File: small.gd

package info (click to toggle)
gap-smallgrp 1.5.4-2
  • links: PTS
  • area: main
  • in suites: forky, trixie
  • size: 28,244 kB
  • sloc: xml: 5,448; javascript: 155; makefile: 127; sh: 1
file content (1007 lines) | stat: -rw-r--r-- 33,197 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
#############################################################################
##
#W  small.gd                 GAP group library             Hans Ulrich Besche
##                                               Bettina Eick, Eamonn O'Brien
##

DeclareInfoClass( "InfoIdgroup" );

##  <#GAPDoc Label="SMALL_GROUPS_OLD_ORDER">
##  <ManSection>
##  <Var Name="SMALL_GROUPS_OLD_ORDER"/>
##
##  <Description>
##  If set to <C>true</C>, then groups of order <M>3^7</M>, <M>5^7</M>,
##  <M>7^7</M>, and <M>11^7</M> are ordered in the way they were
##  ordered up to version 1.0 of the package. If this variable is
##  set to <C>false</C>, which is the default as of version 1.4,
##  then a different ordering, that agrees with the one in Magma version
##  2.23, is used.
##  The functions <C>SMALLGP_PERM</C><M>x</M>, with <M>x=3,5,7,11</M>, give
##  the old index position corresponding to a new index position.
##  In releases 1.1-1.3 a misunderstood ordering, based on the old ordering
##  and the permutations <M>(2,30083)(3,30084)(4,30085)(5,30086)</M>,
##  <M>(2,104599)(3,104600)(4,104601)(5,104602)</M>, and
##  <M>(2,721053)(3,721054)(4,721055)(5,721059)</M> respectively
##  were used.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
SMALL_GROUPS_OLD_ORDER := false;

# permutations
# AH: These are based on comparison with a list from Magma
BindGlobal("SMALLGP_PERM3",function(i)
  if i>7222 and i<7227 then return 14449-i;
  else return i;fi;
end);;

BindGlobal("SMALLGP_PERM5",function(i)
local k;
  if i=1 then return 1;
  elif i<6 then return i+30081;
  elif i<4156 then return i-4;
  elif i<4163 then return i+21;
  elif i<4171 then return i+36;
  elif i<4179 then return i+16;
  elif i<4198 then return i+53;
  elif i<4202 then return i-3;
  elif i<4212 then return i+65;
  elif i<4237 then return i-60;
  elif i<4243 then return i+24;
  elif i<4246 then return i-59;
  elif i<4256 then return i+5;
  elif i<4281 then return i-49;
  elif i<4299 then return i-4;
  elif i<4308 then return i+21;
  elif i<4323 then return i+37;
  elif i<4331 then return i+9;
  elif i<4361 then return i+54;
  elif i<4366 then return i-21;
  elif i<4406 then return i+95;
  elif i<4431 then return i-111;
  elif i<4437 then return i+24;
  elif i<4440 then return i-108;
  elif i<4455 then return i-25;
  elif i<4480 then return i-95;
  elif i<4505 then return i-50;
  elif i<30075 then return i-4;
  elif i<30087 then 
    k:=[30082, 30077, 30076, 30080, 30081, 30073,
        30079, 30072, 30074, 30071, 30078, 30075];
    return k[i-30074];
  elif i<30454 then return i+0;
  elif i<30455 then return i+15;
  elif i<30456 then return i+133;
  elif i<30482 then return i+36;
  elif i<30497 then return i-28;
  elif i<30498 then return i-23;
  elif i<30499 then return i-27;
  elif i<30539 then return i+49;
  elif i<30546 then 
    k:=[ 30534, 30600, 30472, 30599, 30470, 30518, 30536 ];
    return k[i-30538];
  elif i<30561 then return i-69;
  elif i<30562 then return i-88;
  elif i<30572 then return i+27;
  elif i<30573 then return i-37;
  elif i<30583 then return i-35;
  elif i<30584 then return i-46;
  elif i<30586 then return i-109;
  elif i<30601 then return i-67;
  elif i<30636 then return i+0;
  elif i<30640 then 
    k:=[ 30727, 30655, 30724, 30726 ];
    return k[i-30635];
  elif i<30656 then return i+43;
  elif i<30657 then return i-20;
  elif i<30682 then return i-1;
  elif i<30683 then return i-30;
  elif i<30684 then return i+45;
  elif i<30699 then return i-47;
  elif i<30700 then return i+26;
  elif i<30701 then return i-46;
  elif i<30726 then return i-2;
  elif i<30727 then return i-44;
  elif i<30728 then return i-46;
  elif i<30729 then return i-75;
  elif i<34298 then return i;
  else Error("invalid parameter");fi;
end);

