File: trans.grp

package info (click to toggle)
gap-transgrp 3.6.5-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 58,692 kB
  • sloc: makefile: 120; sh: 9
file content (1015 lines) | stat: -rw-r--r-- 32,399 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
#############################################################################
##
#W  trans.grp         GAP transitive groups library          Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the routines for the transitive groups library
##

Unbind(TRANSGRP);
Unbind(TRANSPROPERTIES);
Unbind(TRANSMINIMALS);

#############################################################################
##
#V  TRANSGRP  . . . . . . . . . generators and names of the transitive groups
##  List contains one list per degree. Entries are lists itself
##  for each group,starting with generators,then the name.

TRANSGRP := [[[(),"1 = C(1)"]],

[[(1,2),"C(2) = S(2) = 2"]],

[[(1,2,3),"C(3) = A(3) = 3"],[(1,3),(1,2),"S(3)"]],

[[(1,2,3,4),"C(4) = 4"],
[(1,4)(2,3),(1,2)(3,4),"E(4) = 2[x]2"],
[(1,2,3,4),(1,3),"D(4)"],
[(1,3,4),(2,3,4),"A(4)"],
[(1,4),(1,2),(2,3),"S(4)"]],

[[(1,2,3,4,5),"C(5) = 5"],
[(1,2,3,4,5),(1,4)(2,3),"D(5) = 5:2"],
[(1,2,3,4,5),(1,2,4,3),"F(5) = 5:4"],
[(1,4,5),(2,4,5),(3,4,5),"A(5)"],
[(1,5),(1,2),(2,3),(3,4),"S(5)"]],

[[(1,2,3,4,5,6),"C(6) = 6 = 3[x]2"],
[(1,3,5)(2,4,6),(1,4)(2,3)(5,6),"D_6(6) = [3]2"],
[(1,2,3,4,5,6),(1,4)(2,3)(5,6),"D(6) = S(3)[x]2"],
[(1,4)(2,5),(1,3,5)(2,4,6),"A_4(6) = [2^2]3"],
[(2,4,6),(1,4)(2,5)(3,6),"F_18(6) = [3^2]2 = 3 wr 2"],
[(3,6),(1,3,5)(2,4,6),"2A_4(6) = [2^3]3 = 2 wr 3"],
[(1,4)(2,5),(1,3,5)(2,4,6),(1,5)(2,4),"S_4(6d) = [2^2]S(3)"],
[(1,4)(2,5),(1,3,5)(2,4,6),(1,5)(2,4)(3,6),
"S_4(6c) = 1/2[2^3]S(3)"],
[(2,4,6),(1,5)(2,4),(1,4)(2,5)(3,6),"F_18(6):2 = [1/2.S(3)^2]2"],
[(2,4,6),(1,5)(2,4),(1,4,5,2)(3,6),"F_36(6) = 1/2[S(3)^2]2"],
[(3,6),(1,3,5)(2,4,6),(1,5)(2,4),
"2S_4(6) = [2^3]S(3) = 2 wr S(3)"],
[(1,2,3,4,6),(1,4)(5,6),"L(6) = PSL(2,5) = A_5(6)"],
[(2,4,6),(2,4),(1,4)(2,5)(3,6),
"F_36(6):2 = [S(3)^2]2 = S(3) wr 2"],
[(1,2,3,4,6),(1,2)(3,4)(5,6),"L(6):2 = PGL(2,5) = S_5(6)"],
[(1,5,6),(2,5,6),(3,5,6),(4,5,6),"A(6)"],
[(1,6),(1,2),(2,3),(3,4),(4,5),"S(6)"]],

[[(1,2,3,4,5,6,7),"C(7) = 7"],
[(1,2,3,4,5,6,7),(1,6)(2,5)(3,4),"D(7) = 7:2"],
[(1,2,3,4,5,6,7),(1,2,4)(3,6,5),"F_21(7) = 7:3"],
[(1,2,3,4,5,6,7),(1,3,2,6,4,5),"F_42(7) = 7:6"],
[(1,2,3,4,5,6,7),(1,2)(3,6),"L(7) = L(3,2)"],
[(1,6,7),(2,6,7),(3,6,7),(4,6,7),(5,6,7),"A(7)"],
[(1,7),(1,2),(2,3),(3,4),(4,5),(5,6),"S(7)"]]];

if IsHPCGAP then
  LockAndMigrateObj(TRANSGRP, TRANSREGION);
fi;

