File: Strings.gi

package info (click to toggle)
gap-radiroot 2.9-1
  • links: PTS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 556 kB
  • sloc: makefile: 117; sh: 12
file content (312 lines) | stat: -rw-r--r-- 10,339 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#############################################################################
####
##
#W  Strings.gi                RADIROOT package                Andreas Distler
##
##  Installation file for the functions that generate Tex-strings
##
#Y  2006
##


#############################################################################
##
#F  RR_Radikalbasis( <erw>, <elements>, <stream> ) 
##
##  Produces a basis for the matrixfield in the record <erw> from the
##  generating matrices <elements> and returns a Tex-readable strings
##  for the basis as well 
##
InstallGlobalFunction( RR_Radikalbasis, function( erw, elements, stream )
    local k, basis, elm, mat, i, ll, basstr, elmstr, m, coeffs, scale;

    k := DegreeOverPrimeField(erw.K) / Product(erw.degs);
    basis := Basis(erw.K){[ 1..k ]};
    if k =1 then
        basstr := [""];
    else
        basstr := ["",Concatenation("\\zeta_{",String(Order(erw.unity)),"}")];
    fi;
    for i in [ 2..k-1 ] do
        Add( basstr, Concatenation("\\zeta_{", String(Order(erw.unity)),
                                   "}^{", String(i),"}"));
    od;
    AppendTo( stream,"\\\\\n");

    for m in [ 1..Length(elements) ] do
        mat := List( basis, Flat );;
        elm := elements[m][1];
        k := elements[m][2];
        coeffs := SolutionMat(mat, Flat(elm^k));
        scale := RR_Potfree(Concatenation(List(coeffs, ExtRepOfObj)), k);
        elm := elm / scale; elements[m][1] := elm;
        elmstr := RR_WurzelAlsString( k, coeffs / scale^k, basstr );
        AppendTo( stream, "$\\omega_", String(m)," = ", elmstr, "$,\\\\\n");
        basis := Concatenation( List( [1..k], i -> elm^(i-1) * basis));;
        ll := [ basstr, List( basstr, str -> 
                              Concatenation( str,"\\omega_",String(m) ) ) ];
        for i in [ 3..k ] do
            ll[i] := List( basstr, str -> Concatenation( str,
                Concatenation( "\\omega_", String(m), "^", String(i-1) ) ) ); 
        od;
        basstr := Concatenation( ll );
    od;
    AppendTo( stream, "\\\\\n");    

    return [ basis, basstr ];
end );


#############################################################################
##
#F  RR_BruchAlsString( <bruch> ) 
##
##  Creates a Tex-readable String for the rational <bruch>
##
InstallGlobalFunction( RR_BruchAlsString, function( bruch )
    local str, num, den, sgn;

    if IsInt( bruch ) then
        str := String( AbsInt( bruch ) );
    else
        num := String( AbsInt( NumeratorRat( bruch ) ) );
        den := String( DenominatorRat( bruch ) );
        str := Concatenation("\\frac{", num, "}{", den, "}" );
    fi;
    if IsNegRat( bruch ) then str := Concatenation( " - ", str ); fi;

    return str;
end );


#############################################################################
##
#F  RR_KoeffizientAlsString( <coeff>, <anf> ) 
##
##  Creates a Tex-readable String for the cyclotomic <coeff>; if <anf>
##  is true, positive signs of rationals will be omitted; if <coeff> is a
##  sum, it will be included in brackets; finitely an empty string
##  will be returned, if <coeff> is equal to 1
##
InstallGlobalFunction( RR_KoeffizientAlsString, function( coeff, anf )
    local cstr;

    if coeff = 1 then
        cstr := "";
    elif coeff = -1 then
        cstr := "-";
    else
        cstr := RR_ZahlAlsString( coeff );
        if not IsRat( coeff ) then
            cstr := Concatenation( "\\left(",cstr,"\\right)" );
        fi;
    fi;
    if not anf then
        if IsPosRat( coeff ) then
            cstr := Concatenation( " + ", cstr );
        elif not IsRat( coeff ) then
            cstr := Concatenation( " + ", cstr );
        fi;
    fi;
    
    return cstr;
end );


#############################################################################
##
#F  RR_WurzelAlsString( <k>, <coeffs>, <basstr> ) 
##
##  Creates a Tex-readable String for the <k>-th root of the element
##  described by <coeffs> and <basstr>
##
InstallGlobalFunction( RR_WurzelAlsString, function( k, coeffs, basstr )
    local i, str, anf;

    str := ""; anf := true;
    for i in [ 1..Length(coeffs) ] do
        if coeffs[i] in [ -1, 1 ] and basstr[i] = "" then
            if not anf and coeffs[i] = 1 then
                str := Concatenation( str, " + ", String( coeffs[i] ) );
            else
               str := Concatenation( str, String( coeffs[i] ) );
            fi;
            anf := false;
        elif coeffs[i] <> 0 then
            str := Concatenation( str,
                                  RR_KoeffizientAlsString( coeffs[i], anf ),
                                  basstr[i]);
            anf := false;
        fi;
    od;
    if k <> 1 then
        str := Concatenation( "\\sqrt[", String(k), "]{", str, "}" );
    fi;

    return str;
end );


