1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (Utils) - Chapter 4: Number-theoretic functions</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap4" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap3_mj.html">[Previous Chapter]</a> <a href="chap5_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap4.html">[MathJax off]</a></p>
<p><a id="X86E71C1687F2D0AD" name="X86E71C1687F2D0AD"></a></p>
<div class="ChapSects"><a href="chap4_mj.html#X86E71C1687F2D0AD">4 <span class="Heading">Number-theoretic functions</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4_mj.html#X7D33B5B17BF785CA">4.1 <span class="Heading">Functions for integers</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4_mj.html#X8191A031788AC7C0">4.1-1 AllSmoothIntegers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4_mj.html#X78BE6B8B878D250D">4.1-2 AllProducts</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4_mj.html#X845F46E579CEA43F">4.1-3 RestrictedPartitionsWithoutRepetitions</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4_mj.html#X81708BF4858505E8">4.1-4 NextProbablyPrimeInt</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4_mj.html#X8021EEE5787FCA37">4.1-5 PrimeNumbersIterator</a></span>
</div></div>
</div>
<h3>4 <span class="Heading">Number-theoretic functions</span></h3>
<p><a id="X7D33B5B17BF785CA" name="X7D33B5B17BF785CA"></a></p>
<h4>4.1 <span class="Heading">Functions for integers</span></h4>
<p><a id="X8191A031788AC7C0" name="X8191A031788AC7C0"></a></p>
<h5>4.1-1 AllSmoothIntegers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AllSmoothIntegers</code>( <var class="Arg">maxp</var>, <var class="Arg">maxn</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AllSmoothIntegers</code>( <var class="Arg">L</var>, <var class="Arg">maxp</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>The function <code class="code">AllSmoothIntegers(<var class="Arg">maxp</var>,<var class="Arg">maxn</var>)</code> returns the list of all positive integers less than or equal to <var class="Arg">maxn</var> whose prime factors are all in the list <span class="SimpleMath">\(L = \{p ~|~ p \leqslant maxp, p~\mbox{prime} \}\)</span>.</p>
<p>In the alternative form, when <span class="SimpleMath">\(L\)</span> is a list of primes, the function returns the list of all positive integers whose prime factors lie in <span class="SimpleMath">\(L\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AllSmoothIntegers( 3, 1000 );</span>
[ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96,
108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576,
648, 729, 768, 864, 972 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AllSmoothIntegers( [5,11,17], 1000 );</span>
[ 1, 5, 11, 17, 25, 55, 85, 121, 125, 187, 275, 289, 425, 605, 625, 935 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length( last );</span>
16
<span class="GAPprompt">gap></span> <span class="GAPinput">List( [3..20], n -> Length( AllSmoothIntegers( [5,11,17], 10^n ) ) );</span>
[ 16, 29, 50, 78, 114, 155, 212, 282, 359, 452, 565, 691, 831, 992, 1173,
1374, 1595, 1843 ]
</pre></div>
<p><a id="X78BE6B8B878D250D" name="X78BE6B8B878D250D"></a></p>
<h5>4.1-2 AllProducts</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AllProducts</code>( <var class="Arg">L</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>The command <code class="code">AllProducts(<var class="Arg">L</var>,<var class="Arg">k</var>)</code> returns the list of all products of <var class="Arg">k</var> entries of the list <var class="Arg">L</var>. Note that every ordering of the entries is used so that, in the commuting case, there are bound to be repetitions.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AllProducts([1..4],3); </span>
[ 1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12, 4, 8, 12, 16, 2, 4, 6, 8, 4, 8, 12,
16, 6, 12, 18, 24, 8, 16, 24, 32, 3, 6, 9, 12, 6, 12, 18, 24, 9, 18, 27,
36, 12, 24, 36, 48, 4, 8, 12, 16, 8, 16, 24, 32, 12, 24, 36, 48, 16, 32,
48, 64 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Set(last); </span>
[ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 64 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AllProducts( [(1,2,3),(2,3,4)], 2 );</span>
[ (2,4,3), (1,2)(3,4), (1,3)(2,4), (1,3,2) ]
</pre></div>
<p><a id="X845F46E579CEA43F" name="X845F46E579CEA43F"></a></p>