#############################################################################
##
#V  TRANSPROPERTIES . . . . . . . . . property list for the transitive groups
##
##  This list is in the same order as the groups generators. For each group,
##  properties are stored as follows: 
##
##      <size>:         Size of the group
##      <primitive>:    1 indicates, that the group operates primitive
##      <transitivity>: Transitivity
##      <sign>:         Sign
##      <shapes>:       List of all occurring shapes (except ()), sorted
##                      according to the ordering of the Partitions command
##      <2Set>:         Orbits on 2-Sets
##      <2Seq>:         Orbits on 2-Sequences
##      <3Set>:         Orbits on 3-Sets
##      <special>:      following entries mark special properties, which
##       ...            are coded as [type,description1,description2,...] .
##                      The list starts with orbit lengths:
##                      
##      Types:
##      1               1-Set=Pts.
##      2               2-Set
##      3               3-Set
##      4               4-Set
##      5               5-Sets
##      6               i/2-Diff (only possible with even number of points)
##      8               Blocks
##      9               2Seq
##      0               Blockfingerprint
##
##           20+b       alternating Subgroup on b
##
##        100*a+b       factor group by operation on the b cosets of a
##                      type a stabilizer; description field gives the
##                      number of this factor group as TransitiveGroup
##       1000*a+10*b+c  factor group by operation on the b cosets of
##                      a type a stabilizer operates on c:
##                      description fields are a list for each of the
##                      possible stabilizers
##      10000*a+10*b+c  type a stabilizer of index b operation on c:
##                      description fields are a list for each of the
##                      possible stabilizers, split again for the
##                      (raw-split) due to the Orbits of <G> itself.
##
##      All Orbit information is coded as a list in which each entry has
##      the form 
##      SignOperation*( 1000*(number of orbits with this description-1)
##                              +length)
##
##      Group theoretic information that cannot be used by the Galois
##      determination routines is indicated by a negative sign:
##
##      -50             Size of the derived subgroup
##      -60             Size of the Frattini subgroup
##      -70             Number of normal subgroups
##
##      some special cases are not discriminated completely by this
##      list. The program will deal with them separately.

TRANSPROPERTIES := [

[[1,1,1,1,[],0,0,0]],

[[2,1,2,-1,[true],[1],[-2],0]],

[[3,1,1,1,[false,true],[3],[1003],0],
[6,1,3,-1,[true,true],[-3],[-6],0]],

[[4,0,1,-1,[false,true,false,true],[-4,-2],[-2004],0],
[4,0,1,1,[false,true,false,false],[-2002],[2004],0],
[8,0,1,-1,[true,true,false,true],[-4,-2],[-4,8],0],
[12,1,2,1,[false,true,true,false],[6],[12],0],
[24,1,4,-1,[true,true,true,true],[6],[-12],0]],

[[5,1,1,1,[false,false,false,false,false,true],[1005],[3005],[1005]],
[10,1,1,1,[false,true,false,false,false,true],[1005],[-1010],[1005]],
[20,1,2,-1,[false,true,false,false,true,true],[-10],[-20],[-10],[29,[-1010]]],
[60,1,3,1,[false,true,true,false,false,true],[10],[20],[10]],
[120,1,5,-1,[true,true,true,true,true,true],[-10],[-20],[-10],[29,[20]]]],

[[6,0,1,-1,[false,false,true,false,false,true,false,false,false,true],
[-1006,3],[-4006],[-2006,-2]],
[6,0,1,-1,[false,false,true,false,false,true,false,false,false,false],
[-2003,-6],[-4006],[-2006,-2]],
[12,0,1,-1,[false,true,true,false,false,true,false,false,false,true],
[-1006,-3],[-6,1012],[-6,-2,12]],
[12,0,1,1,[false,true,false,false,false,true,false,false,false,false],
[3,12],[6,1012],[1004,1006]],
[18,0,1,-1,[false,false,true,true,false,true,false,false,false,true],
[-9,-6],[-1006,-18],[-18,-2]],
[24,0,1,-1,[true,true,true,false,false,true,false,false,false,true],
[3,12],[-6,1012],[-1006,8]],
[24,0,1,1,[false,true,false,false,false,true,false,true,false,false],
[-12,-3],[6,24],[-1004,12]],
[24,0,1,-1,[false,true,true,false,false,true,true,false,false,false],
[-12,-3],[-6,24],[8,12],[29,[6],[1012]]],
[36,0,1,-1,[false,true,true,true,false,true,false,false,false,true],
[-9,-6],[-18,12],[-18,-2]],
[36,0,1,1,[false,true,false,true,false,true,false,true,false,false],
[6,9],[-18,-12],[-18,-2]],
[48,0,1,-1,[true,true,true,false,false,true,true,true,false,true],
[-12,-3],[-6,24],[8,12],[29,[6],[24]]],
[60,1,2,1,[false,true,false,false,false,true,false,false,true,false],
[15],[30],[1010]],
[72,0,1,-1,[true,true,true,true,true,true,false,true,false,true],
[-9,-6],[-18,-12],[-18,-2]],
[120,1,3,-1,[false,true,true,false,false,true,true,false,true,true],
[15],[-30],[20],[23,[1010]]],
[360,1,4,1,[false,true,false,true,false,true,false,true,true,false],
[15],[30],[20]],
[720,1,6,-1,[true,true,true,true,true,true,true,true,true,true],
[15],[-30],[20],[23,[20]]]],

[[7,1,1,1,[false,false,false,false,false,false,false,false,false,false,
false,false,false,true],[2007],[5007],[4007]],
[14,1,1,-1,[false,false,true,false,false,false,false,false,false,false,
false,false,false,true],[-2007],[-2014],[-2007,-14]],
[21,1,1,1,[false,false,false,false,false,false,true,false,false,false,
false,false,false,true],[21],[1021],[21,1007]],
[42,1,2,-1,[false,false,true,false,false,false,true,false,false,false,
false,false,true,true],[-21],[-42],[-21,-14]],
[168,1,2,1,[false,true,false,false,false,false,true,false,true,false,
false,false,false,true],[21],[42],[7,28]],

[2520,1,5,1,[false,true,false,true,false,true,true,false,true,false,
true,false,false,true],[21],[42],[35]],
[5040,1,7,-1,[true,true,true,true,true,true,true,true,true,true,true,
true,
true,true],[-21],[-42],[35]]]];

