1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
|
#############################################################################
##
#W small.gd GAP group library Hans Ulrich Besche
## Bettina Eick, Eamonn O'Brien
##
DeclareInfoClass( "InfoIdgroup" );
## <#GAPDoc Label="SMALL_GROUPS_OLD_ORDER">
## <ManSection>
## <Var Name="SMALL_GROUPS_OLD_ORDER"/>
##
## <Description>
## If set to <C>true</C>, then groups of order <M>3^7</M>, <M>5^7</M>,
## <M>7^7</M>, and <M>11^7</M> are ordered in the way they were
## ordered up to version 1.0 of the package. If this variable is
## set to <C>false</C>, which is the default as of version 1.4,
## then a different ordering, that agrees with the one in Magma version
## 2.23, is used.
## The functions <C>SMALLGP_PERM</C><M>x</M>, with <M>x=3,5,7,11</M>, give
## the old index position corresponding to a new index position.
## In releases 1.1-1.3 a misunderstood ordering, based on the old ordering
## and the permutations <M>(2,30083)(3,30084)(4,30085)(5,30086)</M>,
## <M>(2,104599)(3,104600)(4,104601)(5,104602)</M>, and
## <M>(2,721053)(3,721054)(4,721055)(5,721059)</M> respectively
## were used.
## </Description>
## </ManSection>
## <#/GAPDoc>
SMALL_GROUPS_OLD_ORDER := false;
# permutations
# AH: These are based on comparison with a list from Magma
BindGlobal("SMALLGP_PERM3",function(i)
if i>7222 and i<7227 then return 14449-i;
else return i;fi;
end);;
BindGlobal("SMALLGP_PERM5",function(i)
local k;
if i=1 then return 1;
elif i<6 then return i+30081;
elif i<4156 then return i-4;
elif i<4163 then return i+21;
elif i<4171 then return i+36;
elif i<4179 then return i+16;
elif i<4198 then return i+53;
elif i<4202 then return i-3;
elif i<4212 then return i+65;
elif i<4237 then return i-60;
elif i<4243 then return i+24;
elif i<4246 then return i-59;
elif i<4256 then return i+5;
elif i<4281 then return i-49;
elif i<4299 then return i-4;
elif i<4308 then return i+21;
elif i<4323 then return i+37;
elif i<4331 then return i+9;
elif i<4361 then return i+54;
elif i<4366 then return i-21;
elif i<4406 then return i+95;
elif i<4431 then return i-111;
elif i<4437 then return i+24;
elif i<4440 then return i-108;
elif i<4455 then return i-25;
elif i<4480 then return i-95;
elif i<4505 then return i-50;
elif i<30075 then return i-4;
elif i<30087 then
k:=[30082, 30077, 30076, 30080, 30081, 30073,
30079, 30072, 30074, 30071, 30078, 30075];
return k[i-30074];
elif i<30454 then return i+0;
elif i<30455 then return i+15;
elif i<30456 then return i+133;
elif i<30482 then return i+36;
elif i<30497 then return i-28;
elif i<30498 then return i-23;
elif i<30499 then return i-27;
elif i<30539 then return i+49;
elif i<30546 then
k:=[ 30534, 30600, 30472, 30599, 30470, 30518, 30536 ];
return k[i-30538];
elif i<30561 then return i-69;
elif i<30562 then return i-88;
elif i<30572 then return i+27;
elif i<30573 then return i-37;
elif i<30583 then return i-35;
elif i<30584 then return i-46;
elif i<30586 then return i-109;
elif i<30601 then return i-67;
elif i<30636 then return i+0;
elif i<30640 then
k:=[ 30727, 30655, 30724, 30726 ];
return k[i-30635];
elif i<30656 then return i+43;
elif i<30657 then return i-20;
elif i<30682 then return i-1;
elif i<30683 then return i-30;
elif i<30684 then return i+45;
elif i<30699 then return i-47;
elif i<30700 then return i+26;
elif i<30701 then return i-46;
elif i<30726 then return i-2;
elif i<30727 then return i-44;
elif i<30728 then return i-46;
elif i<30729 then return i-75;
elif i<34298 then return i;
else Error("invalid parameter");fi;
end);
BindGlobal("SMALLGP_PERM7",function(i)
if i<2 then return i;
elif i<6 then return i+104597;
elif i<8925 then return i-4;
elif i<8974 then return i+13;
elif i<8984 then return i+60;
