1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
|
% generated by GAPDoc2LaTeX from XML source (Frank Luebeck)
\documentclass[a4paper,11pt]{report}
\usepackage[top=37mm,bottom=37mm,left=27mm,right=27mm]{geometry}
\sloppy
\pagestyle{myheadings}
\usepackage{amssymb}
\usepackage[utf8]{inputenc}
\usepackage{makeidx}
\makeindex
\usepackage{color}
\definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083}
\definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179}
\definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894}
\definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894}
\definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000}
\definecolor{Black}{rgb}{0.0,0.0,0.0}
\definecolor{linkColor}{rgb}{0.0,0.0,0.554}
\definecolor{citeColor}{rgb}{0.0,0.0,0.554}
\definecolor{fileColor}{rgb}{0.0,0.0,0.554}
\definecolor{urlColor}{rgb}{0.0,0.0,0.554}
\definecolor{promptColor}{rgb}{0.0,0.0,0.589}
\definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0}
\definecolor{gapinputColor}{rgb}{0.589,0.0,0.0}
\definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0}
%% for a long time these were red and blue by default,
%% now black, but keep variables to overwrite
\definecolor{FuncColor}{rgb}{0.0,0.0,0.0}
%% strange name because of pdflatex bug:
\definecolor{Chapter }{rgb}{0.0,0.0,0.0}
\definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064}
\usepackage{fancyvrb}
\usepackage{mathptmx,helvet}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage[
pdftex=true,
bookmarks=true,
a4paper=true,
pdftitle={Written with GAPDoc},
pdfcreator={LaTeX with hyperref package / GAPDoc},
colorlinks=true,
backref=page,
breaklinks=true,
linkcolor=linkColor,
citecolor=citeColor,
filecolor=fileColor,
urlcolor=urlColor,
pdfpagemode={UseNone},
]{hyperref}
\newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont}
% write page numbers to a .pnr log file for online help
\newwrite\pagenrlog
\immediate\openout\pagenrlog =\jobname.pnr
\immediate\write\pagenrlog{PAGENRS := [}
\newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}}
%% were never documented, give conflicts with some additional packages
\newcommand{\GAP}{\textsf{GAP}}
%% nicer description environments, allows long labels
\usepackage{enumitem}
\setdescription{style=nextline}
%% depth of toc
\setcounter{tocdepth}{1}
%% command for ColorPrompt style examples
\newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}}
\newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}}
\newcommand{\gapinput}[1]{\color{gapinputColor}{#1}}
\begin{document}
\logpage{[ 0, 0, 0 ]}
\begin{titlepage}
\mbox{}\vfill
\begin{center}{\maintitlesize \textbf{ utils \mbox{}}}\\
\vfill
\hypersetup{pdftitle= utils }
\markright{\scriptsize \mbox{}\hfill utils \hfill\mbox{}}
{\Huge \textbf{ Utility functions in \textsf{GAP} \mbox{}}}\\
\vfill
{\Huge 0.93 \mbox{}}\\[1cm]
{ 13 November 2025 \mbox{}}\\[1cm]
\mbox{}\\[2cm]
{\Large \textbf{ Thomas Breuer\\
\mbox{}}}\\
{\Large \textbf{ Sebastian Gutsche\\
\mbox{}}}\\
{\Large \textbf{ Max Horn\\
\mbox{}}}\\
{\Large \textbf{ Alexander Hulpke\\
\mbox{}}}\\
{\Large \textbf{ Pedro Garc{\a'\i}a\texttt{\symbol{45}}S{\a'a}nchez\\
\mbox{}}}\\
{\Large \textbf{ Christopher Jefferson\\
\mbox{}}}\\
{\Large \textbf{ Stefan Kohl\\
\mbox{}}}\\
{\Large \textbf{ Frank L{\"u}beck\\
\mbox{}}}\\
{\Large \textbf{ Chris Wensley\\
\mbox{}}}\\
\hypersetup{pdfauthor= Thomas Breuer\\
; Sebastian Gutsche\\
; Max Horn\\
; Alexander Hulpke\\
; Pedro Garc{\a'\i}a\texttt{\symbol{45}}S{\a'a}nchez\\
; Christopher Jefferson\\
; Stefan Kohl\\
; Frank L{\"u}beck\\
; Chris Wensley\\
}
\end{center}\vfill
\mbox{}\\
{\mbox{}\\
\small \noindent \textbf{ Thomas Breuer\\
} Email: \href{mailto://sam@math.rwth-aachen.de} {\texttt{sam@math.rwth\texttt{\symbol{45}}aachen.de}}\\
Homepage: \href{https://www.math.rwth-aachen.de/~Thomas.Breuer} {\texttt{https://www.math.rwth\texttt{\symbol{45}}aachen.de/\texttt{\symbol{126}}Thomas.Breuer}}}\\
{\mbox{}\\
\small \noindent \textbf{ Sebastian Gutsche\\