#  The following command converts the shape lists into Blists (binary
#  lists), which allows for about 2/3 of memory saved

List([1..7],i->ForAll(TRANSPROPERTIES[i],j->IsBlist(j[5])));

# number of groups within each degree (stored up to 15)
TRANSLENGTHS := [ 1, 1, 2, 5, 5, 16, 7, 50, 34, 45, 8, 301, 9, 63, 104 ];

TRANSNONDISCRIM := [[],[],[],[],[],[],[],[],[],[],[],[[273,292]],[],
[[42,51]],[[37,58],[38,59],[57,67],[65,74],[66,74]]];

TRANSSELECT :=[];
TRANSSIZES  :=[];
TRANSPARTNUM:=[];

# indices of minimally transitive groups (up to degree 31)
TRANSMINIMALS:=[,[1],[1],[1,2],[1],[1,2,4,10],[1],
[1,2,3,4,5,21],[1,2],[1,2,4,7,8,18],[1],
[1,2,3,4,5,7,9,17,31,34,40,46,47,57,162,166,246],[1],
[1,2,6,10,12,30],[1,5,9,26],
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,33,36,40,42,49,53,
77,88,90,91,92,101,108,123,127,140,160,167,170,171,173,
174,212,295,323,335,343,358,363,372,375,377,555,556,559,
575,585,587,589,598,609,612,620,637,643,651,682,684,695,
703,1118,1133,1146,1187,1196,1207,1210,1212,1229,1232,1418],
[1],[1,2,3,4,5,7,8,10,28,44,49,54,130,141,142,143,177,
246,259,280,377,688,753],[1],
[1,2,3,4,5,13,15,17,23,31,32,43,44,47,50,55,56,79,83,
89,107,110,115,146,148,161,172,188,193,239,245,247,385,
392,399,402,473,478,496,501,596,621,628,651,818,820,939],
[1,2,35,39,67],[1,2,8,22,23,38],[1],
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,47,50,51,55,56,
57,58,59,63,72,76,81,82,93,94,96,122,174,179,180,181,
184,187,191,194,198,213,214,215,216,238,239,240,241,255,
257,258,259,263,267,268,273,278,307,308,309,310,311,312,
315,316,317,378,379,389,424,460,468,470,481,483,496,506,
596,597,598,620,622,731,945,992,998,1027,1371,1392,1410,
1489,1491,1505,1506,1508,1633,1634,2128,2129,2130,2788,2801,
2808,2814,2898,2901,2902,2928,2937,2939,2941,2943,2944,2946,
3075,3098,5077,5078,5268,5275,5276,5277,5278,5279,5280,5281,
5289,5295,5299,5509,5535,5693,5872,5873,7443,7444,7445,7446,
7447,7448,7688,7690,7692,7694,7695,7696,7697,7729,7731,7737,
7754,7882,7905,9630,9853,9860,9865,9867,10036,10162,10163,
10283,12266,12269,20212,20218,20224,20227,20230,20235,20237,
20244,20656,21163,21167,21168,21177,21178,21180,21183,21809,
21987,21988,21989,21990,21991,22004,22005,22006,22007,22010,
22012,22238,22240,22241,22242,22243,22244,22245,23148,23149,
23500,23502,23504,23506,23508,23510,23649,23651,23654,23655,
23990],[1,2],[1,2,4,20,39,42,64],
[1,2,3,4,5,19,24,25,26,234,235,240,242,246,247,252,253,
254,981,988],
[1,2,3,4,11,20,32,35,42,43,48,55,56,57,58,61,66,98,105,
120,152,153,200,201,262,263,371,630,795,1169],[1],
[1,2,3,4,6,7,9,11,25,30,35,37,38,40,45,46,48,49,50,52,
70,71,78,126,131,142,143,158,162,171,190,191,192,193,216,
217,271,277,279,281,293,295,296,298,299,300,302,321,549,
558,588,589,629,817,866,908,909,911,912,920,924,933,935,
1168,1180,1705,1801,2104,2107,2165,2191,2420,2763,3141,4096,
4105,4370,4376,4378],[1]];

if IsHPCGAP then
  TRANSLENGTHS:=MakeWriteOnceAtomic(TRANSLENGTHS);
  atomic TRANSREGION do
    MigrateObj(TRANSPROPERTIES, TRANSREGION);
    MigrateObj(TRANSNONDISCRIM, TRANSREGION);
    MigrateObj(TRANSSIZES, TRANSREGION);
    MigrateObj(TRANSPARTNUM, TRANSREGION);
    MigrateObj(TRANSMINIMALS, TRANSREGION);
  od;
fi;

TRANSAVAILABLE:=BlistList([1..50],[2..7]);
CallFuncList(function()
  local dir,fnam,tradeg;
  for tradeg in [8..48] do
    fnam:=Concatenation("trans",String(tradeg),".grp");
    if tradeg=32 then
      dir:= DirectoriesPackageLibrary( "transgrp", "dat32" );
    elif tradeg=48 then
      dir:= DirectoriesPackageLibrary( "transgrp", "dat48" );
      fnam:="TransitiveGroupsOfDegree48_1959.gz";
    else
      dir:= DirectoriesPackageLibrary( "transgrp", "data" );
    fi;
    fnam:=Filename( dir, fnam);
    if fnam<>fail and IsReadableFile(fnam) then
      TRANSAVAILABLE[tradeg]:=true;
    fi;
  od;
end,[]);
MakeImmutable(TRANSAVAILABLE);
MakeReadOnlyGlobal("TRANSAVAILABLE");