elif i<8996 then return i+38;
elif i<9004 then return i+107;
elif i<9014 then return i+40;
elif i<9028 then return i+97;
elif i<9045 then return i-41;
elif i<9049 then return i-121;
elif i<9098 then return i+5;
elif i<9101 then return i-177;
elif i<9111 then return i-173;
elif i<9125 then return i-103;
elif i<9129 then return i-121;
elif i<9132 then return i+213;
elif i<9149 then return i+502;
elif i<9155 then return i+178;
elif i<9158 then return i-30;
elif i<9207 then return i+232;
elif i<9235 then return i-73;
elif i<9244 then return i-14;
elif i<9293 then return i+244;
elif i<9321 then return i-63;
elif i<9327 then return i-193;
elif i<9337 then return i-116;
elif i<9354 then return i-27;
elif i<9382 then return i+235;
elif i<9431 then return i+57;
elif i<9440 then return i-98;
elif i<9489 then return i-278;
elif i<9492 then return i+48;
elif i<9500 then return i+134;
elif i<9549 then return i+40;
elif i<9552 then return i-242;
elif i<9601 then return i-294;
elif i<9610 then return i+16;
elif i<9655 then return i-265;
elif i<104579 then return i-4;
elif i<104580 then return i+6;
elif i<104581 then return i+8;
elif i<104582 then return i+5;
elif i<104583 then return i+12;
elif i<104584 then return i+10;
elif i<104585 then return i-7;
elif i<104586 then return i-6;
elif i<104587 then return i-3;
elif i<104588 then return i+5;
elif i<104589 then return i+1;
elif i<104590 then return i-8;
elif i<104591 then return i+1;
elif i<104592 then return i+5;
elif i<104593 then return i-12;
elif i<104594 then return i-11;
elif i<104595 then return i-16;
elif i<104596 then return i-11;
elif i<104597 then return i-6;
elif i<104598 then return i-22;
elif i<104599 then return i-11;
elif i<104600 then return i-23;
elif i<104601 then return i-5;
elif i<104602 then return i-3;
elif i<104603 then return i-5;
elif i<105124 then return i;
elif i<105125 then return i+198;
elif i<105174 then return i-1;
elif i<105175 then return i+91;
elif i<105224 then return i+95;
elif i<105225 then return i+9;
elif i<105226 then return i-51;
elif i<105275 then return i-44;
elif i<105276 then return i-13;
elif i<105277 then return i-8;
elif i<105278 then return i+43;
elif i<105279 then return i-47;
elif i<105280 then return i-99;
elif i<105281 then return i+39;
elif i<105282 then return i-49;
elif i<105283 then return i-103;
elif i<105284 then return i-106;
elif i<105285 then return i-109;
elif i<105313 then return i+38;
elif i<105314 then return i-47;
elif i<105315 then return i-50;
elif i<105316 then return i+6;
elif i<105317 then return i-49;
elif i<105318 then return i-136;
elif i<105319 then return i-142;
elif i<105320 then return i-146;
elif i<105321 then return i-57;
elif i<105322 then return i-143;
elif i<105350 then return i-88;
elif i<105351 then return i-81;
elif i<105432 then return i;
elif i<105460 then return i+186;
elif i<105461 then return i+89;
elif i<105489 then return i-28;
elif i<105517 then return i+98;
elif i<105518 then return i+66;
elif i<105546 then return i-53;
elif i<105547 then return i+102;
elif i<105548 then return i+70;
elif i<105549 then return i+98;
elif i<105550 then return i+66;
elif i<105551 then return i-4;
elif i<105552 then return i+30;
elif i<105553 then return i-120;
elif i<105554 then return i+29;
elif i<105603 then return i-57;
elif i<105604 then return i+144;
elif i<105605 then return i-57;
elif i<105606 then return i-25;
elif i<105607 then return i-143;
elif i<105608 then return i+9;
elif i<105609 then return i-112;
elif i<105610 then return i-115;
elif i<105611 then return i-45;
elif i<105612 then return i-118;
elif i<105613 then return i-117;
elif i<105614 then return i+34;
elif i<105626 then return i-64;
elif i<105627 then return i-162;
elif i<105628 then return i+121;
