File: SplittField.gi

package info (click to toggle)
gap-radiroot 2.9-1
  • links: PTS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 556 kB
  • sloc: makefile: 117; sh: 12
file content (350 lines) | stat: -rw-r--r-- 11,228 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#############################################################################
####
##
#W  SplittField.gi            RADIROOT package                Andreas Distler
##
##  Installs the functions to compute the splitting field of a polynomial
##
#Y  2006
##


#############################################################################
##
#M  SplittingField( <f> )
##
##  Returns the smallest field, that contains the roots of the irreducible,
##  rational polynomial <f> as algebraic extension of the Rationals
##
InstallMethod( SplittingField, "rational polynomials",
[ IsUnivariateRationalFunction and IsPolynomial ],
function( f )
    local splitt;

    if not ForAll( CoefficientsOfUnivariatePolynomial( f ), IsRat ) then
        TryNextMethod( );
    fi;

    if not IsSeparablePolynomial( f ) then
        # make polynomial separable
        f := f / Gcd( f, Derivative( f ) );    
    fi;

    splitt := RR_Zerfaellungskoerper( f, 
                                      rec( roots := [ ],
                                           degs := [ ],
                                           coeffs := [ ],
                                           K := FieldByMatrices([ [[ 1 ]] ]),
                                           H := Rationals ) );

    if Length( splitt.roots[1] ) >= Length( splitt.roots[2] ) then
        # roots as matrices, otherwise linear factors known
        Add( splitt.roots[1], 
             -CoefficientsOfUnivariatePolynomial(f)[Degree(f)]*One(splitt.K)
             -Sum( splitt.roots[1] ) );
        SetRootsAsMatrices( f, splitt.roots[1] );
    fi;

    return splitt.H;
end );


#############################################################################
##
#F  IsomorphicMatrixField( <L> )
##
##  returns a matrix field which is isomorphic to the field <L>
##
InstallGlobalFunction( IsomorphicMatrixField, function( L )
    return Range( IsomorphismMatrixField( L ) );
end );


#############################################################################
##
#O  IsomorphismMatrixField( Rationals )
##
##  installs the value for 'IsomorphismMatrixField' of the Rationals
##
SetIsomorphismMatrixField( Rationals, 
                           MappingByFunction( Rationals,
                                              FieldByMatrices([[[ 1 ]]]),
                                              x -> [[ x ]],
                                              mat -> mat[1][1] ));


#############################################################################
##
#F  RR_BegleitMatrix( <f>, <A> )
##
##  Computes the companion matrix of the polynomial <f> with respect to
##  the field generated by the matrix <A>
##
InstallGlobalFunction( RR_BegleitMatrix, function( f, A )
    local matrix, coeff, blockmat, deg, i, k, l;

    deg := Degree(f);
    coeff := CoefficientsOfUnivariatePolynomial(f);
    matrix := NullMat( deg*Size(A), deg*Size(A), Rationals);

    # create last row
    for i in [ 1..deg ] do
        # matrix, representing the i-th coefficient
        blockmat := -RR_RootInK( A, coeff[i] );
        for k in [1..Size(A)] do
            for l in [1..Size(A)] do
                matrix[(deg-1)*Size(A)+k][(i-1)*Size(A)+l] := blockmat[k][l];
            od;
        od;
    od;

    # fill the secondary diagonal with 1
    for i in [1..(deg-1)] do
        for k in [1..Size(A)] do 
            matrix[(i-1)*Size(A)+k][i*Size(A)+k] := 1;
        od;
    od;
    	
    return matrix;
end );


#############################################################################
##
#F  RR_BlowUpMat, function( <mat>, <n> )
##
##  Computes a matrix that is <n>-times bigger than <mat> and has
##  <mat> on the <n> blocks with size of <mat> at the diagonal
##
InstallGlobalFunction( RR_BlowUpMat, function( mat, n )
    local i, j, k, Mat;