} Email: \href{mailto://gutsche@mathematik.uni-siegen.de} {\texttt{gutsche@mathematik.uni\texttt{\symbol{45}}siegen.de}}\\
Homepage: \href{https://sebasguts.github.io/} {\texttt{https://sebasguts.github.io/}}}\\
{\mbox{}\\
\small \noindent \textbf{ Max Horn\\
} Email: \href{mailto://mhorn@rptu.de} {\texttt{mhorn@rptu.de}}\\
Homepage: \href{https://github.com/mhorn} {\texttt{https://github.com/mhorn}}}\\
{\mbox{}\\
\small \noindent \textbf{ Alexander Hulpke\\
} Email: \href{mailto://hulpke@math.colostate.edu} {\texttt{hulpke@math.colostate.edu}}\\
Homepage: \href{https://www.math.colostate.edu/~hulpke} {\texttt{https://www.math.colostate.edu/\texttt{\symbol{126}}hulpke}}}\\
{\mbox{}\\
\small \noindent \textbf{ Pedro Garc{\a'\i}a\texttt{\symbol{45}}S{\a'a}nchez\\
} Email: \href{mailto://pedro@ugr.es} {\texttt{pedro@ugr.es}}\\
Homepage: \href{http://www.ugr.es/local/pedro} {\texttt{http://www.ugr.es/local/pedro}}}\\
{\mbox{}\\
\small \noindent \textbf{ Christopher Jefferson\\
} Email: \href{mailto://caj21@st-andrews.ac.uk} {\texttt{caj21@st\texttt{\symbol{45}}andrews.ac.uk}}\\
Homepage: \href{https://caj.host.cs.st-andrews.ac.uk/} {\texttt{https://caj.host.cs.st\texttt{\symbol{45}}andrews.ac.uk/}}}\\
{\mbox{}\\
\small \noindent \textbf{ Stefan Kohl\\
} Email: \href{mailto://stefan@mcs.st-and.ac.uk} {\texttt{stefan@mcs.st\texttt{\symbol{45}}and.ac.uk}}\\
Homepage: \href{https://www.gap-system.org/DevelopersPages/StefanKohl/} {\texttt{https://www.gap\texttt{\symbol{45}}system.org/DevelopersPages/StefanKohl/}}}\\
{\mbox{}\\
\small \noindent \textbf{ Frank L{\"u}beck\\
} Email: \href{mailto://Frank.Luebeck@Math.RWTH-Aachen.De} {\texttt{Frank.Luebeck@Math.RWTH\texttt{\symbol{45}}Aachen.De}}\\
Homepage: \href{https://www.math.rwth-aachen.de/~Frank.Luebeck} {\texttt{https://www.math.rwth\texttt{\symbol{45}}aachen.de/\texttt{\symbol{126}}Frank.Luebeck}}}\\
{\mbox{}\\
\small \noindent \textbf{ Chris Wensley\\
} Email: \href{mailto://cdwensley.maths@btinternet.com} {\texttt{cdwensley.maths@btinternet.com}}\\
Homepage: \href{https://github.com/cdwensley} {\texttt{https://github.com/cdwensley}}}\\
\end{titlepage}
\newpage\setcounter{page}{2}
{\small
\section*{Abstract}
\logpage{[ 0, 0, 1 ]}
The \textsf{Utils} package provides a space for utility functions in a variety of \textsf{GAP} packages to be collected together into a single package. In this way it is
hoped that they will become more visible to package authors.
Any package author who transfers a function to \textsf{Utils} will become an author of \textsf{Utils}.
If deemed appropriate, functions may also be transferred from the main
library.
Bug reports, suggestions and comments are, of course, welcome. Please contact
the last author at \href{mailto://cdwensley.maths@btinternet.com} {\texttt{cdwensley.maths@btinternet.com}} or submit an issue at the GitHub repository \href{https://github.com/gap-packages/utils/issues/} {\texttt{https://github.com/gap\texttt{\symbol{45}}packages/utils/issues/}}. \mbox{}}\\[1cm]
{\small
\section*{Copyright}
\logpage{[ 0, 0, 2 ]}
{\copyright} 2015\texttt{\symbol{45}}2025, The GAP Group.
The \textsf{Utils} package is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version. \mbox{}}\\[1cm]
{\small
\section*{Acknowledgements}
\logpage{[ 0, 0, 3 ]}
This documentation was prepared using the \textsf{GAPDoc} \cite{GAPDoc} and \textsf{AutoDoc} \cite{AutoDoc} packages.
The procedure used to produce new releases uses the package \textsf{GitHubPagesForGAP} \cite{GitHubPagesForGAP} and the package \textsf{ReleaseTools}.
\mbox{}}\\[1cm]
\newpage
\def\contentsname{Contents\logpage{[ 0, 0, 4 ]}}
\tableofcontents
\newpage
\chapter{\textcolor{Chapter }{Introduction}}\label{chap-intro}
\logpage{[ 1, 0, 0 ]}
\hyperdef{L}{X7DFB63A97E67C0A1}{}
{
The \textsf{Utils} package provides a space for utility functions from a variety of \textsf{GAP} packages to be collected together into a single package. In this way it is
hoped that they will become more visible to other package authors. This
package was first distributed as part of the \textsf{GAP} 4.8.2 distribution.
