
##
#M  DihedralGroupCons( <IsPcpGroup>, <n> )
##
InstallMethod( DihedralGroupCons,
    "pcp group",
    [ IsPcpGroup and IsFinite, IsPosInt ],
function( filter, n )
    local coll, grp;

    if n mod 2 = 1  then
        TryNextMethod();
    elif n = 2 then
        return CyclicGroup( filter, 2 );
    fi;

    coll := FromTheLeftCollector( 2 );
    SetRelativeOrder( coll, 1, 2 );
    SetRelativeOrder( coll, 2, n/2 );
    SetConjugate( coll, 2,  1, [2,n/2-1] );
    UpdatePolycyclicCollector(coll);
    grp := PcpGroupByCollectorNC( coll );
    return grp;
end );

#############################################################################
##
#M  DihedralGroupCons( <IsPcpGroup>, infinity )
##
InstallOtherMethod( DihedralGroupCons,
    "pcp group",
    [ IsPcpGroup, IsInfinity ],
function( filter, n )
    local coll, grp;

    coll := FromTheLeftCollector( 2 );
    SetRelativeOrder( coll, 1, 2 );
    SetConjugate( coll, 2,  1, [2,-1] );
    SetConjugate( coll, 2, -1, [2,-1] );
    UpdatePolycyclicCollector(coll);
    grp := PcpGroupByCollectorNC( coll );
    return grp;
end );

#############################################################################
##
#M  QuaternionGroupCons( <IsPcpGroup>, <n> )
##

InstallMethod( QuaternionGroupCons,
    "pcp group",
    [ IsPcpGroup and IsFinite, IsPosInt ],
function( filter, n )
    local coll, grp;

    if 0 <> n mod 4  then
        TryNextMethod();
    elif n = 4 then return
        CyclicGroup( filter, 4 );
    fi;

    coll := FromTheLeftCollector( 2 );
    SetRelativeOrder( coll, 1, 2 );
    SetRelativeOrder( coll, 2, n/2 );
    SetPower( coll, 1, [2, n/4] );
    SetConjugate( coll, 2,  1, [2,n/2-1] );
    UpdatePolycyclicCollector(coll);
    grp := PcpGroupByCollectorNC( coll );
    return grp;
end );

#############################################################################
##
#M  ExtraspecialGroupCons( <IsPcpGroup>, <order>, <exponent> )
##
InstallMethod( ExtraspecialGroupCons,
    "pcp group",
    [ IsPcpGroup and IsFinite,
      IsInt,
      IsObject ],
function( filters, order, exp )
    local G;
    G := ExtraspecialGroupCons( IsPcGroup and IsFinite, order, exp );
    return PcGroupToPcpGroup( G );
end );

#############################################################################
##
#M  AlternatingGroupCons( <IsPcpGroup>, <deg> )
##
InstallMethod( AlternatingGroupCons,
    "pcp group with degree",
    [ IsPcpGroup and IsFinite,
      IsPosInt ],
function( filter, deg )
    local   alt;
    if 4 < deg  then
        Error( "<deg> must be at most 4" );
    fi;
    alt := AlternatingGroupCons(IsPcGroup and IsFinite,deg);
    alt := PcGroupToPcpGroup(alt);
    SetIsAlternatingGroup( alt, true );
    return alt;
end );


#############################################################################
##
#M  SymmetricGroupCons( <IsPcpGroup>, <deg> )
##
InstallMethod( SymmetricGroupCons,
    "pcp group with degree",
    [ IsPcpGroup and IsFinite,
      IsPosInt ],
function( filter, deg )
    local sym;
    if 4 < deg  then
        Error( "<deg> must be at most 4" );
    fi;
    sym := SymmetricGroupCons(IsPcGroup and IsFinite,deg);
    sym := PcGroupToPcpGroup(sym);
    SetIsSymmetricGroup( sym, true );
    return sym;
end );