BindGlobal("TransGrpLoad",function(deg,nr)
local Tbak,Fbak,flg,sel,i,fname,block,transdir;
  block:=300;
  if deg=32 or deg=36 or deg=40 then block:=5000;fi;
  if deg=32 then
    transdir:= DirectoriesPackageLibrary( "transgrp", "dat32" ); 
  elif deg=48 then 
    atomic TRANSREGION do
      TRANSLENGTHS[48]:=195826352;
    od;
    return;
  else
    transdir:= DirectoriesPackageLibrary( "transgrp", "data" ); 
  fi;
  atomic readonly TRANSREGION do
    if IsBound(TRANSGRP[deg]) and (nr=0 or IsBound(TRANSGRP[deg][nr])) then
      return;
    fi;
  od;
  atomic TRANSREGION do
    if not IsBound(TRANSAVAILABLE[deg]) or TRANSAVAILABLE[deg]=false then
      Error("transitive groups of degree ",deg," are unavailable");
    else
      fname:=Concatenation("trans",String(deg));
      if (deg>15 and not IsPrime(deg)) or deg>30  then
	if not IsBound(TRANSGRP[deg]) then
	  Read(Filename(transdir,Concatenation( fname, ".grp" ) ));
	  if IsHPCGAP then
	    MigrateObj(TRANSGRP[deg], TRANSREGION);
	    MigrateObj(TRANSPROPERTIES[deg], TRANSREGION);
	    MigrateObj(TRANSSIZES[deg], TRANSREGION);
	    MigrateObj(TRANSSELECT[deg], TRANSREGION);
	  fi;
	  if nr=0 then 
	    return;
	  fi;
	else
	  # the groups to be thrown away
	  sel:=Difference(Filtered([1..Length(TRANSGRP[deg])],
			    i->IsBound(TRANSGRP[deg])),TRANSSELECT[deg]);
	  if Length(TRANSSELECT[deg])>block then
	    flg:=TRANSSELECT[deg]{[1..Length(TRANSSELECT[deg])-block/2]};
	    sel:=Union(flg,sel);
	    TRANSSELECT[deg]:=Difference(TRANSSELECT[deg],flg);
	    if IsHPCGAP then
	      MigrateObj(TRANSSELECT[deg], TRANSREGION);
	    fi;
	  fi;
	  for i in sel do
	    Unbind(TRANSGRP[deg][i]);
	    Unbind(TRANSPROPERTIES[deg][i]);
	  od;
	fi;
	Append(fname,WordAlp("abcdefghijklmnopqrstuvwxyz",Int((nr-1)/block)+1));
      fi;

      IsString(fname);

      Read(Filename(transdir,Concatenation( fname, ".grp" ) ));
      if IsHPCGAP then
	MigrateObj(TRANSGRP[deg], TRANSREGION);
	MigrateObj(TRANSPROPERTIES[deg], TRANSREGION);
      fi;

      if deg>31 and not IsBound(TRANSMINIMALS[32]) then
        Read(Filename(DirectoriesPackageLibrary("transgrp","data"),
          "transminimals.grp")); 
        if IsHPCGAP then
          for i in [32..Length(TRANSMINIMALS)] do
            MigrateObj(TRANSMINIMALS[i],TRANSREGION);
          od;
        fi;
      fi;

      if (deg>15 and not IsPrime(deg)) or deg>30 then
	sel:=Difference(Filtered([1..Length(TRANSGRP[deg])],
			  i->IsBound(TRANSGRP[deg][i])),TRANSSELECT[deg]);
      else
	TRANSLENGTHS[deg]:=Length(TRANSGRP[deg]);
	TRANSSIZES[deg]:=List(TRANSPROPERTIES[deg],i->i[1]);
	sel:=[1..TRANSLENGTHS[deg]];
      fi;
      # make blists those which are
      ForAll(TRANSPROPERTIES[deg]{sel},i->IsBound(i[5]) and IsBlist(i[5]));
    fi;
    for i in sel do
      MakeImmutable(TRANSGRP[deg][i]);
      MakeImmutable(TRANSPROPERTIES[deg][i]);
    od;
    TRANSPARTNUM[deg]:=NrPartitions(deg);
  od;
end);

InstallGlobalFunction(TransitiveGroupsAvailable,function(deg)
    if not IsPosInt(deg) then
      Error("degree must be a positive integer");
    fi;
    if not IsBound(TRANSAVAILABLE[deg]) or TRANSAVAILABLE[deg]=false then
      return false;
    fi;
    TransGrpLoad(deg,0); # to set up variables
    return true;
end);

BindGlobal("TRANSGrp",function(deg,nr)
  if not TransitiveGroupsAvailable(deg) then 
    Error("Transitive Groups of degree ",deg," are not available");
  fi;
  atomic TRANSREGION do
    if not IsBound(TRANSGRP[deg]) or not IsBound(TRANSGRP[deg][nr]) then
      TransGrpLoad(deg,nr);
    fi;
    if (deg>15 and not IsPrime(deg)) or deg>30 then
      AddSet(TRANSSELECT[deg],nr);
    fi;
    if nr>TRANSLENGTHS[deg] then
      return "fail";
    fi;
    return TRANSGRP[deg][nr];
  od;
  end);