elif i<105629 then return i-42;
elif i<105630 then return i-67;
elif i<105631 then return i-46;
elif i<105680 then return i+67;
elif i<105681 then return i-132;
elif i<105730 then return i-32;
elif i<105744 then return i-164;
elif i<105745 then return i-159;
elif i<105746 then return i-284;
elif i<105748 then return i-183;
elif i<105749 then return i-286;
else return i; fi;
end);
BindGlobal("SMALLGP_PERM11",function(i)
if i<2 then return i;
elif i<6 then return i+721051;
elif i<30273 then return i-4;
elif i<30277 then return i+60;
elif i<30299 then return i+20;
elif i<30420 then return i+184;
elif i<30424 then return i+211;
elif i<30446 then return i-84;
elif i<30449 then return i-109;
elif i<30463 then return i+168;
elif i<30477 then return i-144;
elif i<30502 then return i-205;
elif i<30516 then return i+145;
elif i<30519 then return i-247;
elif i<30532 then return i+85;
elif i<30544 then return i+103;
elif i<30665 then return i-182;
elif i<30731 then return i+629;
elif i<30852 then return i+376;
elif i<30973 then return i+629;
elif i<31094 then return i+698;
elif i<31102 then return i+1223;
elif i<31344 then return i+832;
elif i<31410 then return i-116;
elif i<31531 then return i+766;
elif i<31652 then return i-867;
elif i<31664 then return i+645;
elif i<31785 then return i-678;
elif i<31793 then return i+524;
elif i<31914 then return i-433;
elif i<32035 then return i-101;
elif i<32056 then return i-243;
elif i<32059 then return i-388;
elif i<32073 then return i-1274;
elif i<32076 then return i-1412;
elif i<32142 then return i-1156;
elif i<32263 then return i-1343;
elif i<32329 then return i-661;
elif i<720997 then return i-4;
elif i<720998 then return i+20;
elif i<720999 then return i-3;
elif i<721000 then return i+4;
elif i<721002 then return i+46;
elif i<721003 then return i+40;
elif i<721004 then return i+49;
elif i<721005 then return i+36;
elif i<721006 then return i+24;
elif i<721007 then return i-10;
elif i<721008 then return i+41;
elif i<721009 then return i+33;
elif i<721010 then return i-10;
elif i<721011 then return i+21;
elif i<721012 then return i-18;
elif i<721013 then return i+31;
elif i<721014 then return i+32;
elif i<721015 then return i+20;
elif i<721016 then return i;
elif i<721017 then return i-19;
elif i<721018 then return i+15;
elif i<721019 then return i+9;
elif i<721020 then return i-5;
elif i<721021 then return i;
elif i<721022 then return i+30;
elif i<721023 then return i+2;
elif i<721024 then return i-23;
elif i<721025 then return i-2;
elif i<721026 then return i-14;
elif i<721027 then return i-25;
elif i<721028 then return i+1;
elif i<721029 then return i-15;
elif i<721030 then return i-20;
elif i<721031 then return i+7;
elif i<721032 then return i-10;
elif i<721033 then return i+17;
elif i<721034 then return i-21;
elif i<721035 then return i+5;
elif i<721036 then return i-30;
elif i<721037 then return i+14;
elif i<721038 then return i+7;
elif i<721039 then return i-31;
elif i<721040 then return i-41;
elif i<721041 then return i-5;
elif i<721042 then return i-8;
elif i<721043 then return i-17;
elif i<721044 then return i-49;
elif i<721045 then return i-8;
elif i<721046 then return i-39;
elif i<721047 then return i-42;
elif i<721048 then return i-21;
elif i<721049 then return i-29;
elif i<721050 then return i-19;
elif i<721051 then return i-48;
elif i<721052 then return i-35;
elif i<721053 then return i-14;
elif i<721054 then return i-43;
elif i<721055 then return i-36;
elif i<721056 then return i-32;
elif i<721057 then return i-48;
elif i<722036 then return i;
elif i<722037 then return i+790;
elif i<722038 then return i+396;
elif i<722039 then return i+658;
elif i<722040 then return i+665;
elif i<722041 then return i+371;