<h5>4.1-3 RestrictedPartitionsWithoutRepetitions</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RestrictedPartitionsWithoutRepetitions</code>( <var class="Arg">n</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>For a positive integer <var class="Arg">n</var> and a set of positive integers <var class="Arg">S</var>, this function returns the list of partitions of <var class="Arg">n</var> into distinct elements of <var class="Arg">S</var>. Unlike <code class="code">RestrictedPartitions</code>, no repetitions are allowed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RestrictedPartitions( 20, [4..10] );</span>
[ [ 4, 4, 4, 4, 4 ], [ 5, 5, 5, 5 ], [ 6, 5, 5, 4 ], [ 6, 6, 4, 4 ],
[ 7, 5, 4, 4 ], [ 7, 7, 6 ], [ 8, 4, 4, 4 ], [ 8, 6, 6 ], [ 8, 7, 5 ],
[ 8, 8, 4 ], [ 9, 6, 5 ], [ 9, 7, 4 ], [ 10, 5, 5 ], [ 10, 6, 4 ],
[ 10, 10 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RestrictedPartitionsWithoutRepetitions( 20, [4..10] );</span>
[ [ 10, 6, 4 ], [ 9, 7, 4 ], [ 9, 6, 5 ], [ 8, 7, 5 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RestrictedPartitionsWithoutRepetitions( 10^2, List([1..10], n->n^2 ) );</span>
[ [ 100 ], [ 64, 36 ], [ 49, 25, 16, 9, 1 ] ]
</pre></div>
<p><a id="X81708BF4858505E8" name="X81708BF4858505E8"></a></p>
<h5>4.1-4 NextProbablyPrimeInt</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ NextProbablyPrimeInt</code>( <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>The function <code class="code">NextProbablyPrimeInt(<var class="Arg">n</var>)</code> does the same as <code class="code">NextPrimeInt(<var class="Arg">n</var>)</code> except that for reasons of performance it tests numbers only for <code class="code">IsProbablyPrimeInt(<var class="Arg">n</var>)</code> instead of <code class="code">IsPrimeInt(<var class="Arg">n</var>)</code>. For large <var class="Arg">n</var>, this function is much faster than <code class="code">NextPrimeInt(<var class="Arg">n</var>)</code></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">n := 2^251;</span>
3618502788666131106986593281521497120414687020801267626233049500247285301248
<span class="GAPprompt">gap></span> <span class="GAPinput">NextProbablyPrimeInt( n );</span>
3618502788666131106986593281521497120414687020801267626233049500247285301313
<span class="GAPprompt">gap></span> <span class="GAPinput">time; </span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">NextPrimeInt( n ); </span>
3618502788666131106986593281521497120414687020801267626233049500247285301313
<span class="GAPprompt">gap></span> <span class="GAPinput">time; </span>
213
</pre></div>
<p><a id="X8021EEE5787FCA37" name="X8021EEE5787FCA37"></a></p>
<h5>4.1-5 PrimeNumbersIterator</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PrimeNumbersIterator</code>( [<var class="Arg">chunksize</var>] )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>This function returns an iterator which runs over the prime numbers n ascending order; it takes an optional argument <code class="code">chunksize</code> which specifies the length of the interval which is sieved in one go (the default is <span class="SimpleMath">\(10^7\)</span>), and which can be used to balance runtime vs. memory consumption. It is assumed that <code class="code">chunksize</code> is larger than any gap between two consecutive primes within the range one intends to run the iterator over.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">iter := PrimeNumbersIterator();;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..100] do p := NextIterator(iter); od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p;</span>
541
<span class="GAPprompt">gap></span> <span class="GAPinput">sum := 0;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">## "prime number race" 1 vs. 3 mod 4</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for p in PrimeNumbersIterator() do </span>
<span class="GAPprompt">></span> <span class="GAPinput"> if p <> 2 then sum := sum + E(4)^(p-1); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> if sum > 0 then break; fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput"> od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p;</span>
26861
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap3_mj.html">[Previous Chapter]</a> <a href="chap5_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|