1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (smallgrp) - References</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chapBib" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap1_mj.html">[Previous Chapter]</a> <a href="chapInd_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chapBib.html">[MathJax off]</a></p>
<p><a id="X7A6F98FD85F02BFE" name="X7A6F98FD85F02BFE"></a></p>
<h3>References</h3>
<p><a id="biBBescheEick98" name="biBBescheEick98"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1681346">BE99a</a></span>] <b class='BibAuthor'>Besche, H. U. and Eick, B.</b>,
<i class='BibTitle'>Construction of finite groups</i>,
<span class='BibJournal'>J. Symbolic Comput.</span>,
<em class='BibVolume'>27</em> (<span class='BibNumber'>4</span>)
(<span class='BibYear'>1999</span>),
<span class='BibPages'>387–404</span>.
</p>
<p><a id="biBBescheEick1000" name="biBBescheEick1000"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1681347">BE99b</a></span>] <b class='BibAuthor'>Besche, H. U. and Eick, B.</b>,
<i class='BibTitle'>The groups of order at most 1000 except 512 and 768</i>,
<span class='BibJournal'>J. Symbolic Comput.</span>,
<em class='BibVolume'>27</em> (<span class='BibNumber'>4</span>)
(<span class='BibYear'>1999</span>),
<span class='BibPages'>405–413</span>.
</p>
<p><a id="biBBescheEick768" name="biBBescheEick768"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1853124">BE01</a></span>] <b class='BibAuthor'>Besche, H. U. and Eick, B.</b>,
<i class='BibTitle'>The groups of order \(q^n \cdot p\)</i>,
<span class='BibJournal'>Comm. Algebra</span>,
<em class='BibVolume'>29</em> (<span class='BibNumber'>4</span>)
(<span class='BibYear'>2001</span>),
<span class='BibPages'>1759–1772</span>.
</p>
<p><a id="biBBEO00" name="biBBEO00"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1826989">BEO01</a></span>] <b class='BibAuthor'>Besche, H. U., Eick, B. and O'Brien, E. A.</b>,
<i class='BibTitle'>The groups of order at most 2000</i>,
<span class='BibJournal'>Electron. Res. Announc. Amer. Math. Soc.</span>,
<em class='BibVolume'>7</em>
(<span class='BibYear'>2001</span>),
<span class='BibPages'>1–4 (electronic)</span>.
</p>
<p><a id="biBBEO01" name="biBBEO01"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1935567">BEO02</a></span>] <b class='BibAuthor'>Besche, H. U., Eick, B. and O'Brien, E. A.</b>,
<i class='BibTitle'>A millennium project: constructing small groups</i>,
<span class='BibJournal'>Internat. J. Algebra Comput.</span>,
<em class='BibVolume'>12</em> (<span class='BibNumber'>5</span>)
(<span class='BibYear'>2002</span>),
<span class='BibPages'>623–644</span>.
</p>
<p><a id="biBBurrell2021" name="biBBurrell2021"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Bur21</span>] <b class='BibAuthor'>Burrell, D.</b>,
<a href="https://doi.org/10.1080/00927872.2021.2006680"><i class='BibTitle'>On the number of groups of order 1024</i></a>,
<span class='BibJournal'>Communications in Algebra</span>
(<span class='BibYear'>2021</span>),
<span class='BibPages'>1–3</span>.
</p>
<p><a id="biBDEi05" name="biBDEi05"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2166799">DE05</a></span>] <b class='BibAuthor'>Dietrich, H. and Eick, B.</b>,
<i class='BibTitle'>On the groups of cube-free order</i>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>292</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>2005</span>),
<span class='BibPages'>122–137</span>.
</p>
<p><a id="biBEOB99" name="biBEOB99"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1717413">EO99a</a></span>] <b class='BibAuthor'>Eick, B. and O'Brien, E. A.</b>,
<i class='BibTitle'>Enumerating \(p\)-groups</i>,
<span class='BibJournal'>J. Austral. Math. Soc. Ser. A</span>,
<em class='BibVolume'>67</em> (<span class='BibNumber'>2</span>)
(<span class='BibYear'>1999</span>),
<span class='BibPages'>191–205</span><br />
(<span class='BibNote'>Group theory</span>).
