1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#############################################################################
#
# This is the SCSCP server configuration file.
# The service provider can start the server just by the command
# $ gap myserver.g
#
#############################################################################
#############################################################################
#
# Load necessary packages and read external files.
# Put here and other commands if needed.
#
#############################################################################
LogTo(); # to close log file if it was opened from .gaprc
LoadPackage("scscp");
LoadPackage("factint");
LoadPackage("anupq");
LoadPackage("cvec");
LoadPackage("cubefree");
#############################################################################
#
# Procedures and functions available for the SCSCP server
# (you can also install procedures contained in other files,
# including standard GAP procedures and functions) by adding
# appropriate calls to InstallSCSCPprocedure below.
#
#############################################################################
#############################################################################
#
# IdGroupByGenerators( <list of permutations> )
#
# Returns the number of the group, generated by given permutations,
# in the GAP Small Groups Library.
#
IdGroupByGenerators:=function( permlist )
return IdGroup( Group( permlist ) );
end;
#############################################################################
#
# QuillenSeriesByIdGroup( [ ord, nr] )
#
# Let G:=SmallGroup( ord, nr ) be a p-group of order p^n. It was proved in
# [D.Quillen, The spectrum of an equivariant cohomology ring II, Ann. of
# Math., (2) 94 (1984), 573-602] that the number of conjugacy classes of
# maximal elementary abelian subgroups of given rank is determined by the
# group algebra KG.
# The function calculates this numbers for each possible rank and returns
# a list of the length n, where i-th element corresponds to the number of
# conjugacy classes of maximal elementary abelian subgroups of the rank i.
#
QuillenSeriesByIdGroup := function( id )
local G, qs, latt, msl, ccs, ccs_repr, i, x, n;
G := SmallGroup( id );
latt := LatticeSubgroups(G);
msl := MinimalSupergroupsLattice(latt);
ccs := ConjugacyClassesSubgroups(latt);
ccs_repr := List(ccs, Representative);
qs := [];
for i in [ 1 .. LogInt( Size(G), PrimePGroup(G) ) ] do
qs[i]:=0;
od;
for i in [ 1 .. Length(ccs_repr) ] do
if IsElementaryAbelian( ccs_repr[i] ) then
if ForAll( msl[i],
x -> IsElementaryAbelian( ccs[x[1]][x[2]] ) = false ) then
n := LogInt( Size(ccs_repr[i]), PrimePGroup(G) );
qs[n] := qs[n] + 1;
fi;
fi;
od;
return [ id, qs ];
end;
PointImages:=function( G, n )
local g;
return Set( List( GeneratorsOfGroup(G), g -> n^g ) );
end;
SCSCPadditionService:=function(a,b)
return a+b;
end;
#############################################################################
#
# Installation of procedures to make them available for WS
# (you can also install procedures contained in other files,
# including standard GAP procedures and functions)
#
#############################################################################
# Simple procedures for tests and demos
InstallSCSCPprocedure( "Identity", x -> x, "Identity procedure for tests", 1, 1 );
InstallSCSCPprocedure( "WS_Factorial", Factorial, "See ?Factorial in GAP", 1, 1 );
InstallSCSCPprocedure( "addition", SCSCPadditionService, "to add two integers", 2, 2 );
InstallSCSCPprocedure( "WS_Phi", Phi, "Euler's totient function, see ?Phi in GAP", 1, 1 );
InstallSCSCPprocedure( "Length", Length, 1, 1 );
InstallSCSCPprocedure( "Size", Size, 1, 1 );
InstallSCSCPprocedure( "Determinant", Determinant );
InstallSCSCPprocedure( "NrConjugacyClasses", NrConjugacyClasses, 1, 1 );
InstallSCSCPprocedure( "SylowSubgroup", SylowSubgroup, 2, 2 );
InstallSCSCPprocedure( "IsPrimeInt", IsPrimeInt, 1, 1 );
InstallSCSCPprocedure( "NrSmallGroups", NrSmallGroups, 1, 1 );
InstallSCSCPprocedure( "NumberCFGroups", NumberCFGroups, 1, 2 );
InstallSCSCPprocedure( "NumberCFSolvableGroups", NumberCFSolvableGroups, 1, 2 );
# Group identification in the GAP small group library
InstallSCSCPprocedure( "GroupIdentificationService", IdGroupByGenerators,
"Accepts a list of permutations and returns IdGroup of the group they generate", 1, infinity );
InstallSCSCPprocedure( "WS_IdGroup", IdGroup, "See ?IdGroup in GAP", 1, 1 );
InstallSCSCPprocedure( "WS_QUIT_GAP", QUIT_GAP, "quit GAP", 0, 1 );