BindGlobal("SMALLGP_PERM7",function(i)
  if i<2 then return i;
  elif i<6 then return i+104597;
  elif i<8925 then return i-4;
  elif i<8974 then return i+13;
  elif i<8984 then return i+60;
  elif i<8996 then return i+38;
  elif i<9004 then return i+107;
  elif i<9014 then return i+40;
  elif i<9028 then return i+97;
  elif i<9045 then return i-41;
  elif i<9049 then return i-121;
  elif i<9098 then return i+5;
  elif i<9101 then return i-177;
  elif i<9111 then return i-173;
  elif i<9125 then return i-103;
  elif i<9129 then return i-121;
  elif i<9132 then return i+213;
  elif i<9149 then return i+502;
  elif i<9155 then return i+178;
  elif i<9158 then return i-30;
  elif i<9207 then return i+232;
  elif i<9235 then return i-73;
  elif i<9244 then return i-14;
  elif i<9293 then return i+244;
  elif i<9321 then return i-63;
  elif i<9327 then return i-193;
  elif i<9337 then return i-116;
  elif i<9354 then return i-27;
  elif i<9382 then return i+235;
  elif i<9431 then return i+57;
  elif i<9440 then return i-98;
  elif i<9489 then return i-278;
  elif i<9492 then return i+48;
  elif i<9500 then return i+134;
  elif i<9549 then return i+40;
  elif i<9552 then return i-242;
  elif i<9601 then return i-294;
  elif i<9610 then return i+16;
  elif i<9655 then return i-265;
  elif i<104579 then return i-4;
  elif i<104580 then return i+6;
  elif i<104581 then return i+8;
  elif i<104582 then return i+5;
  elif i<104583 then return i+12;
  elif i<104584 then return i+10;
  elif i<104585 then return i-7;
  elif i<104586 then return i-6;
  elif i<104587 then return i-3;
  elif i<104588 then return i+5;
  elif i<104589 then return i+1;
  elif i<104590 then return i-8;
  elif i<104591 then return i+1;
  elif i<104592 then return i+5;
  elif i<104593 then return i-12;
  elif i<104594 then return i-11;
  elif i<104595 then return i-16;
  elif i<104596 then return i-11;
  elif i<104597 then return i-6;
  elif i<104598 then return i-22;
  elif i<104599 then return i-11;
  elif i<104600 then return i-23;
  elif i<104601 then return i-5;
  elif i<104602 then return i-3;
  elif i<104603 then return i-5;
  elif i<105124 then return i;
  elif i<105125 then return i+198;
  elif i<105174 then return i-1;
  elif i<105175 then return i+91;
  elif i<105224 then return i+95;
  elif i<105225 then return i+9;
  elif i<105226 then return i-51;
  elif i<105275 then return i-44;
  elif i<105276 then return i-13;
  elif i<105277 then return i-8;
  elif i<105278 then return i+43;
  elif i<105279 then return i-47;
  elif i<105280 then return i-99;
  elif i<105281 then return i+39;
  elif i<105282 then return i-49;
  elif i<105283 then return i-103;
  elif i<105284 then return i-106;
  elif i<105285 then return i-109;
  elif i<105313 then return i+38;
  elif i<105314 then return i-47;
  elif i<105315 then return i-50;
  elif i<105316 then return i+6;
  elif i<105317 then return i-49;
  elif i<105318 then return i-136;
  elif i<105319 then return i-142;
  elif i<105320 then return i-146;
  elif i<105321 then return i-57;
  elif i<105322 then return i-143;
  elif i<105350 then return i-88;
  elif i<105351 then return i-81;
  elif i<105432 then return i;
  elif i<105460 then return i+186;
  elif i<105461 then return i+89;
  elif i<105489 then return i-28;
  elif i<105517 then return i+98;
  elif i<105518 then return i+66;
  elif i<105546 then return i-53;
  elif i<105547 then return i+102;
  elif i<105548 then return i+70;
  elif i<105549 then return i+98;
  elif i<105550 then return i+66;
  elif i<105551 then return i-4;
  elif i<105552 then return i+30;
  elif i<105553 then return i-120;
  elif i<105554 then return i+29;
  elif i<105603 then return i-57;
  elif i<105604 then return i+144;
  elif i<105605 then return i-57;
  elif i<105606 then return i-25;
  elif i<105607 then return i-143;
  elif i<105608 then return i+9;
  elif i<105609 then return i-112;
  elif i<105610 then return i-115;
  elif i<105611 then return i-45;
  elif i<105612 then return i-118;
  elif i<105613 then return i-117;
  elif i<105614 then return i+34;
  elif i<105626 then return i-64;
  elif i<105627 then return i-162;
  elif i<105628 then return i+121;
  elif i<105629 then return i-42;
  elif i<105630 then return i-67;
  elif i<105631 then return i-46;
  elif i<105680 then return i+67;
  elif i<105681 then return i-132;
  elif i<105730 then return i-32;
  elif i<105744 then return i-164;
  elif i<105745 then return i-159;
  elif i<105746 then return i-284;
  elif i<105748 then return i-183;
  elif i<105749 then return i-286;
  else return i; fi;
end);