elif i<722042 then return i+393;
elif i<722043 then return i+387;
elif i<722044 then return i+648;
elif i<722165 then return i+245;
elif i<722166 then return i+258;
elif i<722167 then return i+528;
elif i<722168 then return i+263;
elif i<722169 then return i+254;
elif i<722235 then return i-133;
elif i<722356 then return i+327;
elif i<722357 then return i+63;
elif i<722358 then return i+204;
elif i<722359 then return i+81;
elif i<722480 then return i+346;
elif i<722481 then return i-63;
elif i<722482 then return i+204;
elif i<722483 then return i-45;
elif i<722484 then return i+218;
elif i<722485 then return i+349;
elif i<722486 then return i+213;
elif i<722487 then return i-55;
elif i<722488 then return i+215;
elif i<722489 then return i+342;
elif i<722490 then return i-63;
elif i<722556 then return i-267;
elif i<722557 then return i+143;
elif i<722558 then return i+135;
elif i<722559 then return i+270;
elif i<722561 then return i+127;
elif i<722562 then return i-140;
elif i<722564 then return i+121;
elif i<722565 then return i-144;
elif i<722566 then return i-147;
elif i<722567 then return i+122;
elif i<722688 then return i-127;
elif i<722689 then return i-273;
elif i<722690 then return i-251;
elif i<722691 then return i-277;
elif i<722692 then return i-256;
elif i<722693 then return i-280;
elif i<722694 then return i-261;
elif i<722695 then return i+138;
elif i<722697 then return i-268;
elif i<722698 then return i-4;
elif i<722699 then return i-288;
elif i<722700 then return i-275;
elif i<722701 then return i+131;
elif i<722822 then return i-599;
elif i<722823 then return i-397;
elif i<722824 then return i-126;
elif i<722825 then return i-135;
elif i<722826 then return i-130;
elif i<722827 then return i+1;
elif i<722828 then return i+2;
elif i<722829 then return i-138;
elif i<722830 then return i-413;
elif i<722831 then return i-127;
elif i<722832 then return i-417;
elif i<722833 then return i-396;
elif i<722834 then return i-133;
elif i<723001 then return i;
elif i<723002 then return i+628;
elif i<723003 then return i+823;
elif i<723004 then return i+818;
elif i<723005 then return i+263;
elif i<723006 then return i+256;
elif i<723007 then return i+818;
elif i<723008 then return i+127;
elif i<723009 then return i+967;
elif i<723010 then return i+251;
elif i<723131 then return i+262;
elif i<723132 then return i+689;
elif i<723133 then return i+694;
elif i<723134 then return i+839;
elif i<723135 then return i+125;
elif i<723136 then return i+260;
elif i<723137 then return i+127;
elif i<723138 then return i+495;
elif i<723204 then return i+691;
elif i<723325 then return i-66;
elif i<723326 then return i+643;
elif i<723327 then return i+305;
elif i<723328 then return i+235;
elif i<723329 then return i-191;
elif i<723330 then return i+637;
elif i<723451 then return i-318;
elif i<723452 then return i+110;
elif i<723453 then return i-316;
elif i<723454 then return i-442;
elif i<723455 then return i+176;
elif i<723456 then return i+105;
elif i<723470 then return i-35;
elif i<723471 then return i-460;
elif i<723472 then return i-338;
elif i<723473 then return i+87;
elif i<723474 then return i-468;
elif i<723540 then return i+159;
elif i<723541 then return i+359;
elif i<723542 then return i-532;
elif i<723543 then return i+16;
elif i<723664 then return i+156;
elif i<723665 then return i-656;
elif i<723666 then return i-108;
elif i<723667 then return i-268;
elif i<723668 then return i+231;
elif i<723734 then return i-105;
elif i<723735 then return i-727;
elif i<723736 then return i+236;
elif i<723857 then return i-300;
elif i<723858 then return i-853;
elif i<723859 then return i-856;
elif i<723860 then return i-424;
elif i<723861 then return i+37;
elif i<723862 then return i+109;