###########################################################################
#
# IdGroup512ByCode( <pcgs code of the group> )
#
# The function accepts the integer number that is the code for pcgs of
# a group of order 512 and returns the number of this group in the
# GAP Small Groups library. It is assumed that the client will make sure
# that the code really corresponds to the group of order 512, since this
# can not be checked from the code itself.
#
# This function requires ANUPQ package for IdStandardPresented512Group.
#
if ARCH_IS_UNIX() then
IdGroup512ByCode:=function( code )
local G, F, H;
G := PcGroupCode( code, 512 );
F := PqStandardPresentation( G );
H := PcGroupFpGroup( F );
return IdStandardPresented512Group( H );
end;
InstallSCSCPprocedure( "IdGroup512ByCode", IdGroup512ByCode,
"Identification of groups of order 512 using the ANUPQ package", 1, 1 );
fi;
InstallSCSCPprocedure( "MatrixGroup", Group );
# Important MIP (modular isomorphism problem for group algebras of finite p-group
# over the field of p elements) invariant
InstallSCSCPprocedure( "QuillenSeriesByIdGroup", QuillenSeriesByIdGroup,
"Quillen series of a finite p-group given by IdGroup (list of two integers)", 1, 1 );
# Service used to compute automorphism groups of transformation semigroups with
# the MONOID package, which requires the GRAPE package, and the latter requires
# the external program 'nauty' by Brendan D. McKay
InstallSCSCPprocedure( "WS_AutomorphismGroup", AutomorphismGroup, 1, 1 );
# GAP group libraries
InstallSCSCPprocedure( "WS_AlternatingGroup", AlternatingGroup );
InstallSCSCPprocedure( "WS_SymmetricGroup", SymmetricGroup );
InstallSCSCPprocedure( "WS_SmallGroup", SmallGroup );
InstallSCSCPprocedure( "WS_TransitiveGroup", TransitiveGroup );
InstallSCSCPprocedure( "WS_PrimitiveGroup", PrimitiveGroup );
InstallSCSCPprocedure( "MathieuGroup", MathieuGroup );
# Multiplication services
InstallSCSCPprocedure( "WS_Mult", function(a,b) return a*b; end );
InstallSCSCPprocedure( "WS_MultMatrix",
function(a,b)
if not IsMatrix(a) or not IsMatrix(b) then
Error( "The argument must be a matrix!" );
else
return a*b;
fi;
end );
# Lattice of subgroups
InstallSCSCPprocedure( "WS_LatticeSubgroups", LatticeSubgroups, 1, 1 );
# Series of factorisation methods from the GAP package FactInt
InstallSCSCPprocedure("WS_FactorsTD", FactorsTD,
"FactorsTD from FactInt package, see ?FactorsTD in GAP", 1, 2 );
InstallSCSCPprocedure("WS_FactorsPminus1", FactorsPminus1,
"FactorsPminus1 from FactInt package, see ?FactorsPminus1 in GAP", 1, 4 );
InstallSCSCPprocedure("WS_FactorsPplus1", FactorsPplus1,
"FactorsPplus1 from FactInt package, see ?FactorsPplus1 in GAP", 1, 4 );
InstallSCSCPprocedure("WS_FactorsECM", FactorsECM,
"FactorsECM from FactInt package, see ?FactorsECM in GAP", 1, 5 );
InstallSCSCPprocedure("WS_FactorsCFRAC", FactorsCFRAC,
"FactorsCFRAC from FactInt package, see ?FactorsCFRAC in GAP", 1, 1 );
InstallSCSCPprocedure("WS_FactorsMPQS", FactorsMPQS,
"FactorsMPQS from FactInt package, see ?FactorsMPQS in GAP", 1, 1 );
InstallSCSCPprocedure("WS_ConwayPolynomial", ConwayPolynomial, "See ?ConwayPolynomial in GAP", 2, 2 );
InstallSCSCPprocedure( "PointImages", PointImages,
"1st argument is a permutation group G, 2nd is an integer n. Returns the set of images of n under generators of G", 2, 2 );
#############################################################################
#
# procedures for the UnitLib package for the parallel computation of the
# normalized unit group of a modular group algebra of a finite p-group
# from the GAP small groups library
#
if LoadPackage("unitlib") = true then
InstallSCSCPprocedure( "NormalizedUnitCFpower", NormalizedUnitCFpower );
InstallSCSCPprocedure( "NormalizedUnitCFcommutator", NormalizedUnitCFcommutator );
fi;
#############################################################################
#
# procedure to test pickling/unpickling from the IO package for data encoding
#
IO_UnpickleStringAndPickleItBack:=function( picklestr )
return( IO_PickleToString( IO_UnpickleFromString( picklestr ) ) );
end;
InstallSCSCPprocedure( "IO_UnpickleStringAndPickleItBack", IO_UnpickleStringAndPickleItBack,
"To test how pickling format from IO package may be used for data transmitting (see ?IO_Pickle, ?IO_Unpickle)", 1, 1 );
############################################################################
#
# Setting up the service for parallel computation
# of minimal distance of a linear code
#
SCSCPMINDISTG:=fail;
SCSCPMINDISTF:=fail;
SCSCPMINDISTzero:=fail;
InstallSCSCPprocedure("ResetMinimumDistanceService",
function( G, F, zero )
SCSCPMINDISTG:=IO_UnpickleFromString(G);
SCSCPMINDISTF:=F;
SCSCPMINDISTzero:=IO_UnpickleFromString(zero);
return true;
end);
InstallSCSCPprocedure(
"AClosestVectorCombinationsMatFFEVecFFE",
i -> WeightVecFFE( AClosestVectorCombinationsMatFFEVecFFE(
SCSCPMINDISTG, SCSCPMINDISTF, SCSCPMINDISTzero, i, 1) ) );
#############################################################################
#
# Finally, we start the SCSCP server.
#
#############################################################################
RunSCSCPserver( SCSCPserverAddress, SCSCPserverPort );
|