File: CHAP002.htm

package info (click to toggle)
gap-radiroot 2.9-1
  • links: PTS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 556 kB
  • sloc: makefile: 117; sh: 12
file content (174 lines) | stat: -rw-r--r-- 8,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
<html><head><title>[Radiroot] 2 Functionality of the Package</title></head>
<body text="#000000" bgcolor="#ffffff">
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP001.htm">Previous</a>] [<a href ="CHAP003.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<h1>2 Functionality of the Package</h1><p>
<P>
<H3>Sections</H3>
<oL>
<li> <A HREF="CHAP002.htm#SECT001">Methods for Rational Polynomials</a>
<li> <A HREF="CHAP002.htm#SECT002">Solving a Polynomial by Radicals</a>
</ol><p>
<p>
<p>
<h2><a name="SECT001">2.1 Methods for Rational Polynomials</a></h2>
<p><p>
<a name = "SSEC001.1"></a>
<li><code>IsSeparablePolynomial( </code><var>f</var><code> )</code>
<p>
returns <code>true</code> if the rational polynomial <var>f</var> has simple roots only
and <code>false</code> otherwise.
<p>
<a name = "SSEC001.2"></a>
<li><code>IsSolvable( </code><var>f</var><code> )</code>
<a name = "SSEC001.2"></a>
<li><code>IsSolvablePolynomial( </code><var>f</var><code> )</code>
<p>
returns <code>true</code> if the rational polynomial <var>f</var> has a solvable Galois group and
<code>false</code> otherwise. It signals an error if there exists an irreducible factor
with degree greater than 15.
<p>
<a name = "SSEC001.3"></a>
<li><code>SplittingField( </code><var>f</var><code> )</code>
<a name = "SSEC001.3"></a>
<li><code>IsomorphicMatrixField( </code><var>F</var><code> )</code>
<a name = "SSEC001.3"></a>
<li><code>RootsAsMatrices( </code><var>f</var><code> )</code>
<a name = "SSEC001.3"></a>
<li><code>IsomorphismMatrixField( </code><var>F</var><code> )</code>
<p>
For a normed, rational polynomial <var>f</var>, <code>SplittingField(</code><var>f</var><code>)</code> returns the
smallest algebraic extension field <var>L</var> of the rationals containing all
roots of <var>f</var>. The field is constructed with <code>FieldByPolynomial</code> (see
Creation of number fields in <font face="Gill Sans,Helvetica,Arial">Alnuth</font>). The primitive element of <var>L</var> is
denoted by <code>a</code>. A matrix field <var>K</var> isomorphic to <var>L</var> is known after
the computation and can be accessed using <code>IsomorphicMatrixField(</code><var>L</var><code></code>.
The matrices, one for each distinct root of <var>f</var>, in the list produced
by <code>RootsOfMatrices(</code><var>f</var><code>)</code> lie in <var>K</var>. <code>IsomorphismMatrixField( </code><var>L</var><code> )</code>
returns an isomorphism of <var>L</var> onto <var>K</var>.
<p>
<pre>
gap&gt; x := Indeterminate( Rationals, "x" );;
gap&gt; f := UnivariatePolynomial( Rationals, [1,3,4,1] );
x^3+4*x^2+3*x+1
gap&gt; L := SplittingField( f );
&lt;algebraic extension over the Rationals of degree 6&gt;
gap&gt; y := Indeterminate( L, "y" );;
gap&gt; FactorsPolynomialAlgExt( L, f );
[ y+(-3/94*a^4-24/47*a^3-253/94*a^2-535/94*a-168/47), 
  y+(-3/94*a^4-24/47*a^3-253/94*a^2-441/94*a+20/47), 
  y+(3/47*a^4+48/47*a^3+253/47*a^2+488/47*a+336/47) ]
gap&gt; IsomorphicMatrixField( L );
&lt;rational matrix field of degree 6&gt;
gap&gt; Display(RootsAsMatrices(f)[1]);
[ [   0,   1,   0,   0,   0,   0 ],
  [   0,   0,   1,   0,   0,   0 ],
  [  -1,  -3,  -4,   0,   0,   0 ],
  [   0,   0,   0,   0,   1,   0 ],
  [   0,   0,   0,   0,   0,   1 ],
  [   0,   0,   0,  -1,  -3,  -4 ] ]
gap&gt; MinimalPolynomial( Rationals, RootsAsMatrices(f)[1]);
x^3+4*x^2+3*x+1
gap&gt; iso := IsomorphismMatrixField( L );
MappingByFunction( &lt;algebraic extension over the Rationals of degree
6&gt;, &lt;rational matrix field of degree
6&gt;, function( x ) ... end, function( mat ) ... end )
gap&gt; PreImages( iso, RootsAsMatrices( f ) );
[ -3/47*a^4-48/47*a^3-253/47*a^2-488/47*a-336/47, 
  3/94*a^4+24/47*a^3+253/94*a^2+441/94*a-20/47, 
  3/94*a^4+24/47*a^3+253/94*a^2+535/94*a+168/47 ]
</pre>
To factorise a polynomial over its splitting field one has to use
<code>FactorsPolynomialAlgExt</code> (see <font face="Gill Sans,Helvetica,Arial">Alnuth</font>) instead of <code>Factors</code>.