    Mat := NullMat( n * Size(mat), n * Size(mat), Rationals );

    for i in [ 1..n ] do
        for j in [ 1..Size( mat ) ] do
            for k in [ 1..Size( mat ) ] do
                Mat[ (i-1)*Size(mat)+j ][ (i-1)*Size(mat)+k ] := mat[j][k];
            od;
        od;
    od;

    return Mat;
end );


#############################################################################
##
#F  RR_MatrixField( <f>, <mat> )
##
##  Returns the matrixfield that arises from adjoining a root of the
##  polynomial <f> to the matrixfield generated by <mat>
##
InstallGlobalFunction( RR_MatrixField, function( f, mat )
    local A, B;

    # mat as matrix in the supfield
    # mat is deg(f) times on the diagonal 
    A := RR_BlowUpMat( mat, Degree(f) );

    # companion matrix of f with respect to the field generated by mat
    B := RR_BegleitMatrix( f, mat );

    return FieldByMatricesNC( [A, B] );
end );


#############################################################################
##
#F  RR_RootInH( <erw>, <a> )
##
##  The record <erw> contains two isomorphic fields. One generated
##  with AlgebraicExtension and the other as matrixfield. Both are
##  defined by a primitive element. This function transfers the
##  matrix <a> to it's isomorphic symbolic represenation
##
InstallGlobalFunction( RR_RootInH, function( erw, a )
    local coeff, bas;

    # basis {1, primEl, ... , primEl^(n-1)} as matrices
    bas := EquationOrderBasis( erw.K, PrimitiveElement( erw.K ));

    return LinearCombination( Basis( erw.H ), Coefficients( bas, a) );
end ); 
    

#############################################################################
##
#F  RR_RootInK( <primEl>, <coeff> )
##
##  Does the inverse of RR_RootInH; the fieldelement given symbolic
##  by it's external representation <coeff> is transfered in a matrix
##  of the field generated by <primEl>
##
InstallGlobalFunction( RR_RootInK, function( primEl, elm )
    local i, mat;

    mat := NullMat( Size(primEl), Size(primEl), Rationals );
    for i in [1..Size(primEl)] do
        mat := mat +  ExtRepOfObj(elm)[i] * primEl^(i-1);
    od;

    return mat;
end );


#############################################################################
##
#F  RR_Zerfaellungskoerper( <poly>, <erw> )
##
##  Computes the splitting field of the polynomial <poly>. In the
##  record <erw> the field is stored as matrix field as well as in a
##  symbolic represenation generated by
##  AlgebraicExtension. The roots of <poly> are also stored.  
##
InstallGlobalFunction( RR_Zerfaellungskoerper, function( poly, erw )
    local matA,matB,faktoren,i,f,minpol,roots,primEl, map;

    # catch trivial case
    if Degree( poly ) = 1 then 
        erw.roots := [ [ ], [ ] ];
        return erw;
    fi;

    # Splitting field already known
    if not IsBound( erw.unity ) and HasSplittingField( poly ) then
        erw.H := SplittingField( poly );
        erw.K := IsomorphicMatrixField( erw.H );
        # roots will be needed in any further computation
        erw.roots := [ ShallowCopy( RootsAsMatrices( poly ) ), [] ];
        erw.degs := RR_DegreeConclusion( Basis(erw.K), erw.roots[1] );
        Remove( erw.roots[1] );
        erw.coeffs := Filtered(Coefficients(Basis(erw.K),
                                            PrimitiveElement(erw.K)),
                               i -> i <> 0 );

        return erw;   
    fi;

    roots := [ ];