BindGlobal("TRANSProperties",function(deg,nr)
local l;
  if not TransitiveGroupsAvailable(deg) then 
    Error("Transitive Groups of degree ",deg," are not available");
  fi;
  atomic TRANSREGION do
    if not IsBound(TRANSPROPERTIES[deg]) or
      not IsBound(TRANSPROPERTIES[deg][nr]) then
      TransGrpLoad(deg,nr);
    fi;
    if (deg>15 and not IsPrime(deg)) or deg>30 then
      AddSet(TRANSSELECT[deg],nr);
    fi;
    if nr>TRANSLENGTHS[deg] then
      return "fail";
    fi;
    l:=TRANSPROPERTIES[deg][nr];
    if IsBound(l[5]) and IsString(l[5]) then
      if l[5]<>"false" then
        # translate string to blist
        l:=ShallowCopy(l);
        l[5]:=BlistStringDecode(l[5],TRANSPARTNUM[deg]-1);
        MakeImmutable(l);
        TRANSPROPERTIES[deg][nr]:=l;
      else
        l:=ShallowCopy(l);
        Unbind(l[5]);
      fi;
    fi;
    return l;
  od;
end);

InstallGlobalFunction(NrTransitiveGroups, function(deg)
  if deg=1 then
    return 0;
  fi;
  if not IsPosInt(deg) then
    Error("degree must be a positive integer");
  fi;
  if not TransitiveGroupsAvailable(deg) then
    return fail;
  fi;
  return TRANSLENGTHS[deg];
end);

# This function is mostly due to Jesse Lansdown and Gordon F. Royle
BindGlobal("TransitiveGroup48",function(id)
    local file_number, pos, strm, i, x, g;
    file_number := QuoInt(id-1, 100000)+1;;
    pos := (id-1) mod 100000 + 1;

    strm:=Filename(DirectoriesPackageLibrary( "transgrp", "dat48" ),
      Concatenation("TransitiveGroupsOfDegree48_", String(file_number),
      ".gz"));
    strm := InputTextFile(strm);
    for i in [1 .. pos+14] do
        x:=ReadLine(strm);;
    od;
    x:=EvalString(x);;
    CloseStream(strm);;
    if x[1] <> id then
        Error("Somehow we got the wrong group!!!\n");
    else
        g:=Group(x[2]);;
        SetTransitiveIdentification(g, id);;
        return g;
    fi;
end);

InstallGlobalFunction( TransitiveGroup, function(deg,num)
  local gens,i,l,g,s;
  if deg=1 then
    return fail;
  elif not TransitiveGroupsAvailable(deg) then
    Error("Transitive Groups of degree ",deg," are not available");
  fi;
  if deg=48 then
    return TransitiveGroup48(num);
  fi;
  atomic TRANSREGION do
    if not (num in [1..TRANSLENGTHS[deg]]) then
      Error("maximal number of groups of degree ",deg," is ",
	    TRANSLENGTHS[deg]);
    fi;
  
    # special case: Symmetric and Alternating Group
    s:=Factorial(deg);
    if TRANSProperties(deg,num)[1]=s then
      if deg=1 then
	g:=GroupByGenerators( [], () );
      else
	g:=SymmetricGroup(deg);
      fi;
      SetName(g,Concatenation("S",String(deg)));
    elif TRANSProperties(deg,num)[1]*2=s then
      g:=AlternatingGroup(deg);
      SetName(g,Concatenation("A",String(deg)));
    else
      l:=TRANSGrp(deg,num);
      s:=Length(l);
      gens:=[];
      for i in l{[1..s]} do
	if IsPerm(i) then
	  Add(gens,i);
	elif not IsString(i) then
	  if Length(i)=2 then
	    Add(gens,TRANSGrp(i[1],i[2])[1]);
	  else
	    Add(gens,TRANSGrp(i[1],i[2])[i[3]]);
	  fi;
	fi;
      od;
      g:= GroupByGenerators( gens, () );
      if IsString(l[s]) and l[s]<>"" then
	SetName(g,l[s]);
      else
	SetName(g,Concatenation("t",String(deg),"n",String(num)));
      fi;
    fi;
    SetTransitiveIdentification(g,num);
    return g;

  od;
end );

InstallGlobalFunction(MinimalTransitiveIndices,function(deg)
local l;
  if deg=1 then
    return fail;
  fi;
  if not TransitiveGroupsAvailable(deg) then
    Error("Transitive Groups of degree ",deg," are not available");
  fi;
  TransGrpLoad(deg,1);
  atomic TRANSREGION do
    l:=TRANSMINIMALS[deg];
  od;
  return Immutable(l);
end );

InstallFlushableValue(TRANSCOMBCACHE,[[0],[0],[0]]);
if IsHPCGAP then
  LockAndMigrateObj(TRANSCOMBCACHE, TRANSREGION);
fi;

BindGlobal("TransCombinat",function(m,n)
local i,l;
  atomic readonly TRANSREGION do
    for i in [1..3] do
      if TRANSCOMBCACHE[i][1]=m and TRANSCOMBCACHE[i][2]=n then
	return TRANSCOMBCACHE[i][3];
      fi;
    od;
  od;
  atomic TRANSREGION do
    TRANSCOMBCACHE[3]:=TRANSCOMBCACHE[2];
    TRANSCOMBCACHE[2]:=TRANSCOMBCACHE[1];
    l:=Combinations(m,n);
    for i in l do MakeImmutable(i);od;
    Sort(l);
    IsSet(l);
    TRANSCOMBCACHE[1]:=[m,n,l];
    return l;
  od;
end);

