1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
#############################################################################
##
#W pcppara.gi Polycyc Bettina Eick
#W Werner Nickel
##
## Parallel versions of the non-commuatative gauss algorithm.
##
#############################################################################
##
#F UpdateCounterPara( ind, c ) . . . . . . . . . . . . small help function
##
BindGlobal( "UpdateCounterPara", function( ind, c )
local i;
i := c - 1;
while i > 0 and not IsBool(ind[i]) and LeadingExponent(ind[i]) = 1 do
i := i - 1;
od;
return i + 1;
end );
#############################################################################
##
#F AddToIgsParallel( <pcs>, <gens>, <ppcs>, <pgens> )
##
## This function adds the elements in <gens> to the induced pcs <pcs>.
## It acts simultaneously on <pcs> and <ppcs> as well as <gens> and <pgens>.
##
InstallGlobalFunction( AddToIgsParallel,
function( pcs, gens, ppcs, pgens )
local coll, rels, n, id, todo, tododo, ind, indd, g, gg, d, h, hh, k,
eg, eh, e, changed, c, i, r, sub;
if Length( gens ) = 0 then return [pcs, ppcs]; fi;
# get information
coll := Collector( gens[1] );
rels := RelativeOrders( coll );
n := NumberOfGenerators( coll );
id := gens[1]^0;
# create new list from pcs/ppcs
ind := List( [1..n], x -> false );
indd := List( [1..n], x -> false );
for i in [1..Length(pcs)] do
d := Depth( pcs[i] );
ind[d] := pcs[i];
indd[d] := ppcs[i];
od;
# set counter
c := UpdateCounterPara( ind, n+1 );
# create a to-do list from gens/pgens
sub := Filtered( [1..Length(gens)], x -> Depth(gens[x]) < c );
todo := gens{sub};
tododo:= pgens{sub};
# loop over to-do list until it is empty
while Length( todo ) > 0 and c > 1 do
g := Remove(todo);
gg := Remove(tododo);
d := Depth( g );
# shift g into ind
changed := [];
while d < c do
h := ind[d];
hh := indd[d];
if not IsBool( h ) then
# reduce g with h
eg := LeadingExponent( g );
eh := LeadingExponent( h );
e := Gcdex( eg, eh );
# adjust ind[d] by gcd
ind[d] := (g^e.coeff1) * (h^e.coeff2);
indd[d] := (gg^e.coeff1) * (hh^e.coeff2);
if e.coeff1 <> 0 then Add( changed, d ); fi;
# adjust g
g := (g^e.coeff3) * (h^e.coeff4);
gg := (gg^e.coeff3) * (hh^e.coeff4);
else
# just add g into ind
ind[d] := g;
indd[d] := gg;
g := g^0;
gg := gg^0;
Add( changed, d );
fi;
c := UpdateCounterPara( ind, c );
d := Depth( g );
od;
for d in changed do
g := ind[d];
gg := indd[d];
if d <= Length( rels ) and rels[d] > 0 then
r := RelativeOrderPcp( g );
k := g ^ r;
if Depth(k) < c then
Add( todo, k );
Add( tododo, gg^r );
fi;
fi;
for i in [1..Length(ind)] do
if not IsBool( ind[i] ) then
k := Comm( g, ind[i] );
if Depth(k) < c then
Add( todo, k );
Add( tododo, Comm( gg, indd[i] ) );
fi;
fi;
od;
od;
od;
# return resulting list
return [Filtered( ind, x -> not IsBool( x ) ),
Filtered( indd, x -> not IsBool( x ) ) ];
end );
#############################################################################
##
## IgsParallel( <gens>, <pre> )
##
InstallGlobalFunction( IgsParallel, function( gens, pre )
return AddToIgsParallel( [], gens, [], pre );
end );
#############################################################################
##
## CgsParallel( <gens>, <pre> )
##
## parallel version of Cgs. Note: this function performes an
## induced pcs computation as well.
##
InstallGlobalFunction( CgsParallel, function( gens, pre )
local can, cann, i, f, e, j, l, d, r, s;
if Length( gens ) = 0 then return []; fi;
can := IgsParallel( gens, pre );
cann := can[2];
can := can[1];
# first norm leading coefficients
for i in [1..Length(can)] do
f := NormingExponent( can[i] );
can[i] := can[i]^f;
cann[i] := cann[i]^f;
od;
# reduce entries in matrix
for i in [1..Length(can)] do
e := LeadingExponent( can[i] );
r := Depth( can[i] );
for j in [1..i-1] do
l := Exponents( can[j] )[r];
if l > 0 then
d := QuoInt( l, e );
can[j] := can[j] * can[i]^-d;
cann[j] := cann[j] * cann[i]^-d;
elif l < 0 then
d := QuoInt( -l, e );
s := RemInt( -l, e );
if s = 0 then
can[j] := can[j] * can[i]^d;
cann[j] := cann[j] * cann[i]^d;
else
can[j] := can[j] * can[i]^(d+1);
cann[j] := cann[j] * cann[i]^(d+1);
fi;
fi;
od;
od;
return[ can, cann ];
end );
|