File: chap3.html

package info (click to toggle)
gap-utils 0.93-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,504 kB
  • sloc: xml: 2,167; javascript: 155; makefile: 105
file content (244 lines) | stat: -rw-r--r-- 16,540 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (Utils) - Chapter 3: Lists, Sets and Strings</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap3"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap2.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap4.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap3_mj.html">[MathJax on]</a></p>
<p><a id="X7AE6EFC086C0EB3C" name="X7AE6EFC086C0EB3C"></a></p>
<div class="ChapSects"><a href="chap3.html#X7AE6EFC086C0EB3C">3 <span class="Heading">Lists, Sets and Strings</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3.html#X7C3F1E7D878AAA65">3.1 <span class="Heading">Functions for lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3.html#X78B7C92681D2F13C">3.1-1 DifferencesList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3.html#X7975371E865B89BC">3.1-2 QuotientsList</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3.html#X86096E73858CFABD">3.1-3 SearchCycle</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3.html#X7EF06CAD7F35245D">3.1-4 RandomCombination</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3.html#X82F443FF84B8FCE3">3.2 <span class="Heading">Distinct and Common Representatives</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3.html#X78105CAA847A888C">3.2-1 DistinctRepresentatives</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3.html#X8033A2FE80FC2F2A">3.3 <span class="Heading">Functions for strings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3.html#X870C964E7804B266">3.3-1 BlankFreeString</a></span>
</div></div>
</div>

<h3>3 <span class="Heading">Lists, Sets and Strings</span></h3>

<p><a id="X7C3F1E7D878AAA65" name="X7C3F1E7D878AAA65"></a></p>

<h4>3.1 <span class="Heading">Functions for lists</span></h4>

<p><a id="X78B7C92681D2F13C" name="X78B7C92681D2F13C"></a></p>

<h5>3.1-1 DifferencesList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DifferencesList</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">ResClasses</strong>.</p>

<p>It takes a list <span class="SimpleMath">L</span> of length <span class="SimpleMath">n</span> and outputs the list of length <span class="SimpleMath">n-1</span> containing all the differences <span class="SimpleMath">L[i]-L[i-1]</span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [1..12], n-&gt;n^3 );</span>
[ 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DifferencesList( last );</span>
[ 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DifferencesList( last );</span>
[ 12, 18, 24, 30, 36, 42, 48, 54, 60, 66 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DifferencesList( last );</span>
[ 6, 6, 6, 6, 6, 6, 6, 6, 6 ]

</pre></div>

<p><a id="X7975371E865B89BC" name="X7975371E865B89BC"></a></p>

<h5>3.1-2 QuotientsList</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuotientsList</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FloatQuotientsList</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>These functions have been transferred from package <strong class="pkg">ResClasses</strong>.</p>

<p>They take a list <span class="SimpleMath">L</span> of length <span class="SimpleMath">n</span> and output the quotients <span class="SimpleMath">L[i]/L[i-1]</span> of consecutive entries in <span class="SimpleMath">L</span>. An error is returned if an entry is zero.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [0..10], n -&gt; Factorial(n) );</span>
[ 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuotientsList( last );</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L := [ 1, 3, 5, -1, -3, -5 ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuotientsList( L );</span>
[ 3, 5/3, -1/5, 3, 5/3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FloatQuotientsList( L );</span>
[ 3., 1.66667, -0.2, 3., 1.66667 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">QuotientsList( [ 2, 1, 0, -1, -2 ] );</span>
[ 1/2, 0, fail, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FloatQuotientsList( [1..10] );</span>
[ 2., 1.5, 1.33333, 1.25, 1.2, 1.16667, 1.14286, 1.125, 1.11111 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Product( last );</span>
10. 

</pre></div>

<p><a id="X86096E73858CFABD" name="X86096E73858CFABD"></a></p>

<h5>3.1-3 SearchCycle</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SearchCycle</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>

<p><code class="code">SearchCycle</code> is a tool to find likely cycles in lists. What, precisely, a <em>cycle</em> is, is deliberately fuzzy here, and may possibly even change. The idea is that the beginning of the list may be anything, following that the same pattern needs to be repeated several times in order to be recognized as a cycle.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L := [1..20];;  L[1]:=13;;                                              </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..19] do                                                     </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">       if IsOddInt(L[i]) then L[i+1]:=3*L[i]+1; else L[i+1]:=L[i]/2; fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   od;                                                                  </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L;                                                                      </span>
[ 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SearchCycle( L );                                                       </span>
[ 1, 4, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n := 1;;  L := [n];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..100] do  n:=(n^2+1) mod 1093;  Add(L,n);  od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L; </span>
[ 1, 2, 5, 26, 677, 363, 610, 481, 739, 715, 795, 272, 754, 157, 604, 848, 
  1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271, 
  211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521, 
  378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 
  754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 
  848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 
  271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C := SearchCycle( L );</span>
[ 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P := Positions( L, 157 );</span>
[ 14, 26, 38, 50, 62, 74, 86, 98 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( C );  DifferencesList( P );</span>
12
[ 12, 12, 12, 12, 12, 12, 12 ]