InstallFlushableValue(TRANSARRCACHE,[[0],[0],[0]]);
if IsHPCGAP then
  LockAndMigrateObj(TRANSARRCACHE, TRANSREGION);
fi;

BindGlobal("TransArrange",function(m,n)
local i,l;
  atomic readonly TRANSREGION do
    for i in [1..3] do
      if TRANSARRCACHE[i][1]=m and TRANSARRCACHE[i][2]=n then
	return TRANSARRCACHE[i][3];
      fi;
    od;
  od;
  atomic TRANSREGION do
    TRANSARRCACHE[3]:=TRANSARRCACHE[2];
    TRANSARRCACHE[2]:=TRANSARRCACHE[1];
    l:=Arrangements(m,n);
    for i in l do MakeImmutable(i);od;
    Sort(l);
    IsSet(l);
    TRANSARRCACHE[1]:=[m,n,l];
    return l;
  od;
end);

BindGlobal("CntOp",function(grp,orb,op)
local l,i,j,sgn;
  l:=[];
  for i in orb do
    i:=Set(Immutable(i));
    sgn:=1;
    j:=1;
    while sgn=1 and j<=Length(GeneratorsOfGroup(grp)) do
      if SignPerm(Permutation(GeneratorsOfGroup(grp)[j],i,op))<0 then 
        sgn:=-1;
      fi;
      j:=j+1;
    od;
    Add(l,sgn*Length(i));
  od;
  l:=Collected(l);
  for i in [1..Length(l)] do
    l[i]:=SignInt(l[i][1])*(1000*(l[i][2]-1)+AbsInt(l[i][1])); 
  od;
  Sort(l);
  return l;
end);

BindGlobal("NumBol",function(b)
  if b then return 1;
       else return 0;
  fi;
end);

BindGlobal("SetsOrbits",function(g,n)
local l,i;
  l:=TransCombinat(MovedPoints(g),n);
  for i in l do MakeImmutable(i);od;
  Sort(l);
  return OrbitsDomain(g,l,OnSets);
end); 

BindGlobal("SeqsOrbits",function(g,n)
local l,i;
  l:=TransArrange(MovedPoints(g),n);
  for i in l do MakeImmutable(i);od;
  Sort(l);
  return OrbitsDomain(g,l,OnTuples);
end); 

# the (undocumented) `cheap' parameter has the following function:
# not set -> proper test
# true -> return `fail' if not unique ID
# 1    -> ID list if no cheap unique ID
# 2    -> as 1, but do not compute classes (expensive if big!)
InstallMethod(TransitiveIdentification,"generic",true,[IsPermGroup],0,
function(ogrp)
local dom,p,s,t,a,cand,i,grp,deg,aiso,piso,co,cheap;
  cheap:=ValueOption("cheap");
  grp:=ogrp;
  dom:=MovedPoints(grp);
  if not IsTransitive(grp,dom) then
    Error("Group must operate transitively");
  fi;
  deg:=Length(dom);
  if deg=48 then
    Error("Identification of the groups of degree 48 is not available");
  fi;
  atomic TRANSREGION do
    if not IsBound(TRANSLENGTHS[deg]) then
      TransGrpLoad(deg,0);
    fi;

    s:=Size(grp);
    if deg>15 then
      cand:=Filtered([1..TRANSLENGTHS[deg]],i->TRANSSIZES[deg][i]=s);
    else
      cand:=Filtered([1..TRANSLENGTHS[deg]],i->TRANSProperties(deg,i)[1]=s);
    fi;
    if Length(cand)>1 and deg>4 then
      co:=CntOp(grp,OrbitsDomain(grp,TransCombinat(dom,2),OnSets),OnSets);
      cand:=Filtered(cand,i->TRANSProperties(deg,i)[6]=co);
      if Length(cand)>1 then
	co:=CntOp(grp,OrbitsDomain(grp,TransArrange(dom,2),OnTuples),OnTuples);
	cand:=Filtered(cand,i->TRANSProperties(deg,i)[7]=co);
      fi;
      if Length(cand)>1 then
	co:=CntOp(grp,OrbitsDomain(grp,TransCombinat(dom,3),OnSets),OnSets);
	cand:=Filtered(cand,i->TRANSProperties(deg,i)[8]=co);
      fi;
    fi;

    Pcgs(grp); # try to enforce solvable calculations further on.
  #  if Length(cand)>1 and IsSolvableGroup(grp)
  #     and not HasConjugacyClasses(grp) then
  #    t:=[];
  #    aiso:=IsomorphismPcGroup(grp);
  #    a:=Image(aiso,grp);
  #    for i in ConjugacyClasses(a) do
  #      s:=ConjugacyClass(grp,PreImagesRepresentative(aiso,Representative(i)));
  #      SetStabilizerOfExternalSet(s,PreImage(aiso,Centralizer(i)));
  #      Add(t,s);
  #    od;
  #    SetConjugacyClasses(grp,t);
  #  fi;

    if Length(cand)>1 and cheap<>2 and
      ForAll(cand,i->IsBound(TRANSProperties(deg,i)[5])) then
        s:=List(CycleStructuresGroup(grp),i->i=1);
        cand:=Filtered(cand,i->TRANSProperties(deg,i)[5]=s);
    fi;
    if Length(cand)>1 then
      p:=List(cand,i->TransitiveGroup(deg,i));