The package is loaded with the command
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@LoadPackage( "utils" ); |
\end{Verbatim}
Functions have been transferred from the following packages:
\begin{itemize}
\item Conversion of a \textsf{GAP} group to a ${\sf Magma}$ output string, taken from various sources including \texttt{other.gi} in the main library.
\end{itemize}
Transfer is complete (for now) for functions from the following packages:
\begin{itemize}
\item \textsf{AutoDoc} \cite{AutoDoc} (with function names changed);
\item \textsf{ResClasses} \cite{ResClasses};
\item \textsf{RCWA} \cite{RCWA};
\item \textsf{XMod} \cite{XMod}.
\end{itemize}
The package may be obtained either as a compressed \texttt{.tar} file or as a \texttt{.zip} file, \texttt{utils\texttt{\symbol{45}}version{\textunderscore}number.tar.gz}, by ftp from one of the following sites:
\begin{itemize}
\item the \textsf{Utils} GitHub release site: \href{https://gap-packages.github.io/utils/} {\texttt{https://gap\texttt{\symbol{45}}packages.github.io/utils/}}.
\item any \textsf{GAP} archive, e.g. \href{https://www.gap-system.org/Packages/packages.html} {\texttt{https://www.gap\texttt{\symbol{45}}system.org/Packages/packages.html}};
\end{itemize}
\index{GitHub repository} The package also has a GitHub repository at: \href{https://github.com/gap-packages/utils} {\texttt{https://github.com/gap\texttt{\symbol{45}}packages/utils}}.
Once the package is loaded, the manual \texttt{doc/manual.pdf} can be found in the documentation folder. The \texttt{html} versions, with or without ${\sf MathJax}$, may be rebuilt as follows:
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ReadPackage( "utils", "makedoc.g" ); |
\end{Verbatim}
It is possible to check that the package has been installed correctly by
running the test files (which terminates the \textsf{GAP} session):
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ReadPackage( "utils", "tst/testall.g" );|
Architecture: . . . . .
testing: . . . . .
. . .
#I No errors detected while testing
\end{Verbatim}
Note that functions listed in this manual that are currently in the process of
being transferred are only read from the source package \textsf{Home} (say), and so can only be used if \textsf{Home} has already been loaded. There are no such functions in transition at present.
\section{\textcolor{Chapter }{Information for package authors}}\label{sect-author-info}
\logpage{[ 1, 1, 0 ]}
\hyperdef{L}{X8508AD637B79CEE8}{}
{
A function (or collection of functions) is suitable for transfer from a
package \textsf{Home} to \textsf{Utils} if the following conditions are satisfied.
\begin{itemize}
\item The function is sufficiently non\texttt{\symbol{45}}specialised so that it
might be of use to other authors.
\item The function does not depend on the remaining functions in \textsf{Home}
\item The function does not do what can already be done with a \textsf{GAP} library function.
\item Documentation of the function and test examples are available.
\item When there is more than one active author of \textsf{Home}, they should all be aware (and content) that the transfer is taking place.
\end{itemize}
Authors of packages may be reluctant to let go of their utility functions. The
following principles may help to reassure them. (Suggestions for more items
here are welcome.)
\begin{itemize}
\item A function that has been transferred to \textsf{Utils} will not be changed without the approval of the original author.
\item The current package maintainer has every intention of continuing to maintain \textsf{Utils}. In the event that this proves impossible, the \textsf{GAP} development team will surely find someone to take over.
\item Function names will not be changed unless specifically requested by \textsf{Home}'s author(s) or unless they have the form \texttt{HOME{\textunderscore}FunctionName}.
\item In order to speed up the transfer process, only functions from one package
will be in transition at any given time. Hopefully a week or two will suffice
for most packages.
\item Any package author who transfers a function to \textsf{Utils} will become an author of \textsf{Utils}. (In truth, \textsf{Utils} does not have \emph{authors}, just a large number of \emph{contributors}.)
\end{itemize}
The process for transferring utility functions from \textsf{Home} to \textsf{Utils} is described in Chapter \ref{chap-transfer}. }
}
\chapter{\textcolor{Chapter }{Printing Lists and Iterators}}\label{chap-print}
\logpage{[ 2, 0, 0 ]}
\hyperdef{L}{X83686EE47E4D4F66}{}
{
\section{\textcolor{Chapter }{Printing selected items}}\label{sec-print-select}
\logpage{[ 2, 1, 0 ]}
\hyperdef{L}{X7F6817927F86240F}{}
{
The functions described here print lists or objects with an iterator with one
item per line, either the whole list/iterator or certain subsets:
\begin{itemize}
\item by giving a list of positions of items to be printed, or
\item by specifying a first item and then a regular step.
