1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (Utils) - Chapter 5: Groups and homomorphisms</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap5" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap4.html">[Previous Chapter]</a> <a href="chap6.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap5_mj.html">[MathJax on]</a></p>
<p><a id="X8171DAF2833FF728" name="X8171DAF2833FF728"></a></p>
<div class="ChapSects"><a href="chap5.html#X8171DAF2833FF728">5 <span class="Heading">Groups and homomorphisms</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7E21E6D285E6B12C">5.1 <span class="Heading">Functions for groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80761843831B468E">5.1-1 Comm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X803A050C7A183CCC">5.1-2 IsCommuting</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X87A8F01286548037">5.1-3 ListOfPowers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X820B71307E41BEE5">5.1-4 GeneratorsAndInverses</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X84CF95227F9D562F">5.1-5 UpperFittingSeries</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7FE4848B7DE6B3FD">5.2 <span class="Heading">Left Cosets for Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8340B4537F17DCD3">5.2-1 LeftCoset</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X793E48267EF5FD77">5.2-2 <span class="Heading">Inverse</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X80A512877F515DE7">5.3 <span class="Heading">Functions for group homomorphisms</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X80C9A0B583FEA7B9">5.3-1 EpimorphismByGenerators</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7C705F2A79F8E43C">5.3-2 Pullback</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X78DD2C617B992BE2">5.3-3 CentralProduct</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X801038CB808FC956">5.3-4 IdempotentEndomorphisms</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X81FA9E6C7F3B9238">5.3-5 DirectProductOfFunctions</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7CB2D5F27F4182AF">5.3-6 DirectProductOfAutomorphismGroups</a></span>
</div></div>
</div>
<h3>5 <span class="Heading">Groups and homomorphisms</span></h3>
<p><a id="X7E21E6D285E6B12C" name="X7E21E6D285E6B12C"></a></p>
<h4>5.1 <span class="Heading">Functions for groups</span></h4>
<p><a id="X80761843831B468E" name="X80761843831B468E"></a></p>
<h5>5.1-1 Comm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Comm</code>( <var class="Arg">L</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This method has been transferred from package <strong class="pkg">ResClasses</strong>.</p>
<p>It provides a method for <code class="code">Comm</code> when the argument is a list (enclosed in square brackets), and calls the function <code class="code">LeftNormedComm</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Comm( [ (1,2), (2,3) ] );</span>
(1,2,3)
<span class="GAPprompt">gap></span> <span class="GAPinput">Comm( [(1,2),(2,3),(3,4),(4,5),(5,6)] );</span>
(1,5,6)
<span class="GAPprompt">gap></span> <span class="GAPinput">Comm(Comm(Comm(Comm((1,2),(2,3)),(3,4)),(4,5)),(5,6)); ## the same</span>
(1,5,6)
</pre></div>
<p><a id="X803A050C7A183CCC" name="X803A050C7A183CCC"></a></p>
<h5>5.1-2 IsCommuting</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsCommuting</code>( <var class="Arg">a</var>, <var class="Arg">b</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">ResClasses</strong>.</p>
<p>It tests whether two elements in a group commute.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">D12 := DihedralGroup( 12 );</span>
<pc group of size 12 with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetName( D12, "D12" ); </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a := D12.1;; b := D12.2;; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsCommuting( a, b );</span>
false
</pre></div>
<p><a id="X87A8F01286548037" name="X87A8F01286548037"></a></p>
<h5>5.1-3 ListOfPowers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ListOfPowers</code>( <var class="Arg">g</var>, <var class="Arg">exp</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>The operation <code class="code">ListOfPowers(g,exp)</code> returns the list <span class="SimpleMath">[g,g^2,...,g^exp]</span> of powers of the element <span class="SimpleMath">g</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ListOfPowers( 2, 20 );</span>
[ 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288, 1048576 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ListOfPowers( (1,2,3)(4,5), 12 );</span>