elif i<723863 then return i-861;
elif i<723864 then return i+33;
elif i<723886 then return i-465;
elif i<723887 then return i-880;
elif i<723888 then return i+82;
elif i<723889 then return i-885;
elif i<723890 then return i-492;
elif i<723891 then return i-496;
elif i<723892 then return i+83;
elif i<723893 then return i+3;
elif i<723894 then return i-627;
elif i<723895 then return i-498;
elif i<723896 then return i+81;
elif i<723897 then return i+71;
elif i<723898 then return i-504;
elif i<723899 then return i+75;
elif i<723965 then return i+1;
elif i<723966 then return i-694;
elif i<723967 then return i-143;
elif i<723968 then return i-697;
elif i<723969 then return i-140;
elif i<723970 then return i-704;
elif i<723971 then return i-701;
elif i<723972 then return i-707;
elif i<723973 then return i-145;
elif i<723974 then return i-151;
elif i<723975 then return i-839;
elif i<723976 then return i-707;
elif i<723977 then return i-714;
else return i;fi;
end);
# These are (for documentation) the old, wrong in both ways, permutations
# # Bettina's code:
# # perm5 := [1];
# # Append(perm5, [ 30083, 30084, 30085, 30086 ]);
# # Append(perm5, [2..30082]);
# SMALL_GROUPS_PERM5 := function(i)
# if i in [2..5] then
# return 30081 + i;
# elif i in [30083..30086] then
# return i - 30081;
# fi;
# return i;
# end;
# # perm7 := [1];
# # Append(perm7, [ 104599, 104600, 104601, 104602 ]);
# # Append(perm7, [2..104598]);
# SMALL_GROUPS_PERM7 := function(i)
# if i in [2..5] then
# return 104597 + i;
# elif i in [104599..104602] then
# return i - 104597;
# fi;
# return i;
# end;
# # perm11 := [1];
# # Append(perm11, [ 721053, 721054, 721055, 721056 ]);
# # Append(perm11, [2..721053]);
# SMALL_GROUPS_PERM11 := function(i)
# if i in [2..5] then
# return 721051 + i;
# elif i in [721053..721056] then
# return i - 721051;
# fi;
# return i;
# end;
BindGlobal("READ_SMALL_FUNCS", [ ]);
BindGlobal("READ_IDLIB_FUNCS", [ ]);
#############################################################################
##
#F SMALL_AVAILABLE( <order> )
##
## <ManSection>
## <Func Name="SMALL_AVAILABLE" Arg='order'/>
##
## <Description>
## returns fail if the library of groups of order <A>order</A> is not installed.
## Otherwise a record with some information about the construction of the
## groups of order <A>order</A> is returned.
## </Description>
## </ManSection>
##
UNBIND_GLOBAL( "SMALL_AVAILABLE" );
DeclareGlobalFunction( "SMALL_AVAILABLE" );
#############################################################################
##
#F SmallGroupsAvailable( <order> )
##
## <#GAPDoc Label="SmallGroupsAvailable">
## <ManSection>
## <Func Name="SmallGroupsAvailable" Arg='order'/>
##
## <Description>
## returns <C>true</C> if the library of groups of order <A>order</A> is
## installed, and <C>false</C> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroupsAvailable" );
#############################################################################
##
#F NumberSmallGroupsAvailable( <order> )
##
## <#GAPDoc Label="NumberSmallGroupsAvailable">
## <ManSection>
## <Func Name="NumberSmallGroupsAvailable" Arg='order'/>
##
## <Description>
## returns <C>true</C> if the number of groups of order <A>order</A> is known, and
## <C>false</C> otherwise.
## <Example><![CDATA[
## gap> NumberSmallGroupsAvailable( 100 );
## true
## gap> NumberSmallGroups( 100 );
## 16
## gap> NumberSmallGroupsAvailable( 4096 );
## false
## gap> NumberSmallGroups( 4096 );
## Error, the library of groups of size 4096 is not available
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "NumberSmallGroupsAvailable" );
#############################################################################
##
#F SmallGroup( <order>, <i> )
#F SmallGroup( [<order>, <i>] )
