File: chap5.html

package info (click to toggle)
gap-utils 0.93-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,504 kB
  • sloc: xml: 2,167; javascript: 155; makefile: 105
file content (500 lines) | stat: -rw-r--r-- 34,773 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (Utils) - Chapter 5: Groups and homomorphisms</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap5"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap4.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap6.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap5_mj.html">[MathJax on]</a></p>
<p><a id="X8171DAF2833FF728" name="X8171DAF2833FF728"></a></p>
<div class="ChapSects"><a href="chap5.html#X8171DAF2833FF728">5 <span class="Heading">Groups and homomorphisms</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X7E21E6D285E6B12C">5.1 <span class="Heading">Functions for groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X80761843831B468E">5.1-1 Comm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X803A050C7A183CCC">5.1-2 IsCommuting</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X87A8F01286548037">5.1-3 ListOfPowers</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X820B71307E41BEE5">5.1-4 GeneratorsAndInverses</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X84CF95227F9D562F">5.1-5 UpperFittingSeries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X7FE4848B7DE6B3FD">5.2 <span class="Heading">Left Cosets for Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X8340B4537F17DCD3">5.2-1 LeftCoset</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X793E48267EF5FD77">5.2-2 <span class="Heading">Inverse</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5.html#X80A512877F515DE7">5.3 <span class="Heading">Functions for group homomorphisms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X80C9A0B583FEA7B9">5.3-1 EpimorphismByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7C705F2A79F8E43C">5.3-2 Pullback</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X78DD2C617B992BE2">5.3-3 CentralProduct</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X801038CB808FC956">5.3-4 IdempotentEndomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X81FA9E6C7F3B9238">5.3-5 DirectProductOfFunctions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5.html#X7CB2D5F27F4182AF">5.3-6 DirectProductOfAutomorphismGroups</a></span>
</div></div>
</div>

<h3>5 <span class="Heading">Groups and homomorphisms</span></h3>

<p><a id="X7E21E6D285E6B12C" name="X7E21E6D285E6B12C"></a></p>

<h4>5.1 <span class="Heading">Functions for groups</span></h4>

<p><a id="X80761843831B468E" name="X80761843831B468E"></a></p>

<h5>5.1-1 Comm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Comm</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>This method has been transferred from package <strong class="pkg">ResClasses</strong>.</p>

<p>It provides a method for <code class="code">Comm</code> when the argument is a list (enclosed in square brackets), and calls the function <code class="code">LeftNormedComm</code>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Comm( [ (1,2), (2,3) ] );</span>
(1,2,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Comm( [(1,2),(2,3),(3,4),(4,5),(5,6)] );</span>
(1,5,6)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Comm(Comm(Comm(Comm((1,2),(2,3)),(3,4)),(4,5)),(5,6));  ## the same</span>
(1,5,6)

</pre></div>

<p><a id="X803A050C7A183CCC" name="X803A050C7A183CCC"></a></p>

<h5>5.1-2 IsCommuting</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsCommuting</code>( <var class="Arg">a</var>, <var class="Arg">b</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">ResClasses</strong>.</p>

<p>It tests whether two elements in a group commute.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D12 := DihedralGroup( 12 );</span>
&lt;pc group of size 12 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetName( D12, "D12" ); </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a := D12.1;;  b := D12.2;;  </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsCommuting( a, b );</span>
false

</pre></div>

<p><a id="X87A8F01286548037" name="X87A8F01286548037"></a></p>

<h5>5.1-3 ListOfPowers</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ListOfPowers</code>( <var class="Arg">g</var>, <var class="Arg">exp</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>

<p>The operation <code class="code">ListOfPowers(g,exp)</code> returns the list <span class="SimpleMath">[g,g^2,...,g^exp]</span> of powers of the element <span class="SimpleMath">g</span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ListOfPowers( 2, 20 );</span>
[ 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
 32768, 65536, 131072, 262144, 524288, 1048576 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ListOfPowers( (1,2,3)(4,5), 12 );</span>
[ (1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), (),
 (1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), () ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ListOfPowers( D12.2, 6 );</span>
[ f2, f3, f2*f3, f3^2, f2*f3^2, &lt;identity&gt; of ... ]

