1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
# file: endos.gi
##############################################################################
##
#M Automorphisms ( <G> )
##
## returns a list of all Automorphisms of the group <G>.
##
InstallMethod(
Automorphisms,
"default method for Automorphisms",
true,
[IsGroup],
0,
function ( G )
return AsList (AutomorphismGroup (G));
end );
##############################################################################
##
#M InnerAutomorphisms ( <G> )
##
## returns a list of all InnerAutomorphisms of the group <G>.
##
InstallMethod(
InnerAutomorphisms,
"default method for InnerAutomorphisms",
true,
[IsGroup],
0,
function ( G )
return List( RepresentativesModNormalSubgroup(G,Centre(G)),
g -> InnerAutomorphism( G, g ) );
end );
## new methods for computing additive generators of
## homomorphisms/endomorphisms into abelian groups
## by pm 12.05.00
#############################################################################
##
#M IndependentGeneratorsOfAbelianGroup( <G> ) . . . . . . . nice generators
##
#InstallMethod( IndependentGeneratorsOfAbelianGroup, "for pc group", true,
# [ IsPcGroup and IsAbelian ], 0,
# function ( G )
#
# local gens, # generators of G, not independent
# gensorders, # orders of the generators
# qs, # list of sizes of the p-Sylow subgroups of G
# p, # prime factor of the size of G
# pgens, # generators of of the p-Sylow subgroups of G,
# # not independent
# indpgens, # independent generators of a p-Sylow subgroup
# Gp, # p-Sylow subgroup by indpgens
# indgens, # independent generators of G as union of indpgens
# mingens, # minimal set of independent generators of G
# n, # length of mingens
# # maximal number of cyclic factors of all Gp's
# np,
# g, i, j, q, x, y;
#
#
# gens := GeneratorsOfGroup( G );
# qs := List( Collected( Factors( Size( G ) ) ), x -> x[1]^x[2] );
# indgens := [];
#
## split into p-groups
#
# for q in qs do
# p := SmallestRootInt( q );
# pgens := [];
# for g in gens do
# if Order( g ) mod p = 0 then
# i := 2;
# while Order( g ) mod p^(i) = 0 do
# i := i+1;
# od;
# Add( pgens, g^QuoInt( Order( g ), p^(i-1) ) );
# fi;
# od;
# Sort( pgens, function( x, y ) return Order(x) > Order(y); end );
#
# indpgens := [pgens[1]]; Gp := Group( indpgens ); i := 2;
# while Size( Gp ) <> q do
# g := SiftedPcElement( Pcgs( Gp ), pgens[i] );
# if Order( g ) = Order( pgens[i] ) then
## g is independent from Gp
# Add( indpgens, g );
# Gp := Group( indpgens );
# elif Order( g ) > 1 then
## pgens[i] depends on indpgens, but is not in Gp
## g is inserted in pgens according to its order
# np := Length( pgens );
# j := PositionProperty( pgens{[i+1..np]}, x ->
# Order(x) = Order(g) );
# pgens := Concatenation( pgens{[1..j-1]}, [g], pgens{[j..np]} );
# fi;
# i := i+1;
# od;
# Add( indgens, indpgens );
# od;
#
## this new generating set can now be minimized
#
# n := Maximum( List( indgens, Length ) );
# mingens := [];
# for i in [1..n] do
# g := Identity( G );
# for pgens in indgens do
# if IsBound( pgens[i] ) then
# g := g*pgens[i];
# fi;
# od;
# Add( mingens, g );
# od;
#
# return mingens;
#end );
#
#
#############################################################################
##
#M AdditiveGeneratorsForHomomorphisms( <G>, <H> )
##
## returns a list of additive generators for Hom(G,H) with abelian H.
## compare elementary matrices for vectorspaces.
##
InstallMethod( AdditiveGeneratorsForHomomorphisms, "default", true,
[ IsGroup, IsGroup and IsAbelian ], 0,
function ( G, H )
local homos, # additive generators for Hom(G,H); result
F, # F = G/G' ; the maximal abelian factor of G
h, # natural homo from G to f
fomos, # additive generators for Hom(F,H)
gens, hens,
fens, # generators for G, H, F
gensorders,
hensorders, # orders of the generators
id, # identity of H
idimgs, # list of images of gens under the homo x -> id
# from G to H
imgs, # list of images of gens under some elementary homo
# from G to H
n, m, d,
i, j, f, x;