[ (1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), (),
(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), () ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ListOfPowers( D12.2, 6 );</span>
[ f2, f3, f2*f3, f3^2, f2*f3^2, <identity> of ... ]
</pre></div>
<p><a id="X820B71307E41BEE5" name="X820B71307E41BEE5"></a></p>
<h5>5.1-4 GeneratorsAndInverses</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GeneratorsAndInverses</code>( <var class="Arg">G</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>This operation returns a list containing the generators of <span class="SimpleMath">G</span> followed by the inverses of these generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsAndInverses( D12 );</span>
[ f1, f2, f3, f1, f2*f3^2, f3^2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GeneratorsAndInverses( SymmetricGroup(5) ); </span>
[ (1,2,3,4,5), (1,2), (1,5,4,3,2), (1,2) ]
</pre></div>
<p><a id="X84CF95227F9D562F" name="X84CF95227F9D562F"></a></p>
<h5>5.1-5 UpperFittingSeries</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ UpperFittingSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LowerFittingSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FittingLength</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>These three functions have been transferred from package <strong class="pkg">ResClasses</strong>.</p>
<p>The upper and lower Fitting series and the Fitting length of a solvable group are described here: <span class="URL"><a href="https://en.wikipedia.org/wiki/Fitting_length">https://en.wikipedia.org/wiki/Fitting_length</a></span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperFittingSeries( D12 ); LowerFittingSeries( D12 );</span>
[ Group([ ]), Group([ f3, f2*f3 ]), Group([ f1, f3, f2*f3 ]) ]
[ D12, Group([ f3 ]), Group([ ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">FittingLength( D12 );</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">S4 := SymmetricGroup( 4 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">UpperFittingSeries( S4 );</span>
[ Group(()), Group([ (1,2)(3,4), (1,4)(2,3) ]), Group([ (1,2)(3,4), (1,4)
(2,3), (2,4,3) ]), Group([ (3,4), (2,3,4), (1,2)(3,4) ]) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( last, StructureDescription );</span>
[ "1", "C2 x C2", "A4", "S4" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">LowerFittingSeries( S4 );</span>
[ Sym( [ 1 .. 4 ] ), Alt( [ 1 .. 4 ] ), Group([ (1,4)(2,3), (1,3)
(2,4) ]), Group(()) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List( last, StructureDescription );</span>
[ "S4", "A4", "C2 x C2", "1" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">FittingLength( S4);</span>
3
</pre></div>
<p><a id="X7FE4848B7DE6B3FD" name="X7FE4848B7DE6B3FD"></a></p>
<h4>5.2 <span class="Heading">Left Cosets for Groups</span></h4>
<p><a id="X8340B4537F17DCD3" name="X8340B4537F17DCD3"></a></p>
<h5>5.2-1 LeftCoset</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ LeftCoset</code>( <var class="Arg">g</var>, <var class="Arg">U</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Since <strong class="pkg">GAP</strong> uses right actions by default, the library contains the operation <code class="code">RightCoset(U,g)</code> for constructing the right coset <span class="SimpleMath">Ug</span> of a subgroup <span class="SimpleMath">U ≤ G</span> and an element <span class="SimpleMath">g ∈ G</span>. It has been noted in the reference manual that, by inverting all the elements in <span class="SimpleMath">Ug</span>, the left coset <span class="SimpleMath">g^-1U</span> is obtained.</p>
<p>Just for the sake of completeness, from August 2022 this package provides the operation <code class="code">LeftCoset(g,U)</code> for constructing the left coset <span class="SimpleMath">gU</span>. Users are strongly recommended to continue to use <code class="code">RightCoset</code> for all serious calculations, since left cosets have a much simpler implementation and do not behave exactly like right cosets.</p>
<p>The methods for left cosets which are provided generally work by converting <span class="SimpleMath">gU</span> to <span class="SimpleMath">Ug^-1</span>; applying the equivalent method for right cosets; and, if necessary, converting back again to left cosets.</p>
<p><span class="SimpleMath">G</span> acts on left cosets by <code class="code">OnLeftInverse</code>: <span class="SimpleMath">(gU)^g_0 = g_0^-1*(gU) = (g_0^-1g)U</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">a4 := Group( (1,2,3), (2,3,4) );; SetName( a4, "a4" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">k4 := Group( (1,2)(3,4), (1,3)(2,4) );; SetName( k4, "k4" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rc := RightCosets( a4, k4 );</span>