BindGlobal("SMALLGP_PERM11",function(i)
  if i<2 then return i;
  elif i<6 then return i+721051;
  elif i<30273 then return i-4;
  elif i<30277 then return i+60;
  elif i<30299 then return i+20;
  elif i<30420 then return i+184;
  elif i<30424 then return i+211;
  elif i<30446 then return i-84;
  elif i<30449 then return i-109;
  elif i<30463 then return i+168;
  elif i<30477 then return i-144;
  elif i<30502 then return i-205;
  elif i<30516 then return i+145;
  elif i<30519 then return i-247;
  elif i<30532 then return i+85;
  elif i<30544 then return i+103;
  elif i<30665 then return i-182;
  elif i<30731 then return i+629;
  elif i<30852 then return i+376;
  elif i<30973 then return i+629;
  elif i<31094 then return i+698;
  elif i<31102 then return i+1223;
  elif i<31344 then return i+832;
  elif i<31410 then return i-116;
  elif i<31531 then return i+766;
  elif i<31652 then return i-867;
  elif i<31664 then return i+645;
  elif i<31785 then return i-678;
  elif i<31793 then return i+524;
  elif i<31914 then return i-433;
  elif i<32035 then return i-101;
  elif i<32056 then return i-243;
  elif i<32059 then return i-388;
  elif i<32073 then return i-1274;
  elif i<32076 then return i-1412;
  elif i<32142 then return i-1156;
  elif i<32263 then return i-1343;
  elif i<32329 then return i-661;
  elif i<720997 then return i-4;
  elif i<720998 then return i+20;
  elif i<720999 then return i-3;
  elif i<721000 then return i+4;
  elif i<721002 then return i+46;
  elif i<721003 then return i+40;
  elif i<721004 then return i+49;
  elif i<721005 then return i+36;
  elif i<721006 then return i+24;
  elif i<721007 then return i-10;
  elif i<721008 then return i+41;
  elif i<721009 then return i+33;
  elif i<721010 then return i-10;
  elif i<721011 then return i+21;
  elif i<721012 then return i-18;
  elif i<721013 then return i+31;
  elif i<721014 then return i+32;
  elif i<721015 then return i+20;
  elif i<721016 then return i;
  elif i<721017 then return i-19;
  elif i<721018 then return i+15;
  elif i<721019 then return i+9;
  elif i<721020 then return i-5;
  elif i<721021 then return i;
  elif i<721022 then return i+30;
  elif i<721023 then return i+2;
  elif i<721024 then return i-23;
  elif i<721025 then return i-2;
  elif i<721026 then return i-14;
  elif i<721027 then return i-25;
  elif i<721028 then return i+1;
  elif i<721029 then return i-15;
  elif i<721030 then return i-20;
  elif i<721031 then return i+7;
  elif i<721032 then return i-10;
  elif i<721033 then return i+17;
  elif i<721034 then return i-21;
  elif i<721035 then return i+5;
  elif i<721036 then return i-30;
  elif i<721037 then return i+14;
  elif i<721038 then return i+7;
  elif i<721039 then return i-31;
  elif i<721040 then return i-41;
  elif i<721041 then return i-5;
  elif i<721042 then return i-8;
  elif i<721043 then return i-17;
  elif i<721044 then return i-49;
  elif i<721045 then return i-8;
  elif i<721046 then return i-39;
  elif i<721047 then return i-42;
  elif i<721048 then return i-21;
  elif i<721049 then return i-29;
  elif i<721050 then return i-19;
  elif i<721051 then return i-48;
  elif i<721052 then return i-35;
  elif i<721053 then return i-14;
  elif i<721054 then return i-43;
  elif i<721055 then return i-36;
  elif i<721056 then return i-32;
  elif i<721057 then return i-48;
  elif i<722036 then return i;
  elif i<722037 then return i+790;
  elif i<722038 then return i+396;
  elif i<722039 then return i+658;
  elif i<722040 then return i+665;
  elif i<722041 then return i+371;
  elif i<722042 then return i+393;
  elif i<722043 then return i+387;
  elif i<722044 then return i+648;
  elif i<722165 then return i+245;
  elif i<722166 then return i+258;
  elif i<722167 then return i+528;
  elif i<722168 then return i+263;
  elif i<722169 then return i+254;
  elif i<722235 then return i-133;
  elif i<722356 then return i+327;
  elif i<722357 then return i+63;
  elif i<722358 then return i+204;
  elif i<722359 then return i+81;
  elif i<722480 then return i+346;
  elif i<722481 then return i-63;
  elif i<722482 then return i+204;
  elif i<722483 then return i-45;
  elif i<722484 then return i+218;
  elif i<722485 then return i+349;
  elif i<722486 then return i+213;
  elif i<722487 then return i-55;