    # repeat until <poly> factors in linear polynomials
    while Length(erw.roots) + Length(roots) + 1 < Degree(poly) do
	
        # factors <poly> over the latest <erw.H>	
	faktoren := FactorsPolynomialAlgExt( erw.H, poly );;
	Info( InfoRadiroot, 4, "    Factorization of polynomial:\n",
              faktoren );
    	f := faktoren[ Length( faktoren ) ];
        if Degree( f ) = 1 then break; fi;

        roots := RR_Roots( [ erw.roots, roots, 
                             List( Filtered( faktoren, f -> Degree( f ) = 1 ), 
                                   f -> 
                                   -CoefficientsOfUnivariatePolynomial(f)[1])],
                           erw );

	erw.K := RR_MatrixField( f, PrimitiveElement( erw.K ) );
	Add( erw.degs, Degree(f) );
        SetDegreeOverPrimeField( erw.K, Product( erw.degs ));
        Info( InfoRadiroot, 3,"        Degree of the extension: ", Degree(f) );

	matA := GeneratorsOfField( erw.K )[ 1 ];;
	matB := GeneratorsOfField( erw.K )[ 2 ];;

        # bring the list of roots up-to-date
	for i in [ 1..Length(erw.roots) ] do
	    erw.roots[i] := RR_BlowUpMat( erw.roots[i], Degree( f ) );
	od;
	for i in [ 1..Length(roots) ] do
	    roots[i] := RR_BlowUpMat( roots[i], Degree( f ) );
	od;
        if IsBound( erw.unity ) then 
            erw.unity := RR_BlowUpMat( erw.unity, Degree( f ) );
        fi;

        Info( InfoRadiroot, 4, "            Adjoined root:\n", matB );
	Add( erw.roots, matB );

        Info( InfoRadiroot, 3, "        Searching for a primitive element" );
        primEl := Sum([1..Length(erw.roots)], i -> i * erw.roots[i]);
        if IsBound( erw.unity ) then
            primEl := primEl+erw.unity;
        fi;
        minpol := MinimalPolynomial( Rationals, primEl );
        if Degree( minpol ) = Product( erw.degs ) then
            SetPrimitiveElement( erw.K, primEl );
            SetDefiningPolynomial( erw.K, minpol );
            Add( erw.coeffs, Length( erw.roots ) );
        else
            for i in [ Minimum( 2 * [ Length( erw.degs )-1, 1 ] )..99 ] do
                minpol := MinimalPolynomial( Rationals, i * matA + matB );
                if Degree( minpol ) = Product( erw.degs ) then
                    SetPrimitiveElement( erw.K, i * matA + matB );
                    SetDefiningPolynomial( erw.K, minpol );
                    erw.coeffs := Flat( [ i * erw.coeffs, 1 ] ); 
		    break;
	        fi;
            od;
        fi;

        erw.H := AlgebraicExtension( Rationals, minpol );
        Info( InfoRadiroot, 3, "    ", minpol, " is defining polynomial.");
    od;
    erw.roots := [ Concatenation( erw.roots, roots ),
                   List( faktoren, f -> -Value( f, 0 ) ) ];
    if IsBound( erw.unity ) then
        erw.degs := erw.degs{[ 2..Length(erw.degs) ]};
    fi;

    Info( InfoRadiroot, 3, "        Composition of the primitive element: ",
                           erw.coeffs );
    map := MappingByFunction( erw.H, erw.K, 
                    x -> RR_RootInK( PrimitiveElement( erw.K ) ,x ),
                    mat -> RR_RootInH( rec( K := erw.K, H := erw.H), mat ));
    SetIsomorphismMatrixField( erw.H, map );
    SetSplittingField( poly, erw.H );

    return erw;
end );


#############################################################################
##
#F  RR_SplittField( <poly>, <m> )
##
##  Calls the function RR_Zerfaellungskoerper for the polynomial <poly> with
##  special initial values. The splitting field is constructed over a
##  cyclotomic field.
##
InstallGlobalFunction( RR_SplittField, function( poly, m )
    local erw, cyclopol;

    cyclopol := CyclotomicPolynomial(Rationals, m);

    erw := rec( roots := [ ], degs := [ Degree(cyclopol) ], coeffs := [ ],
                K := RR_MatrixField( cyclopol, [[ 1 ]]),
                H := AlgebraicExtension( Rationals, cyclopol ));
    erw.unity := PrimitiveElement( erw.K );

    erw := RR_Zerfaellungskoerper( poly, erw );;

    return erw;
end );


#############################################################################
##
#E