[ RightCoset(k4,()), RightCoset(k4,(2,3,4)), RightCoset(k4,(2,4,3)) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">lc := LeftCosets( a4, k4 );</span>
[ LeftCoset((),k4), LeftCoset((2,4,3),k4), LeftCoset((2,3,4),k4) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AsSet( lc[2] );</span>
[ (2,4,3), (1,2,3), (1,3,4), (1,4,2) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">LeftCoset( (1,4,2), k4 ) = lc[2];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Representative( lc[2] );</span>
(2,4,3)
<span class="GAPprompt">gap></span> <span class="GAPinput">ActingDomain( lc[2] );</span>
k4
<span class="GAPprompt">gap></span> <span class="GAPinput">(1,4,3) in lc[3];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">(1,2,3)*lc[2] = lc[3];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">lc[2]^(1,3,2) = lc[3];</span>
true
</pre></div>
<p><a id="X793E48267EF5FD77" name="X793E48267EF5FD77"></a></p>
<h5>5.2-2 <span class="Heading">Inverse</span></h5>
<p>The inverse of the left coset <span class="SimpleMath">gU</span> is the right coset <span class="SimpleMath">Ug^-1</span>, and conversely. This is an abuse of the attribute <code class="code">Inverse</code>, since the standard requirement, that <span class="SimpleMath">x*x^-1</span> is an identity, does not hold.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Inverse( rc[3] ) = lc[3];</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Inverse( lc[2] ) = rc[2];</span>
true
</pre></div>
<p><a id="X80A512877F515DE7" name="X80A512877F515DE7"></a></p>
<h4>5.3 <span class="Heading">Functions for group homomorphisms</span></h4>
<p><a id="X80C9A0B583FEA7B9" name="X80C9A0B583FEA7B9"></a></p>
<h5>5.3-1 EpimorphismByGenerators</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EpimorphismByGenerators</code>( <var class="Arg">G</var>, <var class="Arg">H</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>This function has been transferred from package <strong class="pkg">RCWA</strong>.</p>
<p>It constructs a group homomorphism which maps the generators of <span class="SimpleMath">G</span> to those of <span class="SimpleMath">H</span>. Its intended use is when <span class="SimpleMath">G</span> is a free group, and a warning is printed when this is not the case. Note that anything may happen if the resulting map is not a homomorphism!</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G := Group( (1,2,3), (3,4,5), (5,6,7), (7,8,9) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi := EpimorphismByGenerators( FreeGroup("a","b","c","d"), G );</span>
[ a, b, c, d ] -> [ (1,2,3), (3,4,5), (5,6,7), (7,8,9) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PreImagesRepresentativeNC( phi, (1,2,3,4,5,6,7,8,9) );</span>
d*c*b*a
<span class="GAPprompt">gap></span> <span class="GAPinput">a := G.1;; b := G.2;; c := G.3;; d := G.4;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">d*c*b*a;</span>
(1,2,3,4,5,6,7,8,9)
<span class="GAPprompt">gap></span> <span class="GAPinput">## note that it is easy to produce nonsense: </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">epi := EpimorphismByGenerators( Group((1,2,3)), Group((8,9)) );</span>
Warning: calling GroupHomomorphismByImagesNC without checks
[ (1,2,3) ] -> [ (8,9) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsGroupHomomorphism( epi );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Image( epi, (1,2,3) ); </span>
()
<span class="GAPprompt">gap></span> <span class="GAPinput">Image( epi, (1,3,2) );</span>
(8,9)
</pre></div>
<p><a id="X7C705F2A79F8E43C" name="X7C705F2A79F8E43C"></a></p>
<h5>5.3-2 Pullback</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Pullback</code>( <var class="Arg">hom1</var>, <var class="Arg">hom2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PullbackInfo</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>If <span class="SimpleMath">ϕ_1 : G_1 -> H</span> and <span class="SimpleMath">ϕ_2 : G_2 -> H</span> are two group homomorphisms with the same range, then their <em>pullback</em> is the subgroup of <span class="SimpleMath">G_1 × G_2</span> consisting of those elements <span class="SimpleMath">(g_1,g_2)</span> such that <span class="SimpleMath">ϕ_1 g_1 = ϕ_2 g_2</span>.</p>
<p>The attribute <code class="code">PullbackInfo</code> of a pullback group <code class="code">P</code> is similar to <code class="code">DirectProductInfo</code> for a direct product of groups. Its value is a record with the following components:</p>
<dl>
<dt><strong class="Mark"><code class="code">directProduct</code></strong></dt>
