File: grpend.gi

package info (click to toggle)
gap-sonata 2.9.6%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 16,068 kB
  • sloc: sh: 39; makefile: 23
file content (384 lines) | stat: -rw-r--r-- 10,620 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# file: endos.gi

                  
##############################################################################
##
#M  Automorphisms ( <G> )
##
## returns a list of all Automorphisms of the group <G>.
##

InstallMethod(
	Automorphisms,
        "default method for Automorphisms",
	true,
	[IsGroup],
	0,
  function ( G )
    return AsList (AutomorphismGroup (G));
  end );

##############################################################################
##
#M  InnerAutomorphisms ( <G> )
##
## returns a list of all InnerAutomorphisms of the group <G>.
##

InstallMethod(
	InnerAutomorphisms,
        "default method for InnerAutomorphisms",
	true,
	[IsGroup],
	0,
  function ( G )
   return List( RepresentativesModNormalSubgroup(G,Centre(G)), 
		g -> InnerAutomorphism( G, g ) );
  end );






## new methods for computing additive generators of 
## homomorphisms/endomorphisms into abelian groups
##							 by pm 12.05.00 






#############################################################################
##
#M  IndependentGeneratorsOfAbelianGroup( <G> )  . . . . . . . nice generators
##
#InstallMethod( IndependentGeneratorsOfAbelianGroup, "for pc group", true,
#        [ IsPcGroup and IsAbelian ], 0,
#    function ( G )
#
#  local gens,	     	# generators of G, not independent
# 	gensorders,  	# orders of the generators
#	qs,		# list of sizes of the p-Sylow subgroups of G
# 	p,		# prime factor of the size of G
#	pgens,		# generators of of the p-Sylow subgroups of G,
#			# not independent
#	indpgens,	# independent generators of a p-Sylow subgroup
#	Gp,		# p-Sylow subgroup by indpgens
#	indgens,	# independent generators of G as union of indpgens
# 	mingens,	# minimal set of independent generators of G
#	n,		# length of mingens
#			# maximal number of cyclic factors of all Gp's 
#	np,
#	g, i, j,  q, x, y;
#
#
#  gens := GeneratorsOfGroup( G );
#  qs := List( Collected( Factors( Size( G ) ) ), x -> x[1]^x[2] );
#  indgens := [];
#
##  split into p-groups
#
#  for q in qs do
#    p := SmallestRootInt( q );
#    pgens := [];
#    for g in gens do
#      if Order( g ) mod p = 0 then
#	i := 2;
#	while Order( g ) mod p^(i) = 0 do
#	  i := i+1;
#	od;
#	Add( pgens, g^QuoInt( Order( g ), p^(i-1) ) );
#      fi;
#    od;	
#    Sort( pgens, function( x, y ) return Order(x) > Order(y); end );
#
#    indpgens := [pgens[1]]; Gp := Group( indpgens ); i := 2;
#    while Size( Gp ) <> q do
#      g := SiftedPcElement( Pcgs( Gp ), pgens[i] );
#      if Order( g ) = Order( pgens[i] ) then       
##  g is independent from Gp
#	Add( indpgens, g );
#        Gp := Group( indpgens );
#      elif Order( g ) > 1 then
##  pgens[i] depends on indpgens, but is not in Gp
##  g is inserted in pgens according to its order	
#	np := Length( pgens );	
#	j := PositionProperty( pgens{[i+1..np]}, x ->
#		 Order(x) = Order(g) );
#	pgens := Concatenation( pgens{[1..j-1]}, [g], pgens{[j..np]} );
#      fi;
#      i := i+1;
#    od;
#    Add( indgens, indpgens );	
#  od; 
# 
## this new generating set can now be minimized
#
#  n := Maximum( List( indgens, Length ) );
#  mingens := [];
#  for i in [1..n] do
#    g := Identity( G ); 
#    for pgens in indgens do
#      if IsBound( pgens[i] ) then		
#	g := g*pgens[i];
#      fi;
#    od;
#    Add( mingens, g );
#  od;
#
#  return mingens;
#end );
#
#