</p>
<p><a id="biBEOB98" name="biBEOB98"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1672078">EO99b</a></span>] <b class='BibAuthor'>Eick, B. and O'Brien, E. A.</b> (<span class='BibEditor'>Matzat, B. H., Greuel, G.-M. and Hiss, G.</span>, Eds.),
<i class='BibTitle'>The groups of order \(512\)</i>,
in <i class='BibBooktitle'>Algorithmic algebra and number theory (Heidelberg,
1997)</i>,
<span class='BibPublisher'>Springer</span>,
<span class='BibAddress'>Berlin</span>
(<span class='BibYear'>1999</span>),
<span class='BibPages'>379–380</span><br />
(<span class='BibNote'>Proceedings of Abschlusstagung des DFG Schwerpunktes
Algorithmische Algebra und Zahlentheorie in Heidelberg</span>).
</p>
<p><a id="biBGir03" name="biBGir03"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Gir03</span>] <b class='BibAuthor'>Girnat, B.</b>,
<i class='BibTitle'>Klassifikation der Gruppen bis zur Ordnung
\(p^5\)</i>,
<span class='BibType'>Staatsexamensarbeit</span>,
<span class='BibSchool'>TU Braunschweig</span>,
<span class='BibAddress'>Braunschweig, Germany</span>
(<span class='BibYear'>2003</span>).
</p>
<p><a id="biBNew77" name="biBNew77"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=0453862">New77</a></span>] <b class='BibAuthor'>Newman, M. F.</b> (<span class='BibEditor'>Bryce, R. A., Cossey, J. and Newman, M. F.</span>, Eds.),
<i class='BibTitle'>Determination of groups of prime-power order</i>,
in <i class='BibBooktitle'>Group theory (Proc. Miniconf., Australian Nat. Univ.,
Canberra, 1975)</i>,
<span class='BibPublisher'>Springer</span>,
<span class='BibSeries'>Lecture Notes in Math.</span>,
<em class='BibVolume'>573</em>,
<span class='BibAddress'>Berlin</span>
(<span class='BibYear'>1977</span>),
<span class='BibPages'>73–84. Lecture Notes in Math., Vol. 573</span><br />
(<span class='BibNote'>Lecture Notes in Mathematics, Vol. 573</span>).
</p>
<p><a id="biBNOV04" name="biBNOV04"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2068084">NOV04</a></span>] <b class='BibAuthor'>Newman, M. F., O'Brien, E. A. and Vaughan-Lee, M. R.</b>,
<i class='BibTitle'>Groups and nilpotent Lie rings whose order is the sixth
power of a prime</i>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>278</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>2004</span>),
<span class='BibPages'>383–401</span>.
</p>
<p><a id="biBOBr90" name="biBOBr90"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1075431">O'B90</a></span>] <b class='BibAuthor'>O'Brien, E. A.</b>,
<i class='BibTitle'>The \(p\)-group generation algorithm</i>,
<span class='BibJournal'>J. Symbolic Comput.</span>,
<em class='BibVolume'>9</em> (<span class='BibNumber'>5-6</span>)
(<span class='BibYear'>1990</span>),
<span class='BibPages'>677–698</span><br />
(<span class='BibNote'>Computational group theory, Part 1</span>).
</p>
<p><a id="biBOBr91" name="biBOBr91"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1128656">O'B91</a></span>] <b class='BibAuthor'>O'Brien, E. A.</b>,
<i class='BibTitle'>The groups of order \(256\)</i>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>143</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>1991</span>),
<span class='BibPages'>219–235</span>.
</p>
<p><a id="biBOV05" name="biBOV05"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2166803">OV05</a></span>] <b class='BibAuthor'>O'Brien, E. A. and Vaughan-Lee, M. R.</b>,
<i class='BibTitle'>The groups with order \(p^7\) for odd prime \(p\)</i>,
<span class='BibJournal'>J. Algebra</span>,
<em class='BibVolume'>292</em> (<span class='BibNumber'>1</span>)
(<span class='BibYear'>2005</span>),
<span class='BibPages'>243–258</span>.
</p>
<p> </p>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap1_mj.html">[Previous Chapter]</a> <a href="chapInd_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|