<dd><p>the direct product <span class="SimpleMath">G_1 × G_2</span>, and</p>
</dd>
<dt><strong class="Mark"><code class="code">projections</code></strong></dt>
<dd><p>a list with the two projections onto <span class="SimpleMath">G_1</span> and <span class="SimpleMath">G_2</span>.</p>
</dd>
</dl>
<p>There are no embeddings in this record, but it is possible to use the embeddings into the direct product, see <code class="func">Embedding</code> (<a href="../../../doc/ref/chap32.html#X86452F8587CBAEA0"><span class="RefLink">Reference: Embedding</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">s4 := Group( (1,2),(2,3),(3,4) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">s3 := Group( (5,6),(6,7) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c3 := Subgroup( s3, [ (5,6,7) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f := GroupHomomorphismByImages( s4, s3, </span>
<span class="GAPprompt">></span> <span class="GAPinput"> [(1,2),(2,3),(3,4)], [(5,6),(6,7),(5,6)] );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">i := GroupHomomorphismByImages( c3, s3, [(5,6,7)], [(5,6,7)] );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Pfi := Pullback( f, i );</span>
Group([ (2,3,4)(5,7,6), (1,2)(3,4) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription( Pfi );</span>
"A4"
<span class="GAPprompt">gap></span> <span class="GAPinput">info := PullbackInfo( Pfi );</span>
rec( directProduct := Group([ (1,2), (2,3), (3,4), (5,6,7) ]),
projections := [ [ (2,3,4)(5,7,6), (1,2)(3,4) ] -> [ (2,3,4), (1,2)(3,4) ],
[ (2,3,4)(5,7,6), (1,2)(3,4) ] -> [ (5,7,6), () ] ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">g := (1,2,3)(5,6,7);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ImageElm( info!.projections[1], g );</span>
(1,2,3)
<span class="GAPprompt">gap></span> <span class="GAPinput">ImageElm( info!.projections[2], g );</span>
(5,6,7)
<span class="GAPprompt">gap></span> <span class="GAPinput">dp := info!.directProduct;; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a := ImageElm( Embedding( dp, 1 ), (1,4,3) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b := ImageElm( Embedding( dp, 2 ), (5,7,6) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a*b in Pfi;</span>
true
</pre></div>
<p><a id="X78DD2C617B992BE2" name="X78DD2C617B992BE2"></a></p>
<h5>5.3-3 CentralProduct</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CentralProduct</code>( <var class="Arg">G1</var>, <var class="Arg">G2</var>, <var class="Arg">Z1</var>, <var class="Arg">Phi</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CentralProductInfo</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<p>This function was added by Thomas Breuer, following discussions with Hongyi Zhao (see <span class="URL"><a href="https://github.com/gap-packages/hap/issues/73">https://github.com/gap-packages/hap/issues/73</a></span>).</p>
<p>Let <var class="Arg">G1</var> and <var class="Arg">G2</var> be two groups, <var class="Arg">Z1</var> be a central subgroup of <var class="Arg">G1</var>, and <var class="Arg">Phi</var> be an isomorphism from <var class="Arg">Z1</var> to a central subgroup of <var class="Arg">G2</var>. The <em>central product</em> defined by these arguments is the factor group of the direct product of <var class="Arg">G1</var> and <var class="Arg">G2</var> by the central subgroup <span class="SimpleMath">{ (z, (<var class="Arg">Phi</var>(z))^-1) : z ∈ <var class="Arg">Z1</var> }</span>.</p>
<p>The attribute <code class="func">CentralProductInfo</code> of a group <span class="SimpleMath">G</span> that has been created by <code class="func">CentralProduct</code> is similar to <code class="func">PullbackInfo</code> (<a href="chap5.html#X7C705F2A79F8E43C"><span class="RefLink">5.3-2</span></a>) for pullback groups. Its value is a record with the following components.</p>
<dl>
<dt><strong class="Mark"><code class="code">projection</code></strong></dt>
<dd><p>the epimorphism from the direct product of <var class="Arg">G1</var> and <var class="Arg">G2</var> to <span class="SimpleMath">G</span>, and</p>
</dd>
<dt><strong class="Mark"><code class="code">phi</code></strong></dt>
<dd><p>the map <var class="Arg">Phi</var>.</p>
</dd>
</dl>
<p>Note that one can access the direct product as the <code class="func">Source</code> (<a href="../../../doc/ref/chap32.html#X7DE8173F80E07AB1"><span class="RefLink">Reference: Source</span></a>) value of the <code class="code">projection</code> map, and one can access <var class="Arg">G1</var> and <var class="Arg">G2</var> as the two embeddings of this direct product, see <code class="func">Embedding</code> (<a href="../../../doc/ref/chap32.html#X86452F8587CBAEA0"><span class="RefLink">Reference: Embedding</span></a>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g1 := DihedralGroup( 8 );</span>
