1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
|
##############################################################################
##
#A Endomorphisms ( <D> )
##
## returns a list of all endomorphisms of the domain <D>.
##
DeclareAttribute ( "Endomorphisms", IsDomain);
##############################################################################
##
#A Automorphisms ( <D> )
##
## returns a list of all Automorphisms of the domain <D>.
##
DeclareAttribute ( "Automorphisms", IsDomain );
##############################################################################
##
#A InnerAutomorphisms ( <G> )
##
## returns a list of all InnerAutomorphisms of the group <G>.
##
DeclareAttribute ( "InnerAutomorphisms", IsGroup);
##############################################################################
##
#M AdditiveGeneratorsForHomomorphisms( <G>, <H> )
##
## returns a list of "elementary" homomorphisms from the group <G> to
## the abelian group <H>, such that all homomorphisms from <G> to <H> can
## be obtained as sums of these
##
DeclareOperation( "AdditiveGeneratorsForHomomorphisms", [IsGroup, IsGroup and IsAbelian] );
##############################################################################
##
#M Homomorphisms( <G>, <H> )
##
## returns a list of all homomorphisms from the group <G> into the group <H>
##
DeclareOperation( "Homomorphisms", [IsGroup, IsGroup] );
##############################################################################
##
#M AdditiveGeneratorsForEndomorphisms( <G> )
##
## returns a list of "elementary" endomorphisms of the abelian group <G>
## such that all endomorphisms of <G> can be obtained as sums of these
##
DeclareOperation( "AdditiveGeneratorsForEndomorphisms", [IsGroup and IsAbelian] );
#############################################################################
##
#M NearRingGeneratorsForHomomorphisms( <G>, <H> )
##
## returns a list of homomorphisms h from G to H and a list
## of the respective groups of automorphisms A of H which stabilize h
## i.e., h=h*a for a in A.
## Each homomorphism from G to H has a unique representation h*c for some
## h and c some coset representative for A*c in Aut( H ).
##
DeclareOperation( "NearRingGeneratorsForHomomorphisms", [IsGroup, IsGroup] );
|