</pre></div>

<p><a id="X820B71307E41BEE5" name="X820B71307E41BEE5"></a></p>

<h5>5.1-4 GeneratorsAndInverses</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GeneratorsAndInverses</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>

<p>This operation returns a list containing the generators of <span class="SimpleMath">G</span> followed by the inverses of these generators.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsAndInverses( D12 );</span>
[ f1, f2, f3, f1, f2*f3^2, f3^2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsAndInverses( SymmetricGroup(5) );     </span>
[ (1,2,3,4,5), (1,2), (1,5,4,3,2), (1,2) ]

</pre></div>

<p><a id="X84CF95227F9D562F" name="X84CF95227F9D562F"></a></p>

<h5>5.1-5 UpperFittingSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UpperFittingSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LowerFittingSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FittingLength</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>These three functions have been transferred from package <strong class="pkg">ResClasses</strong>.</p>

<p>The upper and lower Fitting series and the Fitting length of a solvable group are described here: <span class="URL"><a href="https://en.wikipedia.org/wiki/Fitting_length">https://en.wikipedia.org/wiki/Fitting_length</a></span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperFittingSeries( D12 );  LowerFittingSeries( D12 );</span>
[ Group([  ]), Group([ f3, f2*f3 ]), Group([ f1, f3, f2*f3 ]) ]
[ D12, Group([ f3 ]), Group([  ]) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FittingLength( D12 );</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S4 := SymmetricGroup( 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UpperFittingSeries( S4 );</span>
[ Group(()), Group([ (1,2)(3,4), (1,4)(2,3) ]), Group([ (1,2)(3,4), (1,4)
  (2,3), (2,4,3) ]), Group([ (3,4), (2,3,4), (1,2)(3,4) ]) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( last, StructureDescription );</span>
[ "1", "C2 x C2", "A4", "S4" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LowerFittingSeries( S4 );</span>
[ Sym( [ 1 .. 4 ] ), Alt( [ 1 .. 4 ] ), Group([ (1,4)(2,3), (1,3)
 (2,4) ]), Group(()) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( last, StructureDescription );</span>
[ "S4", "A4", "C2 x C2", "1" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FittingLength( S4);</span>
3

</pre></div>

<p><a id="X7FE4848B7DE6B3FD" name="X7FE4848B7DE6B3FD"></a></p>

<h4>5.2 <span class="Heading">Left Cosets for Groups</span></h4>

<p><a id="X8340B4537F17DCD3" name="X8340B4537F17DCD3"></a></p>

<h5>5.2-1 LeftCoset</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftCoset</code>( <var class="Arg">g</var>, <var class="Arg">U</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Since <strong class="pkg">GAP</strong> uses right actions by default, the library contains the operation <code class="code">RightCoset(U,g)</code> for constructing the right coset <span class="SimpleMath">Ug</span> of a subgroup <span class="SimpleMath">U ≤ G</span> and an element <span class="SimpleMath">g ∈ G</span>. It has been noted in the reference manual that, by inverting all the elements in <span class="SimpleMath">Ug</span>, the left coset <span class="SimpleMath">g^-1U</span> is obtained.</p>

<p>Just for the sake of completeness, from August 2022 this package provides the operation <code class="code">LeftCoset(g,U)</code> for constructing the left coset <span class="SimpleMath">gU</span>. Users are strongly recommended to continue to use <code class="code">RightCoset</code> for all serious calculations, since left cosets have a much simpler implementation and do not behave exactly like right cosets.</p>

<p>The methods for left cosets which are provided generally work by converting <span class="SimpleMath">gU</span> to <span class="SimpleMath">Ug^-1</span>; applying the equivalent method for right cosets; and, if necessary, converting back again to left cosets.</p>