\end{itemize}
\subsection{\textcolor{Chapter }{PrintSelection (for a list of positions)}}
\logpage{[ 2, 1, 1 ]}\nobreak
\hyperdef{L}{X784638AC84D49870}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PrintSelection({\mdseries\slshape obj, list})\index{PrintSelection@\texttt{PrintSelection}!for a list of positions}
\label{PrintSelection:for a list of positions}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PrintSelection({\mdseries\slshape obj, first, step[, last]})\index{PrintSelection@\texttt{PrintSelection}!for a first item and a step}
\label{PrintSelection:for a first item and a step}
}\hfill{\scriptsize (function)}}\\
This function, given three (or four) parameters, calls operations \texttt{PrintSelectionFromList} or \texttt{PrintSelectionFromIterator} which prints the \emph{first} item specified, and then the item at every \emph{step}. The fourth parameter is essential when the object being printed is infinite.
Alternatively, given two parameters, with the second parameter a list \texttt{L} of positive integers, only the items at positions in \texttt{L} are printed.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L := List( [1..20], n -> n^5 );;|
!gapprompt@gap>| !gapinput@PrintSelection( L, [18..20] );|
18 : 1889568
19 : 2476099
20 : 3200000
!gapprompt@gap>| !gapinput@PrintSelection( L, 2, 9 ); |
2 : 32
11 : 161051
20 : 3200000
!gapprompt@gap>| !gapinput@PrintSelection( L, 2, 3, 11 );|
2 : 32
5 : 3125
8 : 32768
11 : 161051
!gapprompt@gap>| !gapinput@s5 := SymmetricGroup( 5 );;|
!gapprompt@gap>| !gapinput@PrintSelection( s5, [30,31,100,101] );|
30 : (1,5)(3,4)
31 : (1,5,2)
100 : (1,4,3)
101 : (1,4)(3,5)
!gapprompt@gap>| !gapinput@PrintSelection( s5, 1, 30 );|
1 : ()
31 : (1,5,2)
61 : (1,2,3)
91 : (1,3,5,2,4)
!gapprompt@gap>| !gapinput@PrintSelection( s5, 9, 11, 43 );|
9 : (2,5,3)
20 : (2,4)
31 : (1,5,2)
42 : (1,5,2,3,4)
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Lists, Sets and Strings}}\label{chap-lists}
\logpage{[ 3, 0, 0 ]}
\hyperdef{L}{X7AE6EFC086C0EB3C}{}
{
\section{\textcolor{Chapter }{Functions for lists}}\label{sec-lists}
\logpage{[ 3, 1, 0 ]}
\hyperdef{L}{X7C3F1E7D878AAA65}{}
{
\subsection{\textcolor{Chapter }{DifferencesList}}
\logpage{[ 3, 1, 1 ]}\nobreak
\hyperdef{L}{X78B7C92681D2F13C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DifferencesList({\mdseries\slshape L})\index{DifferencesList@\texttt{DifferencesList}}
\label{DifferencesList}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{ResClasses}.
It takes a list $L$ of length $n$ and outputs the list of length $n-1$ containing all the differences $L[i]-L[i-1]$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@List( [1..12], n->n^3 );|
[ 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 ]
!gapprompt@gap>| !gapinput@DifferencesList( last );|
[ 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397 ]
!gapprompt@gap>| !gapinput@DifferencesList( last );|
[ 12, 18, 24, 30, 36, 42, 48, 54, 60, 66 ]
!gapprompt@gap>| !gapinput@DifferencesList( last );|
[ 6, 6, 6, 6, 6, 6, 6, 6, 6 ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{QuotientsList}}
\logpage{[ 3, 1, 2 ]}\nobreak
\hyperdef{L}{X7975371E865B89BC}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{QuotientsList({\mdseries\slshape L})\index{QuotientsList@\texttt{QuotientsList}}
\label{QuotientsList}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FloatQuotientsList({\mdseries\slshape L})\index{FloatQuotientsList@\texttt{FloatQuotientsList}}
\label{FloatQuotientsList}
}\hfill{\scriptsize (function)}}\\
These functions have been transferred from package \textsf{ResClasses}.
They take a list $L$ of length $n$ and output the quotients $L[i]/L[i-1]$ of consecutive entries in $L$. An error is returned if an entry is zero.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@List( [0..10], n -> Factorial(n) );|
[ 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 ]
!gapprompt@gap>| !gapinput@QuotientsList( last );|
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
!gapprompt@gap>| !gapinput@L := [ 1, 3, 5, -1, -3, -5 ];;|
!gapprompt@gap>| !gapinput@QuotientsList( L );|
[ 3, 5/3, -1/5, 3, 5/3 ]
!gapprompt@gap>| !gapinput@FloatQuotientsList( L );|
[ 3., 1.66667, -0.2, 3., 1.66667 ]
!gapprompt@gap>| !gapinput@QuotientsList( [ 2, 1, 0, -1, -2 ] );|
[ 1/2, 0, fail, 2 ]
!gapprompt@gap>| !gapinput@FloatQuotientsList( [1..10] );|
[ 2., 1.5, 1.33333, 1.25, 1.2, 1.16667, 1.14286, 1.125, 1.11111 ]
!gapprompt@gap>| !gapinput@Product( last );|
10.