  elif i<722488 then return i+215;
  elif i<722489 then return i+342;
  elif i<722490 then return i-63;
  elif i<722556 then return i-267;
  elif i<722557 then return i+143;
  elif i<722558 then return i+135;
  elif i<722559 then return i+270;
  elif i<722561 then return i+127;
  elif i<722562 then return i-140;
  elif i<722564 then return i+121;
  elif i<722565 then return i-144;
  elif i<722566 then return i-147;
  elif i<722567 then return i+122;
  elif i<722688 then return i-127;
  elif i<722689 then return i-273;
  elif i<722690 then return i-251;
  elif i<722691 then return i-277;
  elif i<722692 then return i-256;
  elif i<722693 then return i-280;
  elif i<722694 then return i-261;
  elif i<722695 then return i+138;
  elif i<722697 then return i-268;
  elif i<722698 then return i-4;
  elif i<722699 then return i-288;
  elif i<722700 then return i-275;
  elif i<722701 then return i+131;
  elif i<722822 then return i-599;
  elif i<722823 then return i-397;
  elif i<722824 then return i-126;
  elif i<722825 then return i-135;
  elif i<722826 then return i-130;
  elif i<722827 then return i+1;
  elif i<722828 then return i+2;
  elif i<722829 then return i-138;
  elif i<722830 then return i-413;
  elif i<722831 then return i-127;
  elif i<722832 then return i-417;
  elif i<722833 then return i-396;
  elif i<722834 then return i-133;
  elif i<723001 then return i;
  elif i<723002 then return i+628;
  elif i<723003 then return i+823;
  elif i<723004 then return i+818;
  elif i<723005 then return i+263;
  elif i<723006 then return i+256;
  elif i<723007 then return i+818;
  elif i<723008 then return i+127;
  elif i<723009 then return i+967;
  elif i<723010 then return i+251;
  elif i<723131 then return i+262;
  elif i<723132 then return i+689;
  elif i<723133 then return i+694;
  elif i<723134 then return i+839;
  elif i<723135 then return i+125;
  elif i<723136 then return i+260;
  elif i<723137 then return i+127;
  elif i<723138 then return i+495;
  elif i<723204 then return i+691;
  elif i<723325 then return i-66;
  elif i<723326 then return i+643;
  elif i<723327 then return i+305;
  elif i<723328 then return i+235;
  elif i<723329 then return i-191;
  elif i<723330 then return i+637;
  elif i<723451 then return i-318;
  elif i<723452 then return i+110;
  elif i<723453 then return i-316;
  elif i<723454 then return i-442;
  elif i<723455 then return i+176;
  elif i<723456 then return i+105;
  elif i<723470 then return i-35;
  elif i<723471 then return i-460;
  elif i<723472 then return i-338;
  elif i<723473 then return i+87;
  elif i<723474 then return i-468;
  elif i<723540 then return i+159;
  elif i<723541 then return i+359;
  elif i<723542 then return i-532;
  elif i<723543 then return i+16;
  elif i<723664 then return i+156;
  elif i<723665 then return i-656;
  elif i<723666 then return i-108;
  elif i<723667 then return i-268;
  elif i<723668 then return i+231;
  elif i<723734 then return i-105;
  elif i<723735 then return i-727;
  elif i<723736 then return i+236;
  elif i<723857 then return i-300;
  elif i<723858 then return i-853;
  elif i<723859 then return i-856;
  elif i<723860 then return i-424;
  elif i<723861 then return i+37;
  elif i<723862 then return i+109;
  elif i<723863 then return i-861;
  elif i<723864 then return i+33;
  elif i<723886 then return i-465;
  elif i<723887 then return i-880;
  elif i<723888 then return i+82;
  elif i<723889 then return i-885;
  elif i<723890 then return i-492;
  elif i<723891 then return i-496;
  elif i<723892 then return i+83;
  elif i<723893 then return i+3;
  elif i<723894 then return i-627;
  elif i<723895 then return i-498;
  elif i<723896 then return i+81;
  elif i<723897 then return i+71;
  elif i<723898 then return i-504;
  elif i<723899 then return i+75;
  elif i<723965 then return i+1;
  elif i<723966 then return i-694;
  elif i<723967 then return i-143;
  elif i<723968 then return i-697;
  elif i<723969 then return i-140;
  elif i<723970 then return i-704;
  elif i<723971 then return i-701;
  elif i<723972 then return i-707;
  elif i<723973 then return i-145;
  elif i<723974 then return i-151;
  elif i<723975 then return i-839;
  elif i<723976 then return i-707;
  elif i<723977 then return i-714;
  else return i;fi;
end);