<p><span class="SimpleMath">G</span> acts on left cosets by <code class="code">OnLeftInverse</code>: <span class="SimpleMath">(gU)^g_0 = g_0^-1*(gU) = (g_0^-1g)U</span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a4 := Group( (1,2,3), (2,3,4) );; SetName( a4, "a4" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">k4 := Group( (1,2)(3,4), (1,3)(2,4) );; SetName( k4, "k4" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rc := RightCosets( a4, k4 );</span>
[ RightCoset(k4,()), RightCoset(k4,(2,3,4)), RightCoset(k4,(2,4,3)) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lc := LeftCosets( a4, k4 );</span>
[ LeftCoset((),k4), LeftCoset((2,4,3),k4), LeftCoset((2,3,4),k4) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsSet( lc[2] );</span>
[ (2,4,3), (1,2,3), (1,3,4), (1,4,2) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LeftCoset( (1,4,2), k4 ) = lc[2];</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Representative( lc[2] );</span>
(2,4,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ActingDomain( lc[2] );</span>
k4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">(1,4,3) in lc[3];</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">(1,2,3)*lc[2] = lc[3];</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lc[2]^(1,3,2) = lc[3];</span>
true

</pre></div>

<p><a id="X793E48267EF5FD77" name="X793E48267EF5FD77"></a></p>

<h5>5.2-2 <span class="Heading">Inverse</span></h5>

<p>The inverse of the left coset <span class="SimpleMath">gU</span> is the right coset <span class="SimpleMath">Ug^-1</span>, and conversely. This is an abuse of the attribute <code class="code">Inverse</code>, since the standard requirement, that <span class="SimpleMath">x*x^-1</span> is an identity, does not hold.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Inverse( rc[3] ) = lc[3];</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Inverse( lc[2] ) = rc[2];</span>
true

</pre></div>

<p><a id="X80A512877F515DE7" name="X80A512877F515DE7"></a></p>

<h4>5.3 <span class="Heading">Functions for group homomorphisms</span></h4>

<p><a id="X80C9A0B583FEA7B9" name="X80C9A0B583FEA7B9"></a></p>

<h5>5.3-1 EpimorphismByGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EpimorphismByGenerators</code>( <var class="Arg">G</var>, <var class="Arg">H</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>

<p>It constructs a group homomorphism which maps the generators of <span class="SimpleMath">G</span> to those of <span class="SimpleMath">H</span>. Its intended use is when <span class="SimpleMath">G</span> is a free group, and a warning is printed when this is not the case. Note that anything may happen if the resulting map is not a homomorphism!</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Group( (1,2,3), (3,4,5), (5,6,7), (7,8,9) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi := EpimorphismByGenerators( FreeGroup("a","b","c","d"), G );</span>
[ a, b, c, d ] -&gt; [ (1,2,3), (3,4,5), (5,6,7), (7,8,9) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagesRepresentativeNC( phi, (1,2,3,4,5,6,7,8,9) );</span>
d*c*b*a
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a := G.1;; b := G.2;; c := G.3;; d := G.4;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d*c*b*a;</span>
(1,2,3,4,5,6,7,8,9)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">## note that it is easy to produce nonsense: </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">epi := EpimorphismByGenerators( Group((1,2,3)), Group((8,9)) );</span>
Warning: calling GroupHomomorphismByImagesNC without checks
[ (1,2,3) ] -&gt; [ (8,9) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsGroupHomomorphism( epi );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Image( epi, (1,2,3) );                                            </span>
()
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Image( epi, (1,3,2) );</span>
(8,9)

</pre></div>

<p><a id="X7C705F2A79F8E43C" name="X7C705F2A79F8E43C"></a></p>

<h5>5.3-2 Pullback</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Pullback</code>( <var class="Arg">hom1</var>, <var class="Arg">hom2</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PullbackInfo</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>If <span class="SimpleMath">ϕ_1 : G_1 -&gt; H</span> and <span class="SimpleMath">ϕ_2 : G_2 -&gt; H</span> are two group homomorphisms with the same range, then their <em>pullback</em> is the subgroup of <span class="SimpleMath">G_1 × G_2</span> consisting of those elements <span class="SimpleMath">(g_1,g_2)</span> such that <span class="SimpleMath">ϕ_1 g_1 = ϕ_2 g_2</span>.</p>

<p>The attribute <code class="code">PullbackInfo</code> of a pullback group <code class="code">P</code> is similar to <code class="code">DirectProductInfo</code> for a direct product of groups. Its value is a record with the following components:</p>


<dl>
<dt><strong class="Mark"><code class="code">directProduct</code></strong></dt>
<dd><p>the direct product <span class="SimpleMath">G_1 × G_2</span>, and</p>