\end{Verbatim}
\subsection{\textcolor{Chapter }{SearchCycle}}
\logpage{[ 3, 1, 3 ]}\nobreak
\hyperdef{L}{X86096E73858CFABD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{SearchCycle({\mdseries\slshape L})\index{SearchCycle@\texttt{SearchCycle}}
\label{SearchCycle}
}\hfill{\scriptsize (operation)}}\\
This function has been transferred from package \textsf{RCWA}.
\texttt{SearchCycle} is a tool to find likely cycles in lists. What, precisely, a \emph{cycle} is, is deliberately fuzzy here, and may possibly even change. The idea is that
the beginning of the list may be anything, following that the same pattern
needs to be repeated several times in order to be recognized as a cycle.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L := [1..20];; L[1]:=13;; |
!gapprompt@gap>| !gapinput@for i in [1..19] do |
!gapprompt@>| !gapinput@ if IsOddInt(L[i]) then L[i+1]:=3*L[i]+1; else L[i+1]:=L[i]/2; fi;|
!gapprompt@>| !gapinput@ od; |
!gapprompt@gap>| !gapinput@L; |
[ 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4 ]
!gapprompt@gap>| !gapinput@SearchCycle( L ); |
[ 1, 4, 2 ]
!gapprompt@gap>| !gapinput@n := 1;; L := [n];;|
!gapprompt@gap>| !gapinput@for i in [1..100] do n:=(n^2+1) mod 1093; Add(L,n); od;|
!gapprompt@gap>| !gapinput@L; |
[ 1, 2, 5, 26, 677, 363, 610, 481, 739, 715, 795, 272, 754, 157, 604, 848,
1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271,
211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521,
378, 795, 272, 754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272,
754, 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604,
848, 1004, 271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004,
271, 211, 802, 521, 378, 795, 272, 754, 157, 604, 848, 1004 ]
!gapprompt@gap>| !gapinput@C := SearchCycle( L );|
[ 157, 604, 848, 1004, 271, 211, 802, 521, 378, 795, 272, 754 ]
!gapprompt@gap>| !gapinput@P := Positions( L, 157 );|
[ 14, 26, 38, 50, 62, 74, 86, 98 ]
!gapprompt@gap>| !gapinput@Length( C ); DifferencesList( P );|
12
[ 12, 12, 12, 12, 12, 12, 12 ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{RandomCombination}}
\logpage{[ 3, 1, 4 ]}\nobreak
\hyperdef{L}{X7EF06CAD7F35245D}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RandomCombination({\mdseries\slshape S, k})\index{RandomCombination@\texttt{RandomCombination}}
\label{RandomCombination}
}\hfill{\scriptsize (operation)}}\\
This function has been transferred from package \textsf{ResClasses}.
It returns a random unordered $k$\texttt{\symbol{45}}tuple of distinct elements of a set{\nobreakspace}$S$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@## "6 aus 49" is a common lottery in Germany|
!gapprompt@gap>| !gapinput@RandomCombination( [1..49], 6 ); |
[ 2, 16, 24, 26, 37, 47 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Distinct and Common Representatives}}\logpage{[ 3, 2, 0 ]}
\hyperdef{L}{X82F443FF84B8FCE3}{}
{
\index{distinct and common representatives}
\subsection{\textcolor{Chapter }{DistinctRepresentatives}}
\logpage{[ 3, 2, 1 ]}\nobreak
\hyperdef{L}{X78105CAA847A888C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DistinctRepresentatives({\mdseries\slshape list})\index{DistinctRepresentatives@\texttt{DistinctRepresentatives}}
\label{DistinctRepresentatives}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CommonRepresentatives({\mdseries\slshape list})\index{CommonRepresentatives@\texttt{CommonRepresentatives}}
\label{CommonRepresentatives}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CommonTransversal({\mdseries\slshape grp, subgrp})\index{CommonTransversal@\texttt{CommonTransversal}}
\label{CommonTransversal}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsCommonTransversal({\mdseries\slshape grp, subgrp, list})\index{IsCommonTransversal@\texttt{IsCommonTransversal}}
\label{IsCommonTransversal}
}\hfill{\scriptsize (operation)}}\\
These operations have been transferred from package \textsf{XMod}.
They deal with lists of subsets of $[1 \ldots n]$ and construct systems of distinct and common representatives using simple,
non\texttt{\symbol{45}}recursive, combinatorial algorithms.
When $L$ is a set of $n$ subsets of $[1 \ldots n]$ and the Hall condition is satisfied (the union of any $k$ subsets has at least $k$ elements), a set of \texttt{DistinctRepresentatives} exists.
When $J,K$ are both lists of $n$ sets, the operation \texttt{CommonRepresentatives} returns two lists: the set of representatives, and a permutation of the
subsets of the second list.