      # DerivedSubgroups + Frattini Subgroups
      s:=Filtered([1..Length(cand)],i->
	  Size(DerivedSubgroup(p[i]))=Size(DerivedSubgroup(grp)));
      if Length(Factors(Size(grp)))=1 then
	s:=Filtered(s,i->
	    Size(FrattiniSubgroup(p[i]))=Size(FrattiniSubgroup(grp)));
      fi;
      cand:=cand{s};
      p:=p{s};
    fi;
  od;

  if Length(cand)>1 then
    # Blockl"angen
    t:=List(p,i->Collected(List(AllBlocks(i),Length)));
    s:=Collected(List(AllBlocks(grp),Length));
    s:=Filtered([1..Length(cand)],i->s=t[i]);
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)>1 then
    # 4-sets
    t:=[4,CntOp(grp,SetsOrbits(grp,4),OnSets)]; 
    s:=Filtered([1..Length(cand)],i->t in TRANSProperties(deg,cand[i])
	or ForAll(TRANSProperties(deg,cand[i]){
	      [9..Length(TRANSProperties(deg,cand[i]))]},j->j[1]<>4));
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)>1 and cheap<>2 then
    # As all computations, which follow involve only the groups, convert
    # them to PcGroups if possible
    if IsSolvableGroup(grp) then
      s:=Filtered([1..Length(cand)],i->IsSolvableGroup(p[i]));
      cand:=cand{s};
#      aiso:=IsomorphismPcGroup(grp);
#      grp:=Image(aiso,grp);
#
#      piso:=List(p{s},IsomorphismPcGroup);
#      p:=List([1..Length(s)],i->Image(piso[i],p[s[i]]));
      p:=p{s}; 
      List(p,Pcgs); # enforce Pcgs use
#    else
#      aiso:=IdentityMapping(grp);
#      piso:=List(p,IdentityMapping);
    fi;

    # Klassen
    t:=Collected(List(ConjugacyClasses(grp),
                      i->[CycleStructurePerm(Representative(i)),Size(i)]));
    s:=Filtered([1..Length(cand)],i->Collected(List(
           ConjugacyClasses(p[i]),
           j->[CycleStructurePerm(Representative(j)),Size(j)]))=t);
    cand:=cand{s};
    p:=p{s};
  fi;  

  # maximal subgroups
  if cheap=fail and IsSolvableGroup(grp) and Length(cand)>1 then
    t:=Collected(List(MaximalSubgroupClassReps(grp),
      i->[Size(i),Collected(List(OrbitsDomain(i,MovedPoints(grp)),Length))]));
    s:=Filtered([1..Length(cand)],k->
         Collected(List(MaximalSubgroupClassReps(p[k]),
	   i->[Size(i),Collected(List(OrbitsDomain(i,MovedPoints(grp)),Length))]))=t);
    cand:=cand{s};
    p:=p{s};
    if Length(cand)>1 then
      a:=Filtered(t,i->i[2]<=5 and Length(i[1][2])=1 and i[1][2][1][2]=1);
      a:=List(a,i->i[1][1]);
      t:=Collected(List(Filtered(MaximalSubgroupClassReps(grp),
		  i->Size(i) in a and Length(OrbitsDomain(i,MovedPoints(grp)))=1),
		  x->TransitiveIdentification(x:cheap)));
      s:=Filtered([1..Length(cand)],
	  k->Collected(List(Filtered(MaximalSubgroupClassReps(p[k]),
		  i->Size(i) in a and Length(OrbitsDomain(i,MovedPoints(p[k])))=1),
		  x->TransitiveIdentification(x:cheap)))=t);
      cand:=cand{s};
      p:=p{s};
    fi;
  fi;

  if cheap=fail and Length(cand)>1 and not IsSolvableGroup(grp) then
    # NormalSubgroups (some solvable groups have too many)
    t:=Collected(List(NormalSubgroups(grp),Size));
    s:=Filtered([1..Length(cand)],
                i->Collected(List(NormalSubgroups(p[i]),Size))=t);
    cand:=cand{s};
    p:=p{s};
  fi;  

  if cheap=fail and Length(cand)>1 and Size(grp)<3000 then
    # Subgroups
    Info(InfoWarning,2,"TransId: test Subgroups ",cand);
    t:=Collected(List(ConjugacyClassesSubgroups(Group(GeneratorsOfGroup(grp))),
                      i->[Size(Representative(i)),Size(i)]));
    s:=Filtered([1..Length(cand)],i->Collected(List(
           ConjugacyClassesSubgroups(Group(GeneratorsOfGroup(p[i]))),
           i->[Size(Representative(i)),Size(i)]))=t);
    cand:=cand{s};
    p:=p{s};
  fi;  

  if cheap=fail and Length(cand)>1 then
    # two special cases in degree 30
    if Length(dom)=30 and 2230 in cand or 4335 in cand then
      Info(InfoWarning,2,"TransId: Isomorphism Test",cand);
      cand:=First(cand,i->IsomorphismGroups(grp,
         TransitiveGroup(30,i):nogensyssearch:=true)<>fail);
      return cand;
    fi;
    # now finally the hard test: Test for conjugacy
    Info(InfoWarning,2,"TransId: Conjugacy Test",cand);
    s:=SymmetricGroup(Maximum(dom));
#    if IsSolvableGroup(grp) then
#      grp:=PreImage(aiso,grp);
#      p:=List([1..Length(p)],i->PreImage(piso[i],p[i]));
#    fi; 
    grp:=AsSubgroup(s,grp);
    p:=List(p,i->AsSubgroup(s,i));
    s:=Filtered([1..Length(cand)],i->IsConjugate(s,grp,p[i]));
    cand:=cand{s};
    p:=p{s};
  fi;

  if Length(cand)=1 then
    return cand[1];
  elif cheap=true then
    return cand;
  elif cheap<>fail then
    return cand;
  else
    Error("Uh-Oh, this should never happen ",cand);
  fi;
end);