<pc group of size 8 with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">c1 := Centre( g1 );</span>
Group([ f3 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">cp1 := CentralProduct( g1, g1, c1, IdentityMapping( c1 ) );</span>
Group([ f1, f2, f5, f3, f4, f5 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">IdGroup( cp1 ) = IdGroup( ExtraspecialGroup( 2^5, "+" ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">g2 := QuaternionGroup( 8 );</span>
<pc group of size 8 with 3 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2 := Centre( g2 );</span>
Group([ y2 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">cp2 := CentralProduct( g2, g2, c2, IdentityMapping( c2 ) );</span>
Group([ f1, f2, f5, f3, f4, f5 ])
<span class="GAPprompt">gap></span> <span class="GAPinput">IdGroup( cp2 ) = IdGroup( ExtraspecialGroup( 2^5, "+" ) );</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">info2 := CentralProductInfo( cp2 );</span>
rec( phi := IdentityMapping( Group([ y2 ]) ),
projection := [ f1, f2, f3, f4, f5, f6 ] -> [ f1, f2, f5, f3, f4, f5 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">Source( Embedding( Source( info2.projection ), 1 ) ) = g2;</span>
true
</pre></div>
<p><a id="X801038CB808FC956" name="X801038CB808FC956"></a></p>
<h5>5.3-4 IdempotentEndomorphisms</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IdempotentEndomorphisms</code>( <var class="Arg">G</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IdempotentEndomorphismsData</code>( <var class="Arg">G</var> )</td><td class="tdright">( attribute )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IdempotentEndomorphismsWithImage</code>( <var class="Arg">genG</var>, <var class="Arg">R</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>An endomorphism <span class="SimpleMath">f : G -> G</span> is idempotent if <span class="SimpleMath">f^2=f</span>. It has an image <span class="SimpleMath">R leqslant G</span>; is the identity map when restricted to <span class="SimpleMath">R</span>; and has a kernel <span class="SimpleMath">N</span> which has trivial intersection with <span class="SimpleMath">R</span> and has size <span class="SimpleMath">|G|/|R|</span>.</p>
<p>The operation <code class="code">IdempotentEndomorphismsWithImage(genG,R)</code> returns a list of the images of the generating set <code class="code">genG</code> of a group <span class="SimpleMath">G</span> under the idempotent endomorphisms with image <span class="SimpleMath">R</span>.</p>
<p>The attribute <code class="code">IdempotentEndomorphismsData(G)</code> returns a record <code class="code">data</code> with fields <code class="code">data.gens</code>, a fixed generating set for <span class="SimpleMath">G</span>, and <code class="code">data.images</code> a list of the non-empty outputs of <code class="code">IdempotentEndomorphismsWithImage(genG,R)</code> obtained by iterating over all subgroups of <span class="SimpleMath">G</span>.</p>
<p>The operation <code class="code">IdempotentEndomorphisms(G)</code> returns the list of these mappings obtained using <code class="code">IdempotentEndomorphismsData(G)</code>. The first of these is the zero map, the second is the identity.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens := [ (1,2,3,4), (1,2)(3,4) ];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">d8 := Group( gens );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetName( d8, "d8" );</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2 := Subgroup( d8, [ (2,4) ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IdempotentEndomorphismsWithImage( gens, c2 );</span>
[ [ (), (2,4) ], [ (2,4), () ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IdempotentEndomorphismsData( d8 );</span>
rec( gens := [ (1,2,3,4), (1,2)(3,4) ],
images := [ [ [ (), () ] ], [ [ (), (2,4) ], [ (2,4), () ] ],
[ [ (), (1,3) ], [ (1,3), () ] ],
[ [ (), (1,2)(3,4) ], [ (1,2)(3,4), (1,2)(3,4) ] ],
[ [ (), (1,4)(2,3) ], [ (1,4)(2,3), (1,4)(2,3) ] ],
[ [ (1,2,3,4), (1,2)(3,4) ] ] ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">List( last.images, L -> Length(L) );</span>
[ 1, 2, 2, 2, 2, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IdempotentEndomorphisms( d8 ); </span>
