1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#############################################################################
####
##
#W Maple.gi RADIROOT package Andreas Distler
##
## Installation file for the functions that generate Maple expressions
##
#Y 2006
##
#############################################################################
##
#F RR_M_Radikalbasis( <erw>, <elements>, <file> )
##
## Produces a basis for the matrixfield in the record <erw> from the
## generating matrices <elements> and returns Maple-readable strings
## for the basis as well
##
InstallGlobalFunction( RR_M_Radikalbasis, function( erw, elements, file )
local k, basis, elm, mat, i, ll, basstr, elmstr, m, coeffs, scale;
k := DegreeOverPrimeField(erw.K) / Product(erw.degs);
basis := Basis(erw.K){[ 1..k ]};
if k = 1 then
basstr := [""];
else
basstr := ["",Concatenation("E(",String(Order(erw.unity)),")")];
fi;
for i in [ 2..k-1 ] do
Add( basstr, Concatenation( basstr[2], "^", String(i) ) );
od;
for m in [ 1..Length(elements) ] do
mat := List( basis, Flat );;
elm := elements[m][1];
k := elements[m][2];
coeffs := SolutionMat(mat, Flat(elm^k));
scale := RR_Potfree(Concatenation(List(coeffs, ExtRepOfObj)), k);
elm := elm / scale; elements[m][1] := elm;
elmstr := RR_WurzelAlsString( k, coeffs / scale^k, basstr );
AppendTo( file, "w", String(m)," := ", elmstr, ";\n");
basis := Concatenation( List( [1..k], i -> elm^(i-1) * basis));;
ll := [ basstr, List( basstr, str ->
Concatenation( str,"*w",String(m) ) ) ];
for i in [ 3..k ] do
ll[i] := List( basstr, str -> Concatenation( str,
Concatenation( "*w", String(m), "^", String(i-1) ) ) );
od;
basstr := Concatenation( ll );
od;
AppendTo( file, "\n");
return [ basis, basstr ];
end );
#############################################################################
##
#F RR_M_KoeffizientAlsString( <coeff>, <anf> )
##
## Creates a Maple-readable String for the cyclotomic <coeff>; if <anf>
## is true, positive signs of rationals will be omitted; if <coeff> is a
## sum, it will be included in brackets; finitely an empty string
## will be returned, if <coeff> is equal to 1
##
InstallGlobalFunction( RR_M_KoeffizientAlsString, function( coeff, anf )
local cstr;
cstr := String( coeff );
if not IsInt( coeff ) then
cstr := Concatenation( "(",cstr,")" );
fi;
if not anf then
if IsPosInt( coeff ) then
cstr := Concatenation( " + ", cstr );
elif not IsInt( coeff ) then
cstr := Concatenation( " + ", cstr );
fi;
fi;
return cstr;
end );
#############################################################################
##
#F RR_M_WurzelAlsString( <k>, <coeffs>, <basstr> )
##
## Creates a Maple-readable String for the <k>-th root of the element
## described by <coeffs> and <basstr>
##
InstallGlobalFunction( RR_M_WurzelAlsString, function( k, coeffs, basstr )
local i, str, anf;
str := ""; anf := true;
for i in [ 1..Length(coeffs) ] do
if coeffs[i] in [ -1, 1 ] and basstr[i] = "" then
if not anf and coeffs[i] = 1 then
str := Concatenation( str, " + ", String( coeffs[i] ) );
else
str := Concatenation( str, String( coeffs[i] ) );
fi;
anf := false;
elif coeffs[i] <> 0 then
str := Concatenation( str,
RR_M_KoeffizientAlsString( coeffs[i], anf ),
basstr[i]);
anf := false;
fi;
od;
if k <> 1 then
str := Concatenation( "(", str, ")^(1/", String(k),")" );
fi;
return str;
end );
#############################################################################
##
#F RR_MapleFile( <f>, <erw>, <elements>, <file> )
##
## Creates a file for a radical expression of the roots of the polynomial
## <f> which can be read into Maple.
##
InstallGlobalFunction( RR_MapleFile, function( poly, erw, elements, file )
local i,cstr,bas,root,coeffs,B,k,offset,str,min;
Info( InfoRadiroot, 2, " creating maple file" );
# Create maple code and write to file
bas := RR_M_Radikalbasis( erw, elements, file );;
offset := CoefficientsOfUnivariatePolynomial(poly)[Degree(poly)] /
(Degree(poly) * LeadingCoefficient(poly));
k := Degree(poly) / Length(erw.roots);
AppendTo( file, "a := " );
if k <> 1 and offset <> 0 then
AppendTo( file, String(-offset), "+");
fi;
B := Basis( erw.K, bas[1] );
coeffs := List([1..Length(erw.roots)], i->Coefficients(B, erw.roots[i]));
str := List([ 1..Length(erw.roots) ],
i -> RR_M_WurzelAlsString(k, coeffs[i], bas[2]));
min := First( [ 1..Length(erw.roots) ],
i -> Length(str[i]) = Minimum( List( str, Length )));
if Length( str[min] ) < 1400 then
AppendTo( file, str[min] );
else
AppendTo( file, RR_M_NstInDatei( k, coeffs[min], bas[2] ));
fi;
AppendTo( file, ";\n" );
return file;
end );
#############################################################################
##
#F RR_M_NstInDatei( <k>, <coeffs>, <basstr> )
##
## Creates a Maple-output containing a string for the <k>-th root of the
## element described by <coeffs> and <basstr>
##
InstallGlobalFunction( RR_M_NstInDatei, function( k, coeffs, basstr )
local str, i, anf;
str := "";
if k <> 1 then
str := Concatenation( str, "(" );
fi;
repeat
i := 0;
while Length( coeffs ) >= i+1 and
Length(RR_M_WurzelAlsString(1,coeffs{[1..i+1]},basstr{[1..i+1]}))
< 1400 do
i := i+1;
od;
str := Concatenation(str, RR_M_WurzelAlsString(1, coeffs{[1..i]},
basstr{[1..i]}));
coeffs := coeffs{[i+1..Length(coeffs)]};
basstr := basstr{[i+1..Length(basstr)]};
until coeffs = [ ];
if k <> 1 then
str := Concatenation( str, ")^(1/",String(k),")");
fi;
return str;
end );
#############################################################################
##
#E
|