#############################################################################
##
#F  RR_ZahlAlsString( <zahl> ) 
##
##  Creates a Tex-readable String for the cyclotomic <zahl>
##
InstallGlobalFunction( RR_ZahlAlsString, function( zahl )
    local bas, basstr, cond, i;

    if IsRat( zahl ) then

        return RR_BruchAlsString( zahl );
    else
        cond := Conductor( zahl );
        bas := Basis( CF( cond ) );
        basstr := [ Concatenation( "\\zeta_{", String(cond), "}" ) ];
        for i in Filtered( [ 2..cond ], x -> Gcd( x, cond ) = 1 ) do
            Add( basstr,
                 Concatenation("\\zeta_{",String(cond),"}^{", String(i), "}"));
        od;

        return RR_WurzelAlsString( 1, Coefficients( bas, zahl ), basstr ); 
    fi;    
end );


#############################################################################
##
#F  RR_PolyAlsString( <poly> ) 
##
##  Creates a Tex-readable String for the polynomial <poly>
##
InstallGlobalFunction( RR_PolyAlsString, function( poly )
    local coeffs, polybasis, i;

    coeffs := CoefficientsOfUnivariatePolynomial( poly );
    polybasis := [ "", "x" ];
    for i in [ 3..Length(coeffs) ] do
        polybasis[i] := Concatenation( "x^{", String(i-1), "}" );
    od;

    return RR_WurzelAlsString( 1, Reversed(coeffs), Reversed(polybasis) );
end );


#############################################################################
##
#F  RR_TexFile( <f>, <erw>, <elements>, <dir>, <file> ) 
##
##  Creates a Tex-file for a radical expression of the roots of the
## polynomial <f>.
##
InstallGlobalFunction( RR_TexFile, function( poly, erw, elements, dir, file )
    local i,cstr,bas,root,coeffs,B,k,offset,str,min,stream;

    # Create tex-Code and write to file, using stream because of linebreaks
    Info( InfoRadiroot, 2, "    creating tex-file." );
    file := Filename( dir, file );
    stream := OutputTextFile( file, false );
    SetPrintFormattingStatus( stream, false );
    AppendTo(stream, "\\documentclass[fleqn]{article} \n",
                     "\\setlength{\\paperwidth}{84cm} \n",
                     "\\setlength{\\textwidth}{80cm} \n",
                     "\\setlength{\\paperheight}{59.5cm} \n",
                     "\\setlength{\\textheight}{57cm} \n", 
                     "\\begin{document} \n",
                     "\\noindent\n",
                     "An expression by radicals for the roots of the polynomial $",
                      RR_PolyAlsString( poly ),
                      "$ with the $n$-th root of unity $\\zeta_n$ and\n");
    bas := RR_Radikalbasis( erw, elements, stream );;
    AppendTo( stream, "is:\n\\\\\n\\noindent\n$" );
    offset := CoefficientsOfUnivariatePolynomial(poly)[Degree(poly)] / 
              (Degree(poly) * LeadingCoefficient(poly));
    k := Degree(poly) / Length(erw.roots);
    if k <> 1 and offset <> 0 then
        AppendTo( stream, RR_ZahlAlsString(-offset), "+");
    fi;
    B := Basis( erw.K, bas[1] );
    coeffs := List([1..Length(erw.roots)], i->Coefficients(B, erw.roots[i]));
    str := List([ 1..Length(erw.roots) ], 
                i -> RR_WurzelAlsString(k, coeffs[i], bas[2]));
    min := First( [ 1..Length(erw.roots) ],
                   i -> Length(str[i]) = Minimum( List( str, Length )));
    if Length( str[min] ) = 0 then
        AppendTo( stream, "0" );
    elif Length( str[min] ) < 1400 then
        AppendTo( stream, str[min] );
    else
        AppendTo( stream, RR_NstInDatei( k, coeffs[min], bas[2] ));
    fi;
    AppendTo(stream, "$\n\\end{document}\n");
#             "$\n\\\\$",String(Length(str[min])),
    CloseStream( stream );

    return file;
end );


#############################################################################
##
#F  RR_Display( <file>, <dir> ) 
##
##  Displays the latex-file <file> from the directory <dir>
##
InstallGlobalFunction( RR_Display, function( file, dir )
    local dvi, latex;

    # Execute latex and open the created document
    latex := Filename( DirectoriesSystemPrograms( ), "latex" );
    Process( dir, latex, InputTextNone( ), OutputTextNone( ), 
             [ Concatenation( file, ".tex" ) ] );
    dvi := Filename( DirectoriesSystemPrograms( ), "xdvi" );
    Process( dir, dvi, InputTextNone( ), OutputTextNone( ), 
             ["-paper","a1r",Concatenation( file, ".dvi" ) ] );

end );


#############################################################################
##
#F  RR_NstInDatei( <k>, <coeffs>, <basstr> ) 
##
##  Creates a Tex-output containing a string for the <k>-th root of the
##  element described by <coeffs> and <basstr> 
##
InstallGlobalFunction( RR_NstInDatei, function( k, coeffs, basstr )
    local str, i, anf;

    str := "";
    if k <> 1 then
        str := Concatenation( str, "(" );
    fi;
    anf := true;
    repeat
        i := 0;
        while Length( coeffs ) >= i+1 and
              Length(RR_WurzelAlsString(1,coeffs{[1..i+1]},basstr{[1..i+1]})) 
              < 1400 do
            i := i+1;
        od;
        if not anf then 
            str := Concatenation(str, "$\\\\\n$+" ); 
        fi;
        anf := false;
        str := Concatenation(str, RR_WurzelAlsString(1, coeffs{[1..i]}, 
                                                        basstr{[1..i]}));
        coeffs := coeffs{[i+1..Length(coeffs)]};
        basstr := basstr{[i+1..Length(basstr)]};
    until coeffs = [ ];  
    if k <> 1 then
        str := Concatenation( str, ")^{\\frac{1}{",String(k),"}}");
    fi;

    return str;
end );


#############################################################################
##
#E