if not IsAbelian( G ) then
## Since H is abelian, homos from G to H are maps from G via G/G', abelian,
## to H. We find the additive generators for Hom( G/G', H ).
h := NaturalHomomorphismByNormalSubgroupNC( G, DerivedSubgroup( G ) );
F := Image( h, G );
fomos := AdditiveGeneratorsForHomomorphisms( F, H );
gens := GeneratorsOfGroup( G );
fens := List( gens, x -> Image( h, x ) );
homos := [];
## Now the homos from G to H are compositions from h and fomos
for f in fomos do
Add( homos, GroupHomomorphismByImagesNC( G, H, gens,
List( fens, x -> Image( f, x ) ) ) );
od;
return homos;
fi;
gens := IndependentGeneratorsOfAbelianGroup( G );
gensorders := List( gens, Order );
if G = H then
hens := gens; hensorders := gensorders;
else
hens := IndependentGeneratorsOfAbelianGroup( H );
hensorders := List( hens, Order );
fi;
id := Identity( H );
n := Length( gens ); m := Length( hens );
idimgs := List( [1..n], x -> id );
homos := [];
for i in [1..n] do
for j in [1..m] do
d := Gcd( gensorders[i], hensorders[j] );
if d > 1 then
imgs := ShallowCopy( idimgs );
imgs[i] := hens[j]^QuoInt( hensorders[j], d );
Add( homos, GroupHomomorphismByImages( G, H, gens, imgs ) );
fi;
od;
od;
return homos;
end );
#############################################################################
##
#M AdditiveGeneratorsForEndomorphisms( <G> )
##
## returns additive generators of E(G) for abelian G
##
InstallMethod( AdditiveGeneratorsForEndomorphisms, "default", true,
[ IsGroup and IsAbelian ], 0,
function ( G )
return AdditiveGeneratorsForHomomorphisms( G, G );
end );
#############################################################################
##
ExtendHomo := function( bs, gens, i, H, As )
##
## extends partial homomorphisms from Group( <gens> ) to <H> that are
## defined via the images <bs[j]> on the first <i>-1 elements of <gens> to
## partial homos on the first <i> generators whenever this is possible.
## <As> is the correspondig list of automorphism of <H> that stabilize
## the homos represented by <bs>
## The extensions and the new stabilizers are returned.
local n, # number of partial homos given by <bs>
g, # gens[i]; generator whose possible images have to
# be determined
o, # its order
G, # Group( gens{[1..i]} )
b, # list of images representing one homo bs[j]
orbits, # orbits of the stabilizer As[j] on H
reps, # representatives of these orbits
repsorders, # their orders
newbs, newstabs,# list of new image tupels and the corresponding
# stabilizers
img, # list of possible images for g
j, x;
n := Length( bs ); g := gens[i]; o := Order( g );
G := Group( gens{[1..i]} );
newbs := []; newstabs := [];
for j in [1..n] do
## for all tuples b of images in bs do
b := bs[j];
orbits := Orbits( As[j], H );
reps := List( orbits, Representative );
repsorders := List( reps, Order );
img := reps{Filtered( [1..Length( reps )], x ->
o mod repsorders[x] = 0 )};
img := Filtered( img, x ->
GroupHomomorphismByImages( G, H, gens{[1..i]},
Concatenation( b, [x] ) ) <> fail );
## Only feasible choices for the image of g remain.
Append( newbs, List( img, x -> Concatenation( b, [x] ) ) );
Append( newstabs, List( img, x -> Stabilizer( As[j], x ) ) );
## The stabilizer of the extended homo is found in the old stabilizer of the
## initial homo.
od;
return [newbs, newstabs];
end;
#############################################################################
##
#M NearRingGeneratorsForHomomorphisms( <G>, <H> )
##
## returns a list of homomorphisms h from G to H and a list
## of the respective groups of automorphisms A of H which stabilize h
## i.e., h = h*a for a in A.
## ( Homomorphisms operate from the left. )
## Each homomorphism from G to H has a unique representation h*c for some
## h and c some coset representative for A*c in Aut( H ).
##
InstallMethod( NearRingGeneratorsForHomomorphisms, "default", true,
[ IsGroup, IsGroup ], 0,
function ( G, H )
local gens, # generators of G
bs, # list of images of gens under the (partial)
# homorphism h
As, # list of stabilizers of the (partial) homorphism h
# in Aut( H )
imgs, # complete list of images of gens under h
i, t;
gens := GeneratorsOfGroup( G );
As := [AutomorphismGroup( H )];
bs := [[]];
for i in [1..Length(gens)] do
## Let h be defined on the first i-1 generators of G.
## Now the possible images for the next generator gens[i] are determined.
## If h can not be extended, then it is discarded.
## Otherwise, the new stabilizers are for the partial homos defined on
## the first i generators are determined.
## Images and stabilizers are returned for the next iteration.
t := ExtendHomo( bs, gens, i, H, As );
bs := t[1]; As := t[2];
od;
return [List( bs, imgs -> GroupHomomorphismByImagesNC( G, H, gens, imgs ) ),
As];
end );
#############################################################################
##
#M Homomorphisms( G, H )
##
## returns a list of all endomorphisms of the group <G> into the group <H>
InstallMethod( Homomorphisms, "default", true, [ IsGroup, IsGroup ], 0,
function ( G, H )
local homoreps, # list of homomorphism representatives as by
# NearRingGeneratorsForHomomorphisms( G, H )
As, # list of automorphism groups stabilizing the homos
# in homoreps
A, # Aut( G )
homos, # list of all homomorphisms from G to H, result
n, t, U, h, i;
t := NearRingGeneratorsForHomomorphisms( G, H );
homoreps := t[1]; As := t[2];
A := AutomorphismGroup( H );
n := Length( homoreps );
homos := [];
for i in [1..n] do
U := As[i]; h := homoreps[i];
Append( homos, List( RightTransversal( A, As[i] ), x -> h*x ) );
od;
return homos;
end );
## for abelian <H> it is more efficient to use additive generators from
## AdditiveGeneratorsForEndomorphisms( <H> ) and take all sums
#############################################################################
##
#M Endomorphisms( G )
##
## returns a list of all endomorphisms of the group <G>
InstallMethod( Endomorphisms, "default", true, [ IsGroup], 0,
function ( G )
return Homomorphisms( G, G );
end );
|