The operation \texttt{CommonTransversal} may be used to provide a common transversal for the sets of left and right
cosets of a subgroup $H$ of a group $G$, although a greedy algorithm is usually quicker. }
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@J := [ [1,2,3], [3,4], [3,4], [1,2,4] ];;|
!gapprompt@gap>| !gapinput@DistinctRepresentatives( J );|
[ 1, 3, 4, 2 ]
!gapprompt@gap>| !gapinput@K := [ [3,4], [1,2], [2,3], [2,3,4] ];;|
!gapprompt@gap>| !gapinput@CommonRepresentatives( J, K );|
[ [ 3, 3, 3, 1 ], [ 1, 3, 4, 2 ] ]
!gapprompt@gap>| !gapinput@d16 := DihedralGroup( IsPermGroup, 16 ); |
Group([ (1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6) ])
!gapprompt@gap>| !gapinput@SetName( d16, "d16" );|
!gapprompt@gap>| !gapinput@c4 := Subgroup( d16, [ d16.1^2 ] ); |
Group([ (1,3,5,7)(2,4,6,8) ])
!gapprompt@gap>| !gapinput@SetName( c4, "c4" );|
!gapprompt@gap>| !gapinput@RightCosets( d16, c4 );|
[ RightCoset(c4,()), RightCoset(c4,(2,8)(3,7)(4,6)), RightCoset(c4,(1,8,7,6,5,
4,3,2)), RightCoset(c4,(1,8)(2,7)(3,6)(4,5)) ]
!gapprompt@gap>| !gapinput@trans := CommonTransversal( d16, c4 );|
[ (), (2,8)(3,7)(4,6), (1,2,3,4,5,6,7,8), (1,2)(3,8)(4,7)(5,6) ]
!gapprompt@gap>| !gapinput@IsCommonTransversal( d16, c4, trans );|
true
\end{Verbatim}
}
\section{\textcolor{Chapter }{Functions for strings}}\label{sec-strings}
\logpage{[ 3, 3, 0 ]}
\hyperdef{L}{X8033A2FE80FC2F2A}{}
{
\subsection{\textcolor{Chapter }{BlankFreeString}}
\logpage{[ 3, 3, 1 ]}\nobreak
\hyperdef{L}{X870C964E7804B266}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{BlankFreeString({\mdseries\slshape obj})\index{BlankFreeString@\texttt{BlankFreeString}}
\label{BlankFreeString}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{ResClasses}.
The result of \texttt{BlankFreeString( obj );} is a composite of the functions \texttt{String( obj )} and \texttt{RemoveCharacters( obj, " " );}.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gens := GeneratorsOfGroup( DihedralGroup(12) );|
[ f1, f2, f3 ]
!gapprompt@gap>| !gapinput@String( gens ); |
"[ f1, f2, f3 ]"
!gapprompt@gap>| !gapinput@BlankFreeString( gens ); |
"[f1,f2,f3]"
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Number\texttt{\symbol{45}}theoretic functions}}\label{chap-number}
\logpage{[ 4, 0, 0 ]}
\hyperdef{L}{X86E71C1687F2D0AD}{}
{
\section{\textcolor{Chapter }{Functions for integers}}\label{sec-integers}
\logpage{[ 4, 1, 0 ]}
\hyperdef{L}{X7D33B5B17BF785CA}{}
{
\subsection{\textcolor{Chapter }{AllSmoothIntegers (for two integers)}}
\logpage{[ 4, 1, 1 ]}\nobreak
\hyperdef{L}{X8191A031788AC7C0}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllSmoothIntegers({\mdseries\slshape maxp, maxn})\index{AllSmoothIntegers@\texttt{AllSmoothIntegers}!for two integers}
\label{AllSmoothIntegers:for two integers}
}\hfill{\scriptsize (function)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllSmoothIntegers({\mdseries\slshape L, maxp})\index{AllSmoothIntegers@\texttt{AllSmoothIntegers}!for a list and an integer}
\label{AllSmoothIntegers:for a list and an integer}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
\index{smooth integer} The function \texttt{AllSmoothIntegers(\mbox{\texttt{\mdseries\slshape maxp}},\mbox{\texttt{\mdseries\slshape maxn}})} returns the list of all positive integers less than or equal to \mbox{\texttt{\mdseries\slshape maxn}} whose prime factors are all in the list $L = \{p ~|~ p \leqslant maxp, p~\mbox{prime} \}$.