##
## <#GAPDoc Label="SmallGroup">
## <ManSection>
## <Func Name="SmallGroup" Arg='order, i'
## Label="for group order and index"/>
## <Func Name="SmallGroup" Arg='pair' Label="for a pair [ order, index ]"/>
##
## <Description>
## returns the <A>i</A>-th group of order <A>order</A> in the catalogue.
## If the group is solvable, it will be given as a PcGroup;
## otherwise it will be given as a permutation group.
## If the groups of order <A>order</A> are not installed,
## the function reports an error and enters a break loop.
## <Example><![CDATA[
## gap> G := SmallGroup( 60, 4 );
## <pc group of size 60 with 4 generators>
## gap> StructureDescription( G );
## "C60"
## gap> G := SmallGroup( 60, 5 );
## Group([ (1,2,3,4,5), (1,2,3) ])
## gap> StructureDescription( G );
## "A5"
## gap> G := SmallGroup( 768, 1000000 );
## <pc group of size 768 with 9 generators>
## gap> G := SmallGroup( [768, 1000000] );
## <pc group of size 768 with 9 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UNBIND_GLOBAL( "SmallGroup" );
DeclareGlobalFunction( "SmallGroup" );
#############################################################################
##
#F SelectSmallGroups( <argl>, <all>, <id> )
##
## <#GAPDoc Label="SelectSmallGroups">
## <ManSection>
## <Func Name="SelectSmallGroups" Arg='argl, all, id'/>
##
## <Description>
## universal function for 'AllSmallGroups', 'OneSmallGroup' and 'IdsOfAllSmallGroups'.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SelectSmallGroups" );
#############################################################################
##
#F AllSmallGroups( <arg> )
##
## <#GAPDoc Label="AllSmallGroups">
## <ManSection>
## <Func Name="AllSmallGroups" Arg='arg'/>
##
## <Description>
## returns all groups with certain properties as specified by <A>arg</A>.
## If <A>arg</A> is a number <M>n</M>, then this function returns all groups
## of order <M>n</M>.
## However, the function can also take several arguments which then
## must be organized in pairs <C>function</C> and <C>value</C>.
## In this case the first function must be <Ref BookName="ref" Func="Size"/>
## and the first value an order or a range of orders.
## If value is a list then it is considered a list of possible function
## values to include.
## The function returns those groups of the specified orders having those
## properties specified by the remaining functions and their values.
## <P/>
## Precomputed information is stored for the properties
## <Ref BookName="ref" Func="IsAbelian"/>, <Ref BookName="ref" Func="IsNilpotentGroup"/>,
## <Ref BookName="ref" Func="IsSupersolvableGroup"/>, <Ref BookName="ref" Func="IsSolvableGroup"/>,
## <Ref BookName="ref" Func="RankPGroup"/>, <Ref BookName="ref" Func="PClassPGroup"/>,
## <Ref BookName="ref" Func="LGLength"/>, <C>FrattinifactorSize</C> and
## <C>FrattinifactorId</C> for the groups of order at most
## <M>2000</M> which have more than three prime factors,
## except those of order <M>512</M>, <M>768</M>,
## <M>1024</M>, <M>1152</M>, <M>1536</M>, <M>1920</M> and those of order
## <M>p^n \cdot q > 1000</M>
## with <M>n > 2</M>.
## <Example><![CDATA[
## gap> AllSmallGroups( 6 );
## [ <pc group of size 6 with 2 generators>,
## <pc group of size 6 with 2 generators> ]
## gap> AllSmallGroups( 60, IsNilpotentGroup );
## [ <pc group of size 60 with 4 generators>,
## <pc group of size 60 with 4 generators> ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UNBIND_GLOBAL( "AllGroups" );
BindGlobal( "AllSmallGroups", function( arg )
return SelectSmallGroups( arg, true, false );
end );
DeclareObsoleteSynonym( "AllGroups", "AllSmallGroups" );
#############################################################################
##
#F OneSmallGroup( <arg> )
##
## <#GAPDoc Label="OneSmallGroup">
## <ManSection>
## <Func Name="OneSmallGroup" Arg='arg'/>
##
## <Description>
## returns one group with certain properties as specified by <A>arg</A>.
## The permitted arguments are those supported by
## <Ref Func="AllSmallGroups"/>.
## <Example><![CDATA[
## gap> G := OneSmallGroup( 6, IsAbelian );
## <pc group of size 6 with 2 generators>
## gap> StructureDescription( G );
## "C6"
## gap> G := OneSmallGroup( 6, IsAbelian, false );
## <pc group of size 6 with 2 generators>
## gap> StructureDescription( G );
## "S3"
## gap> G := OneSmallGroup( Size, [1..1000], IsSolvableGroup, false );
## Group([ (1,2,3,4,5), (1,2,3) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UNBIND_GLOBAL( "OneGroup" );
BindGlobal( "OneSmallGroup", function( arg )
return SelectSmallGroups( arg, false, false );
end );
DeclareObsoleteSynonym( "OneGroup", "OneSmallGroup" );
#############################################################################
##
#F IdsOfAllSmallGroups( <arg> )