# These are (for documentation) the old, wrong in both ways, permutations 
# # Bettina's code:
# #    perm5  := [1];
# #    Append(perm5, [ 30083, 30084, 30085, 30086 ]);
# #    Append(perm5, [2..30082]);
# SMALL_GROUPS_PERM5 := function(i)
#     if i in [2..5] then
#         return 30081 + i;
#     elif i in [30083..30086] then
#         return i - 30081;
#     fi;
#     return i;
# end;
# #    perm7  := [1];
# #    Append(perm7, [ 104599, 104600, 104601, 104602 ]);
# #    Append(perm7, [2..104598]);
# SMALL_GROUPS_PERM7 := function(i)
#     if i in [2..5] then
#         return 104597 + i;
#     elif i in [104599..104602] then
#         return i - 104597;
#     fi;
#     return i;
# end;
# #    perm11 := [1];
# #    Append(perm11, [ 721053, 721054, 721055, 721056 ]);
# #    Append(perm11, [2..721053]);
# SMALL_GROUPS_PERM11 := function(i)
#     if i in [2..5] then
#         return 721051 + i;
#     elif i in [721053..721056] then
#         return i - 721051;
#     fi;
#     return i;
# end;

BindGlobal("READ_SMALL_FUNCS", [ ]);
BindGlobal("READ_IDLIB_FUNCS", [ ]);

#############################################################################
##
#F  SMALL_AVAILABLE( <order> )
##
##  <ManSection>
##  <Func Name="SMALL_AVAILABLE" Arg='order'/>
##
##  <Description>
##  returns fail if the library of groups of order <A>order</A> is not installed.
##  Otherwise a record with some information about the construction of the
##  groups of order <A>order</A> is returned.
##  </Description>
##  </ManSection>
##
UNBIND_GLOBAL( "SMALL_AVAILABLE" );
DeclareGlobalFunction( "SMALL_AVAILABLE" );

#############################################################################
##
#F  SmallGroupsAvailable( <order> )
##
##  <#GAPDoc Label="SmallGroupsAvailable">
##  <ManSection>
##  <Func Name="SmallGroupsAvailable" Arg='order'/>
##
##  <Description>
##  returns <C>true</C> if the library of groups of order <A>order</A> is
##  installed, and <C>false</C> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroupsAvailable" );

#############################################################################
##
#F  NumberSmallGroupsAvailable( <order> )
##
##  <#GAPDoc Label="NumberSmallGroupsAvailable">
##  <ManSection>
##  <Func Name="NumberSmallGroupsAvailable" Arg='order'/>
##
##  <Description>
##  returns <C>true</C> if the number of groups of order <A>order</A> is known, and
##  <C>false</C> otherwise.
##  <Example><![CDATA[
##  gap> NumberSmallGroupsAvailable( 100 );
##  true
##  gap> NumberSmallGroups( 100 );
##  16
##  gap> NumberSmallGroupsAvailable( 4096 );
##  false
##  gap> NumberSmallGroups( 4096 );
##  Error, the library of groups of size 4096 is not available
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NumberSmallGroupsAvailable" );