<p>
<a name = "SSEC001.4"></a>
<li><code>GaloisGroupOnRoots( </code><var>f</var><code> )</code>
<p>
calculates the Galois group <var>G</var> of the rational polynomial <var>f</var>, which
has to be separable, as a permutation group with respect to the
ordering of the roots of <var>f</var> given as matrices by <code>RootsAsMatrices</code>.
<p>
<pre>
gap&gt; GaloisGroupOnRoots(f);
Group([ (2,3), (1,2) ])
</pre>
<p>
If you only want to get the Galois group abstractly, and if <i>f</i> is
irreducible of degree at most 15, it is often better to use the
function <code>GaloisType</code> (see Chapter&nbsp;<a href="../../../doc/ref/chap66.html#X7F45E9E47EA2C18B">Polynomials over the Rationals</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> reference manual).
<p>
<p>
<h2><a name="SECT002">2.2 Solving a Polynomial by Radicals</a></h2>
<p><p>
<a name = "SSEC002.1"></a>
<li><code>RootsOfPolynomialAsRadicals( </code><var>f</var><code> [, </code><var>mode</var><code> [, </code><var>file</var><code> ] ] )</code>
<p>
computes a solution by radicals for the irreducible, rational polynomial <var>f</var>
up to degree 15 if the Galois group of <var>f</var> is
solvable, and returns <code>fail</code> otherwise. If it succeeds and <var>mode</var> is
not <code>off</code>, the function returns the path to a file containing the
description of the roots of <var>f</var> and generators of cyclic radical
extensions to produce its splitting field.
<p>
The user has several options to specify what happens with the results
of the computation. Therefore the optional second argument <var>mode</var>, a
string, can be set to one of the following values:
<p>
<pre>
"dvi"
</pre>
Provided <code>latex</code> and the dvi viewer <code>xdvi</code> are available, this option
will display the irreducible radical expression for the roots and
cyclic extension generators in a new window. The package uses this
option as the default.
<p>
<pre>
"latex"
</pre>
A LaTeX file is generated which contains the encoding for the
expression by radicals. This gives the user the opportunity to adjust
the layout of the individual example before displaying the expression.
<p>
<pre>
"maple"
</pre>
The generated file can be read into Maple <a href="biblio.htm#Maple10"><cite>Maple10</cite></a> which makes a root
of <var>f</var> available as variable <code>a</code>.
<p>
<pre>
"off"
</pre>
In this mode the function does not actually compute a radical
expression but is only called for its side effects. Namely, the
attributes <code>SplittingField</code>, <code>RootsAsMatrices</code> and
<code>GaloisGroupOnRoots</code> are known for <var>f</var> afterwards. This is slightly
more effective than calling the corresponding operations one by one.
<p>
With the optional third argument <var>file</var> the user can specify a
file name under which the description files will be stored in the 
directory from which <font face="Gill Sans,Helvetica,Arial">GAP</font> was called. Depending on the option for
<var>mode</var> an extension like <code>.tex</code> might be added automatically. 
If <var>file</var> is not given, the function places description files in a new
directory <code>/tmp/tmp.</code><var>string</var> with names such as <code>Nst</code> and <code>Nst.tex</code>;
the temporary directory is removed at the end of the <font face="Gill Sans,Helvetica,Arial">GAP</font>
session.
<p>
The computation may take a very long time and can get unfeasible if the
degree of <var>f</var> is greater than 7.
<pre>
</pre>
<p>
<li><code>RootsOfPolynomialAsRadicalsNC( </code><var>f</var><code> [, </code><var>mode</var><code> [, </code><var>file</var><code> ] ] )</code>
<p>
does essentially the same as <code>RootsOfPolynomialAsRadicals</code> except
that it runs no test on the input before starting the actual
computation. Therefore it can be used for polynomials with arbitrary
degree, but it may run for a very long time until a
non-solvable polynomial is recognized as such.
<p>
Detailed examples for these two functions can be found in the next section.
<p>
<p>
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP001.htm">Previous</a>] [<a href ="CHAP003.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<P>
<address>Radiroot manual<br>March 2022
</address></body></html>