#############################################################################
##
#F  SelectTransitiveGroups(arglis,alle,whine)  . . . . . selection function
##
InstallGlobalFunction(SelectTransitiveGroups,function(arglis,alle,whine)
local i,j,a,b,l,p,deg,gut,g,grp,nr,f;
  l:=Length(arglis)/2;
  if not IsInt(l) then
    Error("wrong arguments");
  fi;
  atomic TRANSREGION do
    deg:=Filtered([1..Length(TRANSAVAILABLE)],x->IsBound(TRANSAVAILABLE[x])
      and TRANSAVAILABLE[x]=true);
    p:=Position(arglis,NrMovedPoints);
    if p<>fail then
      p:=arglis[p+1];
      if IsInt(p) then
	p:=[p];
      fi;
      if IsList(p) then
	f:=not IsSubset(deg,p);
	deg:=Intersection(deg,p);
      else
	f:=true;
	deg:=Filtered(deg,p); 
      fi;
    else
      f:=true; #warnung weil kein Degree angegeben ?
    fi;
    gut:=[];
    if 48 in deg then
      Info(InfoWarning,1,"Selection of groups of degree 48 is not available");
      deg:=Filtered(deg,x->x<>48);
    fi;
    for i in deg do
      if not IsBound(TRANSLENGTHS[i]) then
	TransGrpLoad(i,0);
      fi;
      gut[i]:=[1..TRANSLENGTHS[i]];
    od;

    # special treatment for Size for degrees larger than 15
    a:=Position(arglis,Size);
    if a<>fail then
      a:=arglis[a+1];
      for i in Filtered(deg,i->(i>15 and not IsPrime(i)) or i>30) do
	if IsFunction(a) then
	  gut[i]:=Filtered(gut[i],j->a(TRANSSIZES[i][j]));
	elif IsList(a) then
	  gut[i]:=Filtered(gut[i],j->TRANSSIZES[i][j] in a);
	else
	  gut[i]:=Filtered(gut[i],j->TRANSSIZES[i][j]=a);
	fi;
      od;
    fi;

    # find the properties we have not stored
    p:=[];
    for i in [1..l] do
      if not arglis[2*i-1] in
	[NrMovedPoints,Size,Transitivity,SignPermGroup,IsPrimitive] then
	Add(p,arglis{[2*i-1,2*i]}); 
      fi;
    od;

    for i in [1..l] do
      a:=arglis[2*i-1];
      b:=arglis[2*i];

      # get all cheap properties first
      if a=NrMovedPoints then
	f:=false;
	if IsInt(b) then
	  b:=[b];
	fi;
	if IsList(b) then
	  b:=Set(b);
	  if not IsSubset(deg,b) then
	    f:=true;
	  fi;
	  deg:=Intersection(deg,b);
	else
	  # b is a function (wondering, whether anyone will ever use it...)
	  f:=true;
	  deg:=Filtered(deg,b);
	fi;
      elif a=Size or a=Transitivity or a=SignPermGroup then
	if a=Size then
	  nr:=1;
	elif a=Transitivity then
	  nr:=3;
	else
	  nr:=4;
	fi;
	for i in deg do
	  gut[i]:=Filtered(gut[i],j->STGSelFunc(TRANSProperties(i,j)[nr],b));
	od;
      elif a=IsPrimitive then
	b:=NumBol(b);
	for i in deg do
	  gut[i]:=Filtered(gut[i],j->TRANSProperties(i,j)[2]=b);
	od;
      fi;
    od;
  od;

  if f and whine then
    IsRange(deg); # display nicer
    Info(InfoWarning,1,"AllTransitiveGroups: Degree restricted to ",deg);
  fi;

  # the rest is hard:  
  grp:=[];
  for i in deg do
    for nr in gut[i] do
      g:=TransitiveGroup(i,nr);
      if ForAll(p,i->STGSelFunc(i[1](g),i[2])) then
        if alle then
          Add(grp,g);
        else
          return g;
        fi;
      fi;
    od;
  od;

  return grp;
end);

#############################################################################
##
#F  AllTransitiveGroups( <fun>, <res>, ... ) . . . . . . . selection function
#F  AllLibraryTransitiveGroups( <fun>, <res>, ... )  . . . selection function
##
InstallGlobalFunction(AllTransitiveGroups,function ( arg )
  return SelectTransitiveGroups(arg,true,true);
end);
InstallGlobalFunction(AllLibraryTransitiveGroups,function ( arg )
  return SelectTransitiveGroups(arg,true,false);
end);

#############################################################################
##
#F  OneTransitiveGroup( <fun>, <res>, ... ) . . . . . . . selection function
##
InstallGlobalFunction(OneTransitiveGroup,function ( arg )
local sel;
  sel:=SelectTransitiveGroups(arg,false,true);
  if sel=[] then
    return fail;
  else
    return sel;
  fi;
end);

#############################################################################
##
#E