#############################################################################
##
#F  SmallGroup( <order>, <i> )
#F  SmallGroup( [<order>, <i>] )
##
##  <#GAPDoc Label="SmallGroup">
##  <ManSection>
##  <Func Name="SmallGroup" Arg='order, i'
##   Label="for group order and index"/>
##  <Func Name="SmallGroup" Arg='pair' Label="for a pair [ order, index ]"/>
##
##  <Description>
##  returns the <A>i</A>-th group of order <A>order</A> in the catalogue.
##  If the group is solvable, it will be given as a PcGroup;
##  otherwise it will be given as a permutation group.
##  If the groups of order <A>order</A> are not installed,
##  the function reports an error and enters a break loop.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 60, 4 );
##  <pc group of size 60 with 4 generators>
##  gap> StructureDescription( G );
##  "C60"
##  gap> G := SmallGroup( 60, 5 );
##  Group([ (1,2,3,4,5), (1,2,3) ])
##  gap> StructureDescription( G );
##  "A5"
##  gap> G := SmallGroup( 768, 1000000 );
##  <pc group of size 768 with 9 generators>
##  gap> G := SmallGroup( [768, 1000000] );
##  <pc group of size 768 with 9 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UNBIND_GLOBAL( "SmallGroup" );
DeclareGlobalFunction( "SmallGroup" );

#############################################################################
##
#F  SelectSmallGroups( <argl>, <all>, <id> )
##
##  <#GAPDoc Label="SelectSmallGroups">
##  <ManSection>
##  <Func Name="SelectSmallGroups" Arg='argl, all, id'/>
##
##  <Description>
##  universal function for 'AllSmallGroups', 'OneSmallGroup' and 'IdsOfAllSmallGroups'.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SelectSmallGroups" );

#############################################################################
##
#F  AllSmallGroups( <arg> )
##
##  <#GAPDoc Label="AllSmallGroups">
##  <ManSection>
##  <Func Name="AllSmallGroups" Arg='arg'/>
##
##  <Description>
##  returns all groups with certain properties as specified by <A>arg</A>.
##  If <A>arg</A> is a number <M>n</M>, then this function returns all groups
##  of order <M>n</M>.
##  However, the function can also take several arguments which then
##  must be organized in pairs <C>function</C> and <C>value</C>.
##  In this case the first function must be <Ref BookName="ref" Func="Size"/>
##  and the first value an order or a range of orders.
##  If value is a list then it is considered a list of possible function
##  values to include. 
##  The function returns those groups of the specified orders having those
##  properties specified by the remaining functions and their values.
##  <P/>
##  Precomputed information is stored for the properties
##  <Ref BookName="ref" Func="IsAbelian"/>, <Ref BookName="ref" Func="IsNilpotentGroup"/>,
##  <Ref BookName="ref" Func="IsSupersolvableGroup"/>, <Ref BookName="ref" Func="IsSolvableGroup"/>, 
##  <Ref BookName="ref" Func="RankPGroup"/>, <Ref BookName="ref" Func="PClassPGroup"/>,
##  <Ref BookName="ref" Func="LGLength"/>, <C>FrattinifactorSize</C> and 
##  <C>FrattinifactorId</C> for the groups of order at most
##  <M>2000</M> which have  more than three prime factors,
##  except those of order <M>512</M>, <M>768</M>, 
##  <M>1024</M>, <M>1152</M>, <M>1536</M>, <M>1920</M> and those of order
##  <M>p^n \cdot q > 1000</M> 
##  with <M>n > 2</M>. 
##  <Example><![CDATA[
##  gap> AllSmallGroups( 6 );
##  [ <pc group of size 6 with 2 generators>, 
##    <pc group of size 6 with 2 generators> ]
##  gap> AllSmallGroups( 60, IsNilpotentGroup );
##  [ <pc group of size 60 with 4 generators>, 
##    <pc group of size 60 with 4 generators> ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UNBIND_GLOBAL( "AllGroups" );
BindGlobal( "AllSmallGroups", function( arg )
    return SelectSmallGroups( arg, true, false );
end );
DeclareObsoleteSynonym( "AllGroups", "AllSmallGroups" );

#############################################################################
##
#F  OneSmallGroup( <arg> )
##
##  <#GAPDoc Label="OneSmallGroup">
##  <ManSection>
##  <Func Name="OneSmallGroup" Arg='arg'/>
##
##  <Description>
##  returns one group with certain properties as specified by <A>arg</A>.
##  The permitted arguments are those supported by
##  <Ref Func="AllSmallGroups"/>.
##  <Example><![CDATA[
##  gap> G := OneSmallGroup( 6, IsAbelian );
##  <pc group of size 6 with 2 generators>
##  gap> StructureDescription( G );
##  "C6"
##  gap> G := OneSmallGroup( 6, IsAbelian, false );
##  <pc group of size 6 with 2 generators>
##  gap> StructureDescription( G );
##  "S3"
##  gap> G := OneSmallGroup( Size, [1..1000], IsSolvableGroup, false );
##  Group([ (1,2,3,4,5), (1,2,3) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UNBIND_GLOBAL( "OneGroup" );
BindGlobal( "OneSmallGroup", function( arg )
    return SelectSmallGroups( arg, false, false );
end );
DeclareObsoleteSynonym( "OneGroup", "OneSmallGroup" );

