File: chapBib_mj.html

package info (click to toggle)
gap-smallgrp 1.5.4-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 28,244 kB
  • sloc: xml: 5,448; javascript: 155; makefile: 127; sh: 1
file content (218 lines) | stat: -rw-r--r-- 10,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (smallgrp) - References</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chapBib"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chapInd_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chapBib.html">[MathJax off]</a></p>
<p><a id="X7A6F98FD85F02BFE" name="X7A6F98FD85F02BFE"></a></p>

<h3>References</h3>


<p><a id="biBBescheEick98" name="biBBescheEick98"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1681346">BE99a</a></span>]   <b class='BibAuthor'>Besche, H. U. and Eick, B.</b>,
 <i class='BibTitle'>Construction of finite groups</i>,
 <span class='BibJournal'>J. Symbolic Comput.</span>,
 <em class='BibVolume'>27</em> (<span class='BibNumber'>4</span>)
 (<span class='BibYear'>1999</span>),
 <span class='BibPages'>387–404</span>.
</p>


<p><a id="biBBescheEick1000" name="biBBescheEick1000"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1681347">BE99b</a></span>]   <b class='BibAuthor'>Besche, H. U. and Eick, B.</b>,
 <i class='BibTitle'>The groups of order at most 1000 except 512 and 768</i>,
 <span class='BibJournal'>J. Symbolic Comput.</span>,
 <em class='BibVolume'>27</em> (<span class='BibNumber'>4</span>)
 (<span class='BibYear'>1999</span>),
 <span class='BibPages'>405–413</span>.
</p>


<p><a id="biBBescheEick768" name="biBBescheEick768"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1853124">BE01</a></span>]   <b class='BibAuthor'>Besche, H. U. and Eick, B.</b>,
 <i class='BibTitle'>The groups of order \(q^n \cdot p\)</i>,
 <span class='BibJournal'>Comm. Algebra</span>,
 <em class='BibVolume'>29</em> (<span class='BibNumber'>4</span>)
 (<span class='BibYear'>2001</span>),
 <span class='BibPages'>1759–1772</span>.
</p>


<p><a id="biBBEO00" name="biBBEO00"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1826989">BEO01</a></span>]   <b class='BibAuthor'>Besche, H. U., Eick, B. and O'Brien, E. A.</b>,
 <i class='BibTitle'>The groups of order at most 2000</i>,
 <span class='BibJournal'>Electron. Res. Announc. Amer. Math. Soc.</span>,
 <em class='BibVolume'>7</em>
 (<span class='BibYear'>2001</span>),
 <span class='BibPages'>1–4 (electronic)</span>.
</p>


<p><a id="biBBEO01" name="biBBEO01"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1935567">BEO02</a></span>]   <b class='BibAuthor'>Besche, H. U., Eick, B. and O'Brien, E. A.</b>,
 <i class='BibTitle'>A millennium project: constructing small groups</i>,
 <span class='BibJournal'>Internat. J. Algebra Comput.</span>,
 <em class='BibVolume'>12</em> (<span class='BibNumber'>5</span>)
 (<span class='BibYear'>2002</span>),
 <span class='BibPages'>623–644</span>.
</p>


<p><a id="biBBurrell2021" name="biBBurrell2021"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Bur21</span>]   <b class='BibAuthor'>Burrell, D.</b>,
<a href="https://doi.org/10.1080/00927872.2021.2006680"><i class='BibTitle'>On the number of groups of order 1024</i></a>,
 <span class='BibJournal'>Communications in Algebra</span>
 (<span class='BibYear'>2021</span>),
 <span class='BibPages'>1–3</span>.
</p>


<p><a id="biBDEi05" name="biBDEi05"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2166799">DE05</a></span>]   <b class='BibAuthor'>Dietrich, H. and Eick, B.</b>,
 <i class='BibTitle'>On the groups of cube-free order</i>,
 <span class='BibJournal'>J. Algebra</span>,
 <em class='BibVolume'>292</em> (<span class='BibNumber'>1</span>)
 (<span class='BibYear'>2005</span>),
 <span class='BibPages'>122–137</span>.
</p>


<p><a id="biBEOB99" name="biBEOB99"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1717413">EO99a</a></span>]   <b class='BibAuthor'>Eick, B. and O'Brien, E. A.</b>,
 <i class='BibTitle'>Enumerating \(p\)-groups</i>,
 <span class='BibJournal'>J. Austral. Math. Soc. Ser. A</span>,
 <em class='BibVolume'>67</em> (<span class='BibNumber'>2</span>)
 (<span class='BibYear'>1999</span>),
 <span class='BibPages'>191–205</span><br />
(<span class='BibNote'>Group theory</span>).
</p>