#############################################################################
##
#M  AdditiveGeneratorsForHomomorphisms( <G>, <H> )
##
## returns a list of additive generators for Hom(G,H) with abelian H.
## compare elementary matrices for vectorspaces.
##
InstallMethod( AdditiveGeneratorsForHomomorphisms, "default", true,
        [ IsGroup, IsGroup and IsAbelian ], 0,
    function ( G, H )


  local homos,		# additive generators for Hom(G,H); result
	F, 		# F = G/G' ;  the maximal abelian factor of G
	h, 		# natural homo from G to f
	fomos,		# additive generators for Hom(F,H)
	gens, hens,
	fens, 		# generators for G, H, F
   	gensorders,
	hensorders,	# orders of the generators
	id, 		# identity of H
	idimgs,		# list of images of gens under the homo x -> id
			# from G to H
	imgs,		# list of images of gens under some elementary homo
			# from G to H
	n, m,  d,
   	i, j, f, x;

  if not IsAbelian( G ) then 
## Since H is abelian, homos from G to H are maps from G via G/G', abelian,
## to H. We find the additive generators for Hom( G/G', H ).
    h := NaturalHomomorphismByNormalSubgroupNC( G, DerivedSubgroup( G ) ); 
    F := Image( h, G );
    fomos := AdditiveGeneratorsForHomomorphisms( F, H );
    gens := GeneratorsOfGroup( G );
    fens := List( gens, x -> Image( h, x ) );
    homos := [];
## Now the homos from G to H are compositions from h and fomos
    for f in fomos do
      Add( homos, GroupHomomorphismByImagesNC( G, H, gens,
		 		List( fens, x -> Image( f, x ) ) ) );
    od;
    return homos;
  fi;

  gens := IndependentGeneratorsOfAbelianGroup( G );
  gensorders := List( gens, Order );
  if G = H then
    hens := gens; hensorders := gensorders;
  else
    hens := IndependentGeneratorsOfAbelianGroup( H );
    hensorders := List( hens, Order );
  fi;

  id := Identity( H );
  n := Length( gens ); m := Length( hens );
  idimgs := List( [1..n], x -> id ); 

  homos := [];
  for i in [1..n] do
    for j in [1..m] do
      d := Gcd( gensorders[i], hensorders[j] );
      if d > 1 then
	imgs := ShallowCopy( idimgs );
        imgs[i] := hens[j]^QuoInt( hensorders[j], d ); 
        Add( homos, GroupHomomorphismByImages( G, H, gens, imgs ) );
      fi;
    od;
  od;

  return homos;
end );   






#############################################################################
##
#M  AdditiveGeneratorsForEndomorphisms( <G> )
## 
## returns additive generators of E(G) for abelian G
##

InstallMethod( AdditiveGeneratorsForEndomorphisms, "default", true,
        [ IsGroup and IsAbelian ], 0,
    function ( G )

  return AdditiveGeneratorsForHomomorphisms( G, G );
 end );





#############################################################################
##
  ExtendHomo := function( bs, gens, i, H, As )
##
##  extends partial homomorphisms from Group( <gens> ) to <H> that are
##  defined via the images <bs[j]> on the first <i>-1 elements of <gens> to
##  partial homos on the first <i> generators whenever this is possible.
##  <As> is the correspondig list of automorphism of <H> that stabilize
##  the homos represented by <bs>
##  The extensions and the new stabilizers are returned.