#############################################################################
##
#F  IdsOfAllSmallGroups( <arg> )
##
##  <#GAPDoc Label="IdsOfAllSmallGroups">
##  <ManSection>
##  <Func Name="IdsOfAllSmallGroups" Arg='arg'/>
##
##  <Description>
##  similar to <C>AllSmallGroups</C> but returns ids instead of groups. This may
##  prevent workspace overflows, if a large number of groups are expected in 
##  the output.
##  <Example><![CDATA[
##  gap> IdsOfAllSmallGroups( 60, IsNilpotentGroup );
##  [ [ 60, 4 ], [ 60, 13 ] ]
##  gap> IdsOfAllSmallGroups( 60, IsNilpotentGroup, false );
##  [ [ 60, 1 ], [ 60, 2 ], [ 60, 3 ], [ 60, 5 ], [ 60, 6 ], [ 60, 7 ], 
##    [ 60, 8 ], [ 60, 9 ], [ 60, 10 ], [ 60, 11 ], [ 60, 12 ] ]
##  gap> IdsOfAllSmallGroups( Size, 60, IsSupersolvableGroup, true );
##  [ [ 60, 1 ], [ 60, 2 ], [ 60, 3 ], [ 60, 4 ], [ 60, 6 ], [ 60, 7 ], 
##    [ 60, 8 ], [ 60, 10 ], [ 60, 11 ], [ 60, 12 ], [ 60, 13 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UNBIND_GLOBAL( "IdsOfAllGroups" );
BindGlobal( "IdsOfAllSmallGroups", function( arg )
    return SelectSmallGroups( arg, true, true );
end );
DeclareSynonym( "IdsOfAllGroups", IdsOfAllSmallGroups );

#############################################################################
##
#F  NumberSmallGroups( <order> )
##
##  <#GAPDoc Label="NumberSmallGroups">
##  <ManSection>
##  <Func Name="NumberSmallGroups" Arg='order'/>
##  <Func Name="NrSmallGroups" Arg='order'/>
##
##  <Description>
##  returns the number of groups of order <A>order</A>.
##  <Example><![CDATA[
##  gap> NumberSmallGroups( 512 );
##  10494213
##  gap> NumberSmallGroups( 2^8 * 23 );
##  1083472
##  gap> NumberSmallGroups( 4096 );
##  Error, the library of groups of size 4096 is not available
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UNBIND_GLOBAL( "NumberSmallGroups" );
DeclareGlobalFunction( "NumberSmallGroups" );
DeclareSynonym( "NrSmallGroups", NumberSmallGroups );

#############################################################################
##
#F  UnloadSmallGroupsData( )
##
##  <#GAPDoc Label="UnloadSmallGroupsData">
##  <ManSection>
##  <Func Name="UnloadSmallGroupsData" Arg=''/>
##
##  <Description>
##  &GAP; loads all necessary data from the library automatically,
##  but it does not delete the data from the workspace again.
##  Usually, this will be not necessary, since the data is stored in a
##  compressed format. However, if 
##  a large number of groups from the library have been loaded, then the user 
##  might wish to remove the data from the workspace and this can be done by 
##  the above function call.
##  <Example><![CDATA[
##  gap> UnloadSmallGroupsData();
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "UnloadSmallGroupsData" );

#############################################################################
##
#F  ID_AVAILABLE( <order> )
##
##  <ManSection>
##  <Func Name="ID_AVAILABLE" Arg='order'/>
##
##  <Description>
##  returns false, if the identification routines for groups of order
##  <A>order</A> is not installed. Otherwise a record with some information
##  about the identification of groups of order <A>order</A> is returned.
##  </Description>
##  </ManSection>
##
UNBIND_GLOBAL( "ID_AVAILABLE" );
DeclareGlobalFunction( "ID_AVAILABLE" );

#############################################################################
##
#F  IdGroupsAvailable( <order> )
##
##  <#GAPDoc Label="IdGroupsAvailable">
##  <ManSection>
##  <Func Name="IdGroupsAvailable" Arg='order'/>
##
##  <Description>
##  returns <C>true</C>, if the identification routines for groups of
##  order <A>order</A> are installed, otherwise returns <C>false</C>. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IdGroupsAvailable");