In the alternative form, when $L$ is a list of primes, the function returns the list of all positive integers
whose prime factors lie in $L$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@AllSmoothIntegers( 3, 1000 );|
[ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96,
108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576,
648, 729, 768, 864, 972 ]
!gapprompt@gap>| !gapinput@AllSmoothIntegers( [5,11,17], 1000 );|
[ 1, 5, 11, 17, 25, 55, 85, 121, 125, 187, 275, 289, 425, 605, 625, 935 ]
!gapprompt@gap>| !gapinput@Length( last );|
16
!gapprompt@gap>| !gapinput@List( [3..20], n -> Length( AllSmoothIntegers( [5,11,17], 10^n ) ) );|
[ 16, 29, 50, 78, 114, 155, 212, 282, 359, 452, 565, 691, 831, 992, 1173,
1374, 1595, 1843 ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{AllProducts}}
\logpage{[ 4, 1, 2 ]}\nobreak
\hyperdef{L}{X78BE6B8B878D250D}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllProducts({\mdseries\slshape L, k})\index{AllProducts@\texttt{AllProducts}}
\label{AllProducts}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
The command \texttt{AllProducts(\mbox{\texttt{\mdseries\slshape L}},\mbox{\texttt{\mdseries\slshape k}})} returns the list of all products of \mbox{\texttt{\mdseries\slshape k}} entries of the list{\nobreakspace}\mbox{\texttt{\mdseries\slshape L}}. Note that every ordering of the entries is used so that, in the commuting
case, there are bound to be repetitions.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@AllProducts([1..4],3); |
[ 1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12, 4, 8, 12, 16, 2, 4, 6, 8, 4, 8, 12,
16, 6, 12, 18, 24, 8, 16, 24, 32, 3, 6, 9, 12, 6, 12, 18, 24, 9, 18, 27,
36, 12, 24, 36, 48, 4, 8, 12, 16, 8, 16, 24, 32, 12, 24, 36, 48, 16, 32,
48, 64 ]
!gapprompt@gap>| !gapinput@Set(last); |
[ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 64 ]
!gapprompt@gap>| !gapinput@AllProducts( [(1,2,3),(2,3,4)], 2 );|
[ (2,4,3), (1,2)(3,4), (1,3)(2,4), (1,3,2) ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{RestrictedPartitionsWithoutRepetitions}}
\logpage{[ 4, 1, 3 ]}\nobreak
\hyperdef{L}{X845F46E579CEA43F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{RestrictedPartitionsWithoutRepetitions({\mdseries\slshape n, S})\index{RestrictedPartitionsWithoutRepetitions@\texttt{Restricted}\-\texttt{Partitions}\-\texttt{Without}\-\texttt{Repetitions}}
\label{RestrictedPartitionsWithoutRepetitions}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
For a positive integer \mbox{\texttt{\mdseries\slshape n}} and a set of positive integers \mbox{\texttt{\mdseries\slshape S}}, this function returns the list of partitions of \mbox{\texttt{\mdseries\slshape n}} into distinct elements of \mbox{\texttt{\mdseries\slshape S}}. Unlike \texttt{RestrictedPartitions}, no repetitions are allowed.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@RestrictedPartitions( 20, [4..10] );|
[ [ 4, 4, 4, 4, 4 ], [ 5, 5, 5, 5 ], [ 6, 5, 5, 4 ], [ 6, 6, 4, 4 ],
[ 7, 5, 4, 4 ], [ 7, 7, 6 ], [ 8, 4, 4, 4 ], [ 8, 6, 6 ], [ 8, 7, 5 ],
[ 8, 8, 4 ], [ 9, 6, 5 ], [ 9, 7, 4 ], [ 10, 5, 5 ], [ 10, 6, 4 ],
[ 10, 10 ] ]
!gapprompt@gap>| !gapinput@RestrictedPartitionsWithoutRepetitions( 20, [4..10] );|
[ [ 10, 6, 4 ], [ 9, 7, 4 ], [ 9, 6, 5 ], [ 8, 7, 5 ] ]
!gapprompt@gap>| !gapinput@RestrictedPartitionsWithoutRepetitions( 10^2, List([1..10], n->n^2 ) );|
[ [ 100 ], [ 64, 36 ], [ 49, 25, 16, 9, 1 ] ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{NextProbablyPrimeInt}}
\logpage{[ 4, 1, 4 ]}\nobreak
\hyperdef{L}{X81708BF4858505E8}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NextProbablyPrimeInt({\mdseries\slshape n})\index{NextProbablyPrimeInt@\texttt{NextProbablyPrimeInt}}
\label{NextProbablyPrimeInt}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
The function \texttt{NextProbablyPrimeInt(\mbox{\texttt{\mdseries\slshape n}})} does the same as \texttt{NextPrimeInt(\mbox{\texttt{\mdseries\slshape n}})} except that for reasons of performance it tests numbers only for \texttt{IsProbablyPrimeInt(\mbox{\texttt{\mdseries\slshape n}})} instead of \texttt{IsPrimeInt(\mbox{\texttt{\mdseries\slshape n}})}. For large \mbox{\texttt{\mdseries\slshape n}}, this function is much faster than \texttt{NextPrimeInt(\mbox{\texttt{\mdseries\slshape n}})}
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@n := 2^251;|