</dd>
<dt><strong class="Mark"><code class="code">projections</code></strong></dt>
<dd><p>a list with the two projections onto <span class="SimpleMath">G_1</span> and <span class="SimpleMath">G_2</span>.</p>

</dd>
</dl>
<p>There are no embeddings in this record, but it is possible to use the embeddings into the direct product, see <code class="func">Embedding</code> (<a href="../../../doc/ref/chap32.html#X86452F8587CBAEA0"><span class="RefLink">Reference: Embedding</span></a>).</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s4 := Group( (1,2),(2,3),(3,4) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3 := Group( (5,6),(6,7) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c3 := Subgroup( s3, [ (5,6,7) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := GroupHomomorphismByImages( s4, s3, </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">            [(1,2),(2,3),(3,4)], [(5,6),(6,7),(5,6)] );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">i := GroupHomomorphismByImages( c3, s3, [(5,6,7)], [(5,6,7)] );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Pfi := Pullback( f, i );</span>
Group([ (2,3,4)(5,7,6), (1,2)(3,4) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription( Pfi );</span>
"A4"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info := PullbackInfo( Pfi );</span>
rec( directProduct := Group([ (1,2), (2,3), (3,4), (5,6,7) ]), 
  projections := [ [ (2,3,4)(5,7,6), (1,2)(3,4) ] -&gt; [ (2,3,4), (1,2)(3,4) ], 
      [ (2,3,4)(5,7,6), (1,2)(3,4) ] -&gt; [ (5,7,6), () ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g := (1,2,3)(5,6,7);; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageElm( info!.projections[1], g );</span>
(1,2,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageElm( info!.projections[2], g );</span>
(5,6,7) 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dp := info!.directProduct;; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a := ImageElm( Embedding( dp, 1 ), (1,4,3) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b := ImageElm( Embedding( dp, 2 ), (5,7,6) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a*b in Pfi;</span>
true

</pre></div>

<p><a id="X78DD2C617B992BE2" name="X78DD2C617B992BE2"></a></p>

<h5>5.3-3 CentralProduct</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CentralProduct</code>( <var class="Arg">G1</var>, <var class="Arg">G2</var>, <var class="Arg">Z1</var>, <var class="Arg">Phi</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CentralProductInfo</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>This function was added by Thomas Breuer, following discussions with Hongyi Zhao (see <span class="URL"><a href="https://github.com/gap-packages/hap/issues/73">https://github.com/gap-packages/hap/issues/73</a></span>).</p>

<p>Let <var class="Arg">G1</var> and <var class="Arg">G2</var> be two groups, <var class="Arg">Z1</var> be a central subgroup of <var class="Arg">G1</var>, and <var class="Arg">Phi</var> be an isomorphism from <var class="Arg">Z1</var> to a central subgroup of <var class="Arg">G2</var>. The <em>central product</em> defined by these arguments is the factor group of the direct product of <var class="Arg">G1</var> and <var class="Arg">G2</var> by the central subgroup <span class="SimpleMath">{ (z, (<var class="Arg">Phi</var>(z))^-1) : z ∈ <var class="Arg">Z1</var> }</span>.</p>

<p>The attribute <code class="func">CentralProductInfo</code> of a group <span class="SimpleMath">G</span> that has been created by <code class="func">CentralProduct</code> is similar to <code class="func">PullbackInfo</code> (<a href="chap5.html#X7C705F2A79F8E43C"><span class="RefLink">5.3-2</span></a>) for pullback groups. Its value is a record with the following components.</p>


<dl>
<dt><strong class="Mark"><code class="code">projection</code></strong></dt>
<dd><p>the epimorphism from the direct product of <var class="Arg">G1</var> and <var class="Arg">G2</var> to <span class="SimpleMath">G</span>, and</p>

</dd>
<dt><strong class="Mark"><code class="code">phi</code></strong></dt>
<dd><p>the map <var class="Arg">Phi</var>.</p>