  local n, 		# number of partial homos given by <bs>
	g, 		# gens[i]; generator whose possible images have to
			# be determined 
	o,		# its order 
	G,		# Group( gens{[1..i]} )
	b,		# list of images representing one homo bs[j]
	orbits,		# orbits of the stabilizer As[j] on H
	reps,		# representatives of these orbits
  	repsorders,	# their orders
	newbs, newstabs,# list of new image tupels and the corresponding
			# stabilizers    
	img,		# list of possible images for g
	j, x;

    n := Length( bs ); g := gens[i]; o := Order( g );
    G := Group( gens{[1..i]} );
    newbs := []; newstabs := [];
    for j in [1..n] do
##  for all tuples b of images in bs do
      b := bs[j];
      orbits := Orbits( As[j], H );
      reps := List( orbits, Representative );
      repsorders := List( reps, Order );
      img := reps{Filtered( [1..Length( reps )], x ->
				 o mod repsorders[x] = 0 )};
      img := Filtered( img, x ->
      	GroupHomomorphismByImages( G, H, gens{[1..i]},
					 Concatenation( b, [x] ) ) <> fail );
## Only feasible choices for the image of g remain.
      Append( newbs, List( img, x -> Concatenation( b, [x] ) ) );
      Append( newstabs, List( img, x -> Stabilizer( As[j], x ) ) );
## The stabilizer of the extended homo is found in the old stabilizer of the
## initial homo.
    od;

  return [newbs, newstabs];
end;






#############################################################################
##
#M  NearRingGeneratorsForHomomorphisms( <G>, <H> )
##
##  returns a list of homomorphisms h from G to H and a list
##  of the respective groups of automorphisms A of H which stabilize h
##  i.e., h = h*a for a in A. 
##  ( Homomorphisms operate from the left. )
##  Each homomorphism from G to H has a unique representation h*c for some
##  h and c some coset representative for A*c in Aut( H ).
## 
InstallMethod( NearRingGeneratorsForHomomorphisms, "default", true,
        [ IsGroup, IsGroup ], 0,
    function ( G, H )

  local gens,		# generators of G
	bs,		# list of images of gens under the (partial) 
			# homorphism h
 	As,		# list of stabilizers of the (partial) homorphism h
			# in Aut( H )
 	imgs,		# complete list of images of gens under h
	i, t;

    gens := GeneratorsOfGroup( G );
    As := [AutomorphismGroup( H )];
    bs := [[]];

    for i in [1..Length(gens)] do
##  Let h be defined on the first i-1 generators of G.
##  Now the possible images for the next generator gens[i] are determined.
##  If h can not be extended, then it is discarded.
##  Otherwise, the new stabilizers are for the partial homos defined on
##  the first i generators are determined.
##  Images and stabilizers are returned for the next iteration.  
      t := ExtendHomo( bs, gens, i, H, As );
      bs := t[1]; As := t[2];	
    od;

  return [List( bs, imgs -> GroupHomomorphismByImagesNC( G, H, gens, imgs ) ),
		As];
end );  





#############################################################################
##
#M  Homomorphisms( G, H )
##
## returns a list of all endomorphisms of the group <G> into the group <H>
InstallMethod( Homomorphisms, "default", true, [ IsGroup, IsGroup ], 0,
    function ( G, H )

  local homoreps,	# list of homomorphism representatives as by
			# NearRingGeneratorsForHomomorphisms( G, H )
 	As,		# list of automorphism groups stabilizing the homos
			# in homoreps 
 	A,		# Aut( G )
	homos,		# list of all homomorphisms from G to H, result
	n, t, U, h, i;

    t := NearRingGeneratorsForHomomorphisms( G, H );
    homoreps := t[1]; As := t[2];
    A := AutomorphismGroup( H );
    n := Length( homoreps );
    homos := [];
    for i in [1..n] do
      U := As[i]; h := homoreps[i];
      Append( homos, List( RightTransversal( A, As[i] ), x -> h*x ) );
    od;

  return homos;
end );

## for abelian <H> it is more efficient to use additive generators from
## AdditiveGeneratorsForEndomorphisms( <H> ) and take all sums





#############################################################################
##
#M  Endomorphisms( G )
##
## returns a list of all endomorphisms of the group <G>
InstallMethod( Endomorphisms, "default", true, [ IsGroup], 0,
    function ( G )
	return Homomorphisms( G, G );
end );