1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
\begin{thebibliography}{CHM98}
\bibitem[BM83]{BM83}
G.~Butler and J.~McKay.
\newblock The transitive groups of degree up to eleven.
\newblock {\em Comm. Algebra}, 11(8):863--911, 1983.
\bibitem[But93]{Butler93}
G.~Butler.
\newblock The transitive groups of degree fourteen and fifteen.
\newblock {\em J. Symbolic Comput.}, 16(5):413--422, 1993.
\bibitem[CH08]{CanHolt32}
John~J. Cannon and Derek~F. Holt.
\newblock The transitive permutation groups of degree 32.
\newblock {\em Experiment. Math.}, 17(3):307--314, 2008.
\bibitem[CHM98]{ConwayHulpkeMcKay98}
J.~H. Conway, A.~Hulpke, and J.~McKay.
\newblock On transitive permutation groups.
\newblock {\em LMS J. Comput. Math.}, 1:1--8 (electronic), 1998.
\bibitem[HR20]{HoltRoyle47}
Derek Holt and Gordon Royle.
\newblock A census of small transitive groups and vertex-transitive graphs.
\newblock {\em J. Symbolic Comput.}, 101:51--60, 2020.
\bibitem[HRT]{HoltRoyleTracy48}
Derek Holt, Gordon Royle, and Gareth Tracy.
\newblock The transitive groups of degree 48 and some applications.
\newblock {\em J. Algebra}.
\bibitem[Hul96]{Hulpke96}
A.~Hulpke.
\newblock {\em Konstruktion transitiver {P}ermutationsgruppen}.
\newblock Dissertation, Rheinisch Westf{\"a}lische Technische Hochschule,
Aachen, Germany, 1996.
\bibitem[Hul05]{HulpkeTG}
A.~Hulpke.
\newblock Constructing transitive permutation groups.
\newblock {\em J. Symbolic Comput.}, 39(1):1--30, 2005.
\bibitem[Roy87]{Roy87}
G.~F. Royle.
\newblock The transitive groups of degree twelve.
\newblock {\em J. Symbolic Comput.}, 4(2):255--268, 1987.
\end{thebibliography}
|