#############################################################################
##
#A  IdSmallGroup( <G> )
#A  IdGroup( <G> )
##
##  <#GAPDoc Label="IdSmallGroup">
##  <ManSection>
##  <Attr Name="IdSmallGroup" Arg='G'/>
##  <Attr Name="IdGroup" Arg='G'/>
##
##  <Description>
##  returns the library number of <A>G</A>; that is, the function returns a pair
##  <C>[<A>order</A>, <A>i</A>]</C> where <A>G</A> is isomorphic to <C>SmallGroup( <A>order</A>, <A>i</A> )</C>.
##  <Example><![CDATA[
##  gap> IdSmallGroup( GL( 2,3 ) );
##  [ 48, 29 ]
##  gap> IdSmallGroup( Group( (1,2,3,4),(4,5) ) );
##  [ 120, 34 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UNBIND_GLOBAL( "IdGroup" );
DeclareAttribute( "IdGroup", IsGroup );
DeclareSynonym( "IdSmallGroup",IdGroup );

#############################################################################
##
#F  IdStandardPresented512Group( <G> )
#F  IdStandardPresented512Group( <pcgs> )
##
##  <ManSection>
##  <Func Name="IdStandardPresented512Group" Arg='G'/>
##  <Func Name="IdStandardPresented512Group" Arg='pcgs'/>
##
##  <Description>
##  returns the catalogue number of a group <A>G</A> of order 512 if <C>Pcgs(<A>G</A>)</C> 
##  or <C>pcgs</C> is a pcgs corresponding to a power-commutator presentation 
##  which forms an ANUPQ-standard presentation of <A>G</A>. If the input is not
##  corresponding to a standard presentation, then a warning is printed 
##  and <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##
UNBIND_GLOBAL( "IdStandardPresented512Group" );
DeclareGlobalFunction( "IdStandardPresented512Group" );

#############################################################################
##
#F  SmallGroupsInformation( <order> )
##
##  <#GAPDoc Label="SmallGroupsInformation">
##  <ManSection>
##  <Func Name="SmallGroupsInformation" Arg='order'/>
##
##  <Description>
##  prints information on the groups of the specified order.
##  <Example><![CDATA[
##  gap> SmallGroupsInformation( 32 );
##  
##    There are 51 groups of order 32.
##    They are sorted by their ranks. 
##       1 is cyclic. 
##       2 - 20 have rank 2.
##       21 - 44 have rank 3.
##       45 - 50 have rank 4.
##       51 is elementary abelian. 
##  
##    For the selection functions the values of the following attributes 
##    are precomputed and stored:
##       IsAbelian, PClassPGroup, RankPGroup, FrattinifactorSize and 
##       FrattinifactorId. 
##  
##    This size belongs to layer 2 of the SmallGroups library. 
##    IdSmallGroup is available for this size. 
##   
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroupsInformation" );

#############################################################################
##  
#A  IdGap3SolvableGroup( <G> )
#A  Gap3CatalogueIdGroup( <G> )
##
##  <#GAPDoc Label="IdGap3SolvableGroup">
##  <ManSection>
##  <Attr Name="IdGap3SolvableGroup" Arg='G'/>
##  <Attr Name="Gap3CatalogueIdGroup" Arg='G'/>
##
##  <Description>
##  returns the catalogue number of <A>G</A> in the &GAP;&nbsp;3 catalogue
##  of solvable groups;
##  that is, the function returns a pair <C>[<A>order</A>, <A>i</A>]</C> meaning that
##  <A>G</A> is isomorphic to the group
##  <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP;&nbsp;3.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
UNBIND_GLOBAL( "Gap3CatalogueIdGroup" );
DeclareAttribute( "Gap3CatalogueIdGroup", IsGroup );
DeclareSynonym( "IdGap3SolvableGroup", Gap3CatalogueIdGroup );

#############################################################################
##  
#F  Gap3CatalogueGroup( <order>, <i> )
##
##  <ManSection>
##  <Func Name="Gap3CatalogueGroup" Arg='order, i'/>
##
##  <Description>
##  returns the <A>i</A>-th group of order <A>order</A> in the &GAP;&nbsp;3
##  catalogue of solvable groups.
##  This group is isomorphic to the group returned by
##  <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP;&nbsp;3.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "Gap3CatalogueGroup" );

#############################################################################
##  
#A  FrattinifactorSize( <G> )
##
##  <ManSection>
##  <Attr Name="FrattinifactorSize" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FrattinifactorSize", IsGroup );

#############################################################################
##  
#A  FrattinifactorId( <G> )
##
##  <ManSection>
##  <Attr Name="FrattinifactorId" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FrattinifactorId", IsGroup );