##
## <#GAPDoc Label="IdsOfAllSmallGroups">
## <ManSection>
## <Func Name="IdsOfAllSmallGroups" Arg='arg'/>
##
## <Description>
## similar to <C>AllSmallGroups</C> but returns ids instead of groups. This may
## prevent workspace overflows, if a large number of groups are expected in
## the output.
## <Example><![CDATA[
## gap> IdsOfAllSmallGroups( 60, IsNilpotentGroup );
## [ [ 60, 4 ], [ 60, 13 ] ]
## gap> IdsOfAllSmallGroups( 60, IsNilpotentGroup, false );
## [ [ 60, 1 ], [ 60, 2 ], [ 60, 3 ], [ 60, 5 ], [ 60, 6 ], [ 60, 7 ],
## [ 60, 8 ], [ 60, 9 ], [ 60, 10 ], [ 60, 11 ], [ 60, 12 ] ]
## gap> IdsOfAllSmallGroups( Size, 60, IsSupersolvableGroup, true );
## [ [ 60, 1 ], [ 60, 2 ], [ 60, 3 ], [ 60, 4 ], [ 60, 6 ], [ 60, 7 ],
## [ 60, 8 ], [ 60, 10 ], [ 60, 11 ], [ 60, 12 ], [ 60, 13 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UNBIND_GLOBAL( "IdsOfAllGroups" );
BindGlobal( "IdsOfAllSmallGroups", function( arg )
return SelectSmallGroups( arg, true, true );
end );
DeclareSynonym( "IdsOfAllGroups", IdsOfAllSmallGroups );
#############################################################################
##
#F NumberSmallGroups( <order> )
##
## <#GAPDoc Label="NumberSmallGroups">
## <ManSection>
## <Func Name="NumberSmallGroups" Arg='order'/>
## <Func Name="NrSmallGroups" Arg='order'/>
##
## <Description>
## returns the number of groups of order <A>order</A>.
## <Example><![CDATA[
## gap> NumberSmallGroups( 512 );
## 10494213
## gap> NumberSmallGroups( 2^8 * 23 );
## 1083472
## gap> NumberSmallGroups( 4096 );
## Error, the library of groups of size 4096 is not available
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UNBIND_GLOBAL( "NumberSmallGroups" );
DeclareGlobalFunction( "NumberSmallGroups" );
DeclareSynonym( "NrSmallGroups", NumberSmallGroups );
#############################################################################
##
#F UnloadSmallGroupsData( )
##
## <#GAPDoc Label="UnloadSmallGroupsData">
## <ManSection>
## <Func Name="UnloadSmallGroupsData" Arg=''/>
##
## <Description>
## &GAP; loads all necessary data from the library automatically,
## but it does not delete the data from the workspace again.
## Usually, this will be not necessary, since the data is stored in a
## compressed format. However, if
## a large number of groups from the library have been loaded, then the user
## might wish to remove the data from the workspace and this can be done by
## the above function call.
## <Example><![CDATA[
## gap> UnloadSmallGroupsData();
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "UnloadSmallGroupsData" );
#############################################################################
##
#F ID_AVAILABLE( <order> )
##
## <ManSection>
## <Func Name="ID_AVAILABLE" Arg='order'/>
##
## <Description>
## returns false, if the identification routines for groups of order
## <A>order</A> is not installed. Otherwise a record with some information
## about the identification of groups of order <A>order</A> is returned.
## </Description>
## </ManSection>
##
UNBIND_GLOBAL( "ID_AVAILABLE" );
DeclareGlobalFunction( "ID_AVAILABLE" );
#############################################################################
##
#F IdGroupsAvailable( <order> )
##
## <#GAPDoc Label="IdGroupsAvailable">
## <ManSection>
## <Func Name="IdGroupsAvailable" Arg='order'/>
##
## <Description>
## returns <C>true</C>, if the identification routines for groups of
## order <A>order</A> are installed, otherwise returns <C>false</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IdGroupsAvailable");
#############################################################################
##
#A IdSmallGroup( <G> )
#A IdGroup( <G> )