</dd>
</dl>
<p>Note that one can access the direct product as the <code class="func">Source</code> (<a href="../../../doc/ref/chap32.html#X7DE8173F80E07AB1"><span class="RefLink">Reference: Source</span></a>) value of the <code class="code">projection</code> map, and one can access <var class="Arg">G1</var> and <var class="Arg">G2</var> as the two embeddings of this direct product, see <code class="func">Embedding</code> (<a href="../../../doc/ref/chap32.html#X86452F8587CBAEA0"><span class="RefLink">Reference: Embedding</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g1 := DihedralGroup( 8 );</span>
&lt;pc group of size 8 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c1 := Centre( g1 );</span>
Group([ f3 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cp1 := CentralProduct( g1, g1, c1, IdentityMapping( c1 ) );</span>
Group([ f1, f2, f5, f3, f4, f5 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdGroup( cp1 ) = IdGroup( ExtraspecialGroup( 2^5, "+" ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g2 := QuaternionGroup( 8 );</span>
&lt;pc group of size 8 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2 := Centre( g2 );</span>
Group([ y2 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cp2 := CentralProduct( g2, g2, c2, IdentityMapping( c2 ) );</span>
Group([ f1, f2, f5, f3, f4, f5 ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdGroup( cp2 ) = IdGroup( ExtraspecialGroup( 2^5, "+" ) );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info2 := CentralProductInfo( cp2 );</span>
rec( phi := IdentityMapping( Group([ y2 ]) ), 
  projection := [ f1, f2, f3, f4, f5, f6 ] -&gt; [ f1, f2, f5, f3, f4, f5 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Source( Embedding( Source( info2.projection ), 1 ) ) = g2;</span>
true
</pre></div>

<p><a id="X801038CB808FC956" name="X801038CB808FC956"></a></p>

<h5>5.3-4 IdempotentEndomorphisms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdempotentEndomorphisms</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdempotentEndomorphismsData</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdempotentEndomorphismsWithImage</code>( <var class="Arg">genG</var>, <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>An endomorphism <span class="SimpleMath">f : G -&gt; G</span> is idempotent if <span class="SimpleMath">f^2=f</span>. It has an image <span class="SimpleMath">R leqslant G</span>; is the identity map when restricted to <span class="SimpleMath">R</span>; and has a kernel <span class="SimpleMath">N</span> which has trivial intersection with <span class="SimpleMath">R</span> and has size <span class="SimpleMath">|G|/|R|</span>.</p>

<p>The operation <code class="code">IdempotentEndomorphismsWithImage(genG,R)</code> returns a list of the images of the generating set <code class="code">genG</code> of a group <span class="SimpleMath">G</span> under the idempotent endomorphisms with image <span class="SimpleMath">R</span>.</p>

<p>The attribute <code class="code">IdempotentEndomorphismsData(G)</code> returns a record <code class="code">data</code> with fields <code class="code">data.gens</code>, a fixed generating set for <span class="SimpleMath">G</span>, and <code class="code">data.images</code> a list of the non-empty outputs of <code class="code">IdempotentEndomorphismsWithImage(genG,R)</code> obtained by iterating over all subgroups of <span class="SimpleMath">G</span>.</p>

<p>The operation <code class="code">IdempotentEndomorphisms(G)</code> returns the list of these mappings obtained using <code class="code">IdempotentEndomorphismsData(G)</code>. The first of these is the zero map, the second is the identity.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens := [ (1,2,3,4), (1,2)(3,4) ];; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d8 := Group( gens );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetName( d8, "d8" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2 := Subgroup( d8, [ (2,4) ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdempotentEndomorphismsWithImage( gens, c2 );</span>
[ [ (), (2,4) ], [ (2,4), () ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdempotentEndomorphismsData( d8 );</span>
rec( gens := [ (1,2,3,4), (1,2)(3,4) ], 
  images := [ [ [ (), () ] ], [ [ (), (2,4) ], [ (2,4), () ] ], 
      [ [ (), (1,3) ], [ (1,3), () ] ], 
      [ [ (), (1,2)(3,4) ], [ (1,2)(3,4), (1,2)(3,4) ] ], 
      [ [ (), (1,4)(2,3) ], [ (1,4)(2,3), (1,4)(2,3) ] ], 
      [ [ (1,2,3,4), (1,2)(3,4) ] ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( last.images, L -&gt; Length(L) );</span>
[ 1, 2, 2, 2, 2, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdempotentEndomorphisms( d8 );               </span>
[ [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (), () ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (), (2,4) ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (2,4), () ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (), (1,3) ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (1,3), () ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (), (1,2)(3,4) ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (1,2)(3,4), (1,2)(3,4) ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (), (1,4)(2,3) ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (1,4)(2,3), (1,4)(2,3) ], 
  [ (1,2,3,4), (1,2)(3,4) ] -&gt; [ (1,2,3,4), (1,2)(3,4) ] ]