[ [ (1,2,3,4), (1,2)(3,4) ] -> [ (), () ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (2,4) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (2,4), () ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (1,3) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,3), () ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (1,2)(3,4) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,2)(3,4), (1,2)(3,4) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (1,4)(2,3) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,4)(2,3), (1,4)(2,3) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,2,3,4), (1,2)(3,4) ] ]
</pre></div>
<p>The quaternion group <code class="code">q8</code> is an example of a group with a tail: there is only one subgroup in the lattice which covers the identity subgroup. The only idempotent isomorphisms of such groups are the identity mapping and the zero mapping because the only pairs <span class="SimpleMath">N,R</span> are the whole group and the identity subgroup.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">q8 := QuaternionGroup( 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IdempotentEndomorphisms( q8 );</span>
[ [ x, y ] -> [ <identity> of ..., <identity> of ... ], [ x, y ] -> [ x, y ] ]
</pre></div>
<p><a id="X81FA9E6C7F3B9238" name="X81FA9E6C7F3B9238"></a></p>
<h5>5.3-5 DirectProductOfFunctions</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectProductOfFunctions</code>( <var class="Arg">G</var>, <var class="Arg">H</var>, <var class="Arg">f1</var>, <var class="Arg">f2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Given group homomorphisms <span class="SimpleMath">f_1 : G_1 -> G_2</span> and <span class="SimpleMath">f_2 : H_1 -> H_2</span>, this operation return the product homomorphism <span class="SimpleMath">f_1 × f_2 : G_1 × G_2 -> H_1 × H_2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c4 := Group( (1,2,3,4) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c2 := Group( (5,6) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f1 := GroupHomomorphismByImages( c4, c2, [(1,2,3,4)], [(5,6)] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c3 := Group( (1,2,3) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c6 := Group( (1,2,3,4,5,6) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f2 := GroupHomomorphismByImages( c3, c6, [(1,2,3)], [(1,3,5)(2,4,6)] );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c4c3 := DirectProduct( c4, c3 ); </span>
Group([ (1,2,3,4), (5,6,7) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">c2c6 := DirectProduct( c2, c6 ); </span>
Group([ (1,2), (3,4,5,6,7,8) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">f := DirectProductOfFunctions( c4c3, c2c6, f1, f2 ); </span>
[ (1,2,3,4), (5,6,7) ] -> [ (1,2), (3,5,7)(4,6,8) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ImageElm( f, (1,4,3,2)(5,7,6) ); </span>
(1,2)(3,7,5)(4,8,6)
</pre></div>
<p><a id="X7CB2D5F27F4182AF" name="X7CB2D5F27F4182AF"></a></p>
<h5>5.3-6 DirectProductOfAutomorphismGroups</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectProductOfAutomorphismGroups</code>( <var class="Arg">A1</var>, <var class="Arg">A2</var> )</td><td class="tdright">( operation )</td></tr></table></div>
<p>Let <span class="SimpleMath">A_1,A_2</span> be groups of automorphism of groups <span class="SimpleMath">G_1,G_2</span> respectively. The output of this function is a group <span class="SimpleMath">A_1 × A_2</span> of automorphisms of <span class="SimpleMath">G_1 × G_2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">c9 := Group( (1,2,3,4,5,6,7,8,9) );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ac9 := AutomorphismGroup( c9 );; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">q8 := QuaternionGroup( IsPermGroup, 8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">aq8 := AutomorphismGroup( q8 );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A := DirectProductOfAutomorphismGroups( ac9, aq8 );</span>
<group with 5 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">genA := GeneratorsOfGroup( A );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G := Source( genA[1] );</span>
Group([ (1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)
(14,15,16,17) ])
<span class="GAPprompt">gap></span> <span class="GAPinput">a := genA[1]*genA[5]; </span>
[ (1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)(14,15,16,17)
] -> [ (1,3,5,7,9,2,4,6,8), (10,16,12,14)(11,15,13,17),
(10,11,12,13)(14,15,16,17) ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ImageElm( a, (1,9,8,7,6,5,4,3,2)(10,14,12,16)(11,17,13,15) );</span>
(1,8,6,4,2,9,7,5,3)(10,16,12,14)(11,15,13,17)
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap4.html">[Previous Chapter]</a> <a href="chap6.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|