</pre></div>

<p><a id="X7EF06CAD7F35245D" name="X7EF06CAD7F35245D"></a></p>

<h5>3.1-4 RandomCombination</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomCombination</code>( <var class="Arg">S</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">ResClasses</strong>.</p>

<p>It returns a random unordered <span class="SimpleMath">k</span>-tuple of distinct elements of a set <span class="SimpleMath">S</span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">## "6 aus 49" is a common lottery in Germany</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomCombination( [1..49], 6 ); </span>
[ 2, 16, 24, 26, 37, 47 ]

</pre></div>

<p><a id="X82F443FF84B8FCE3" name="X82F443FF84B8FCE3"></a></p>

<h4>3.2 <span class="Heading">Distinct and Common Representatives</span></h4>

<p><a id="X78105CAA847A888C" name="X78105CAA847A888C"></a></p>

<h5>3.2-1 DistinctRepresentatives</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DistinctRepresentatives</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CommonRepresentatives</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CommonTransversal</code>( <var class="Arg">grp</var>, <var class="Arg">subgrp</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsCommonTransversal</code>( <var class="Arg">grp</var>, <var class="Arg">subgrp</var>, <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>These operations have been transferred from package <strong class="pkg">XMod</strong>.</p>

<p>They deal with lists of subsets of <span class="SimpleMath">[1 ... n]</span> and construct systems of distinct and common representatives using simple, non-recursive, combinatorial algorithms.</p>

<p>When <span class="SimpleMath">L</span> is a set of <span class="SimpleMath">n</span> subsets of <span class="SimpleMath">[1 ... n]</span> and the Hall condition is satisfied (the union of any <span class="SimpleMath">k</span> subsets has at least <span class="SimpleMath">k</span> elements), a set of <code class="code">DistinctRepresentatives</code> exists.</p>

<p>When <span class="SimpleMath">J,K</span> are both lists of <span class="SimpleMath">n</span> sets, the operation <code class="code">CommonRepresentatives</code> returns two lists: the set of representatives, and a permutation of the subsets of the second list.</p>

<p>The operation <code class="code">CommonTransversal</code> may be used to provide a common transversal for the sets of left and right cosets of a subgroup <span class="SimpleMath">H</span> of a group <span class="SimpleMath">G</span>, although a greedy algorithm is usually quicker.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">J := [ [1,2,3], [3,4], [3,4], [1,2,4] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DistinctRepresentatives( J );</span>
[ 1, 3, 4, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K := [ [3,4], [1,2], [2,3], [2,3,4] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CommonRepresentatives( J, K );</span>
[ [ 3, 3, 3, 1 ], [ 1, 3, 4, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d16 := DihedralGroup( IsPermGroup, 16 ); </span>
Group([ (1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetName( d16, "d16" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c4 := Subgroup( d16, [ d16.1^2 ] ); </span>
Group([ (1,3,5,7)(2,4,6,8) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetName( c4, "c4" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RightCosets( d16, c4 );</span>
[ RightCoset(c4,()), RightCoset(c4,(2,8)(3,7)(4,6)), RightCoset(c4,(1,8,7,6,5,
   4,3,2)), RightCoset(c4,(1,8)(2,7)(3,6)(4,5)) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">trans := CommonTransversal( d16, c4 );</span>
[ (), (2,8)(3,7)(4,6), (1,2,3,4,5,6,7,8), (1,2)(3,8)(4,7)(5,6) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsCommonTransversal( d16, c4, trans );</span>
true

</pre></div>

<p><a id="X8033A2FE80FC2F2A" name="X8033A2FE80FC2F2A"></a></p>

<h4>3.3 <span class="Heading">Functions for strings</span></h4>

<p><a id="X870C964E7804B266" name="X870C964E7804B266"></a></p>

<h5>3.3-1 BlankFreeString</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BlankFreeString</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">ResClasses</strong>.</p>

<p>The result of <code class="code">BlankFreeString( obj );</code> is a composite of the functions <code class="code">String( obj )</code> and <code class="code">RemoveCharacters( obj, " " );</code>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens := GeneratorsOfGroup( DihedralGroup(12) );</span>
[ f1, f2, f3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">String( gens );                                </span>
"[ f1, f2, f3 ]"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">BlankFreeString( gens );                       </span>
"[f1,f2,f3]"

</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap2.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap4.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>