</pre></div>

<p>The quaternion group <code class="code">q8</code> is an example of a group with a tail: there is only one subgroup in the lattice which covers the identity subgroup. The only idempotent isomorphisms of such groups are the identity mapping and the zero mapping because the only pairs <span class="SimpleMath">N,R</span> are the whole group and the identity subgroup.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">q8 := QuaternionGroup( 8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdempotentEndomorphisms( q8 );</span>
[ [ x, y ] -&gt; [ &lt;identity&gt; of ..., &lt;identity&gt; of ... ], [ x, y ] -&gt; [ x, y ] ]

</pre></div>

<p><a id="X81FA9E6C7F3B9238" name="X81FA9E6C7F3B9238"></a></p>

<h5>5.3-5 DirectProductOfFunctions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DirectProductOfFunctions</code>( <var class="Arg">G</var>, <var class="Arg">H</var>, <var class="Arg">f1</var>, <var class="Arg">f2</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Given group homomorphisms <span class="SimpleMath">f_1 : G_1 -&gt; G_2</span> and <span class="SimpleMath">f_2 : H_1 -&gt; H_2</span>, this operation return the product homomorphism <span class="SimpleMath">f_1 × f_2 : G_1 × G_2 -&gt; H_1 × H_2</span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c4 := Group( (1,2,3,4) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2 := Group( (5,6) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f1 := GroupHomomorphismByImages( c4, c2, [(1,2,3,4)], [(5,6)] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c3 := Group( (1,2,3) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c6 := Group( (1,2,3,4,5,6) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f2 := GroupHomomorphismByImages( c3, c6, [(1,2,3)], [(1,3,5)(2,4,6)] );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c4c3 := DirectProduct( c4, c3 ); </span>
Group([ (1,2,3,4), (5,6,7) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c2c6 := DirectProduct( c2, c6 ); </span>
Group([ (1,2), (3,4,5,6,7,8) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := DirectProductOfFunctions( c4c3, c2c6, f1, f2 ); </span>
[ (1,2,3,4), (5,6,7) ] -&gt; [ (1,2), (3,5,7)(4,6,8) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageElm( f, (1,4,3,2)(5,7,6) ); </span>
(1,2)(3,7,5)(4,8,6)

</pre></div>

<p><a id="X7CB2D5F27F4182AF" name="X7CB2D5F27F4182AF"></a></p>

<h5>5.3-6 DirectProductOfAutomorphismGroups</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DirectProductOfAutomorphismGroups</code>( <var class="Arg">A1</var>, <var class="Arg">A2</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <span class="SimpleMath">A_1,A_2</span> be groups of automorphism of groups <span class="SimpleMath">G_1,G_2</span> respectively. The output of this function is a group <span class="SimpleMath">A_1 × A_2</span> of automorphisms of <span class="SimpleMath">G_1 × G_2</span>.</p>


<div class="example"><pre>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c9 := Group( (1,2,3,4,5,6,7,8,9) );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ac9 := AutomorphismGroup( c9 );; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">q8 := QuaternionGroup( IsPermGroup, 8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">aq8 := AutomorphismGroup( q8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A := DirectProductOfAutomorphismGroups( ac9, aq8 );</span>
&lt;group with 5 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">genA := GeneratorsOfGroup( A );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Source( genA[1] );</span>
Group([ (1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)
(14,15,16,17) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a := genA[1]*genA[5];  </span>
[ (1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)(14,15,16,17) 
 ] -&gt; [ (1,3,5,7,9,2,4,6,8), (10,16,12,14)(11,15,13,17), 
  (10,11,12,13)(14,15,16,17) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageElm( a, (1,9,8,7,6,5,4,3,2)(10,14,12,16)(11,17,13,15) );</span>
(1,8,6,4,2,9,7,5,3)(10,16,12,14)(11,15,13,17)

</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap4.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap6.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>