##
## <#GAPDoc Label="IdSmallGroup">
## <ManSection>
## <Attr Name="IdSmallGroup" Arg='G'/>
## <Attr Name="IdGroup" Arg='G'/>
##
## <Description>
## returns the library number of <A>G</A>; that is, the function returns a pair
## <C>[<A>order</A>, <A>i</A>]</C> where <A>G</A> is isomorphic to <C>SmallGroup( <A>order</A>, <A>i</A> )</C>.
## <Example><![CDATA[
## gap> IdSmallGroup( GL( 2,3 ) );
## [ 48, 29 ]
## gap> IdSmallGroup( Group( (1,2,3,4),(4,5) ) );
## [ 120, 34 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UNBIND_GLOBAL( "IdGroup" );
DeclareAttribute( "IdGroup", IsGroup );
DeclareSynonym( "IdSmallGroup",IdGroup );
#############################################################################
##
#F IdStandardPresented512Group( <G> )
#F IdStandardPresented512Group( <pcgs> )
##
## <ManSection>
## <Func Name="IdStandardPresented512Group" Arg='G'/>
## <Func Name="IdStandardPresented512Group" Arg='pcgs'/>
##
## <Description>
## returns the catalogue number of a group <A>G</A> of order 512 if <C>Pcgs(<A>G</A>)</C>
## or <C>pcgs</C> is a pcgs corresponding to a power-commutator presentation
## which forms an ANUPQ-standard presentation of <A>G</A>. If the input is not
## corresponding to a standard presentation, then a warning is printed
## and <K>fail</K> is returned.
## </Description>
## </ManSection>
##
UNBIND_GLOBAL( "IdStandardPresented512Group" );
DeclareGlobalFunction( "IdStandardPresented512Group" );
#############################################################################
##
#F SmallGroupsInformation( <order> )
##
## <#GAPDoc Label="SmallGroupsInformation">
## <ManSection>
## <Func Name="SmallGroupsInformation" Arg='order'/>
##
## <Description>
## prints information on the groups of the specified order.
## <Example><![CDATA[
## gap> SmallGroupsInformation( 32 );
##
## There are 51 groups of order 32.
## They are sorted by their ranks.
## 1 is cyclic.
## 2 - 20 have rank 2.
## 21 - 44 have rank 3.
## 45 - 50 have rank 4.
## 51 is elementary abelian.
##
## For the selection functions the values of the following attributes
## are precomputed and stored:
## IsAbelian, PClassPGroup, RankPGroup, FrattinifactorSize and
## FrattinifactorId.
##
## This size belongs to layer 2 of the SmallGroups library.
## IdSmallGroup is available for this size.
##
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SmallGroupsInformation" );
#############################################################################
##
#A IdGap3SolvableGroup( <G> )
#A Gap3CatalogueIdGroup( <G> )
##
## <#GAPDoc Label="IdGap3SolvableGroup">
## <ManSection>
## <Attr Name="IdGap3SolvableGroup" Arg='G'/>
## <Attr Name="Gap3CatalogueIdGroup" Arg='G'/>
##
## <Description>
## returns the catalogue number of <A>G</A> in the &GAP; 3 catalogue
## of solvable groups;
## that is, the function returns a pair <C>[<A>order</A>, <A>i</A>]</C> meaning that
## <A>G</A> is isomorphic to the group
## <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP; 3.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UNBIND_GLOBAL( "Gap3CatalogueIdGroup" );
DeclareAttribute( "Gap3CatalogueIdGroup", IsGroup );
DeclareSynonym( "IdGap3SolvableGroup", Gap3CatalogueIdGroup );
#############################################################################
##
#F Gap3CatalogueGroup( <order>, <i> )
##
## <ManSection>
## <Func Name="Gap3CatalogueGroup" Arg='order, i'/>
##
## <Description>
## returns the <A>i</A>-th group of order <A>order</A> in the &GAP; 3
## catalogue of solvable groups.
## This group is isomorphic to the group returned by
## <C>SolvableGroup( <A>order</A>, <A>i</A> )</C> in &GAP; 3.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "Gap3CatalogueGroup" );
#############################################################################
##
#A FrattinifactorSize( <G> )
##
## <ManSection>
## <Attr Name="FrattinifactorSize" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "FrattinifactorSize", IsGroup );
#############################################################################
##
#A FrattinifactorId( <G> )
##
## <ManSection>
## <Attr Name="FrattinifactorId" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "FrattinifactorId", IsGroup );
|