<p><a id="biBEOB98" name="biBEOB98"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1672078">EO99b</a></span>]   <b class='BibAuthor'>Eick, B. and O'Brien, E. A.</b> (<span class='BibEditor'>Matzat, B. H., Greuel, G.-M. and Hiss, G.</span>, Eds.),
 <i class='BibTitle'>The groups of order \(512\)</i>,
  in  <i class='BibBooktitle'>Algorithmic algebra and number theory (Heidelberg,
      1997)</i>,
 <span class='BibPublisher'>Springer</span>,
 <span class='BibAddress'>Berlin</span>
 (<span class='BibYear'>1999</span>),
 <span class='BibPages'>379–380</span><br />
(<span class='BibNote'>Proceedings  of Abschlusstagung des DFG Schwerpunktes
  Algorithmische Algebra und Zahlentheorie in Heidelberg</span>).
</p>


<p><a id="biBGir03" name="biBGir03"></a></p>
<p class='BibEntry'>
[<span class='BibKey'>Gir03</span>]   <b class='BibAuthor'>Girnat, B.</b>,
 <i class='BibTitle'>Klassifikation der Gruppen bis zur Ordnung
      \(p^5\)</i>,
 <span class='BibType'>Staatsexamensarbeit</span>,
 <span class='BibSchool'>TU Braunschweig</span>,
 <span class='BibAddress'>Braunschweig, Germany</span>
 (<span class='BibYear'>2003</span>).
</p>


<p><a id="biBNew77" name="biBNew77"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=0453862">New77</a></span>]   <b class='BibAuthor'>Newman, M. F.</b> (<span class='BibEditor'>Bryce, R. A., Cossey, J. and Newman, M. F.</span>, Eds.),
 <i class='BibTitle'>Determination of groups of prime-power order</i>,
  in  <i class='BibBooktitle'>Group theory (Proc. Miniconf., Australian Nat. Univ.,
              Canberra, 1975)</i>,
 <span class='BibPublisher'>Springer</span>,
 <span class='BibSeries'>Lecture Notes in Math.</span>,
 <em class='BibVolume'>573</em>,
 <span class='BibAddress'>Berlin</span>
 (<span class='BibYear'>1977</span>),
 <span class='BibPages'>73–84. Lecture Notes in Math., Vol. 573</span><br />
(<span class='BibNote'>Lecture Notes in Mathematics, Vol. 573</span>).
</p>


<p><a id="biBNOV04" name="biBNOV04"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2068084">NOV04</a></span>]   <b class='BibAuthor'>Newman, M. F., O'Brien, E. A. and Vaughan-Lee, M. R.</b>,
 <i class='BibTitle'>Groups and nilpotent Lie rings whose order is the sixth
              power of a prime</i>,
 <span class='BibJournal'>J. Algebra</span>,
 <em class='BibVolume'>278</em> (<span class='BibNumber'>1</span>)
 (<span class='BibYear'>2004</span>),
 <span class='BibPages'>383–401</span>.
</p>


<p><a id="biBOBr90" name="biBOBr90"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1075431">O'B90</a></span>]   <b class='BibAuthor'>O'Brien, E. A.</b>,
 <i class='BibTitle'>The \(p\)-group generation algorithm</i>,
 <span class='BibJournal'>J. Symbolic Comput.</span>,
 <em class='BibVolume'>9</em> (<span class='BibNumber'>5-6</span>)
 (<span class='BibYear'>1990</span>),
 <span class='BibPages'>677–698</span><br />
(<span class='BibNote'>Computational group theory, Part 1</span>).
</p>


<p><a id="biBOBr91" name="biBOBr91"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=1128656">O'B91</a></span>]   <b class='BibAuthor'>O'Brien, E. A.</b>,
 <i class='BibTitle'>The groups of order \(256\)</i>,
 <span class='BibJournal'>J. Algebra</span>,
 <em class='BibVolume'>143</em> (<span class='BibNumber'>1</span>)
 (<span class='BibYear'>1991</span>),
 <span class='BibPages'>219–235</span>.
</p>


<p><a id="biBOV05" name="biBOV05"></a></p>
<p class='BibEntry'>
[<span class='BibKeyLink'><a href="https://www.ams.org/mathscinet-getitem?mr=2166803">OV05</a></span>]   <b class='BibAuthor'>O'Brien, E. A. and Vaughan-Lee, M. R.</b>,
 <i class='BibTitle'>The groups with order \(p^7\) for odd prime \(p\)</i>,
 <span class='BibJournal'>J. Algebra</span>,
 <em class='BibVolume'>292</em> (<span class='BibNumber'>1</span>)
 (<span class='BibYear'>2005</span>),
 <span class='BibPages'>243–258</span>.
</p>

<p> </p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chapInd_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>