3618502788666131106986593281521497120414687020801267626233049500247285301248
!gapprompt@gap>| !gapinput@NextProbablyPrimeInt( n );|
3618502788666131106986593281521497120414687020801267626233049500247285301313
!gapprompt@gap>| !gapinput@time; |
1
!gapprompt@gap>| !gapinput@NextPrimeInt( n ); |
3618502788666131106986593281521497120414687020801267626233049500247285301313
!gapprompt@gap>| !gapinput@time; |
213
\end{Verbatim}
\subsection{\textcolor{Chapter }{PrimeNumbersIterator}}
\logpage{[ 4, 1, 5 ]}\nobreak
\hyperdef{L}{X8021EEE5787FCA37}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PrimeNumbersIterator({\mdseries\slshape [chunksize]})\index{PrimeNumbersIterator@\texttt{PrimeNumbersIterator}}
\label{PrimeNumbersIterator}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
This function returns an iterator which runs over the prime numbers n
ascending order; it takes an optional argument \texttt{chunksize} which specifies the length of the interval which is sieved in one go (the
default is $10^7$), and which can be used to balance runtime vs. memory consumption. It is
assumed that \texttt{chunksize} is larger than any gap between two consecutive primes within the range one
intends to run the iterator over.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@iter := PrimeNumbersIterator();;|
!gapprompt@gap>| !gapinput@for i in [1..100] do p := NextIterator(iter); od;|
!gapprompt@gap>| !gapinput@p;|
541
!gapprompt@gap>| !gapinput@sum := 0;;|
!gapprompt@gap>| !gapinput@## "prime number race" 1 vs. 3 mod 4|
!gapprompt@gap>| !gapinput@for p in PrimeNumbersIterator() do |
!gapprompt@>| !gapinput@ if p <> 2 then sum := sum + E(4)^(p-1); fi;|
!gapprompt@>| !gapinput@ if sum > 0 then break; fi;|
!gapprompt@>| !gapinput@ od;|
!gapprompt@gap>| !gapinput@p;|
26861
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Groups and homomorphisms}}\label{chap-groups}
\logpage{[ 5, 0, 0 ]}
\hyperdef{L}{X8171DAF2833FF728}{}
{
\section{\textcolor{Chapter }{Functions for groups}}\label{sec-groups}
\logpage{[ 5, 1, 0 ]}
\hyperdef{L}{X7E21E6D285E6B12C}{}
{
\subsection{\textcolor{Chapter }{Comm}}
\logpage{[ 5, 1, 1 ]}\nobreak
\hyperdef{L}{X80761843831B468E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Comm({\mdseries\slshape L})\index{Comm@\texttt{Comm}}
\label{Comm}
}\hfill{\scriptsize (operation)}}\\
This method has been transferred from package \textsf{ResClasses}.
It provides a method for \texttt{Comm} when the argument is a list (enclosed in square brackets), and calls the
function \texttt{LeftNormedComm}.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Comm( [ (1,2), (2,3) ] );|
(1,2,3)
!gapprompt@gap>| !gapinput@Comm( [(1,2),(2,3),(3,4),(4,5),(5,6)] );|
(1,5,6)
!gapprompt@gap>| !gapinput@Comm(Comm(Comm(Comm((1,2),(2,3)),(3,4)),(4,5)),(5,6)); ## the same|
(1,5,6)
\end{Verbatim}
\subsection{\textcolor{Chapter }{IsCommuting}}
\logpage{[ 5, 1, 2 ]}\nobreak
\hyperdef{L}{X803A050C7A183CCC}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IsCommuting({\mdseries\slshape a, b})\index{IsCommuting@\texttt{IsCommuting}}
\label{IsCommuting}
}\hfill{\scriptsize (operation)}}\\
This function has been transferred from package \textsf{ResClasses}.
It tests whether two elements in a group commute.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D12 := DihedralGroup( 12 );|
<pc group of size 12 with 3 generators>
!gapprompt@gap>| !gapinput@SetName( D12, "D12" ); |
!gapprompt@gap>| !gapinput@a := D12.1;; b := D12.2;; |
!gapprompt@gap>| !gapinput@IsCommuting( a, b );|
false
\end{Verbatim}
\subsection{\textcolor{Chapter }{ListOfPowers}}
\logpage{[ 5, 1, 3 ]}\nobreak
\hyperdef{L}{X87A8F01286548037}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ListOfPowers({\mdseries\slshape g, exp})\index{ListOfPowers@\texttt{ListOfPowers}}
\label{ListOfPowers}
}\hfill{\scriptsize (operation)}}\\
This function has been transferred from package \textsf{RCWA}.
The operation \texttt{ListOfPowers(g,exp)} returns the list $[g,g^2,...,g^{exp}]$ of powers of the element $g$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ListOfPowers( 2, 20 );|
[ 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, 131072, 262144, 524288, 1048576 ]
!gapprompt@gap>| !gapinput@ListOfPowers( (1,2,3)(4,5), 12 );|
[ (1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), (),
(1,2,3)(4,5), (1,3,2), (4,5), (1,2,3), (1,3,2)(4,5), () ]
!gapprompt@gap>| !gapinput@ListOfPowers( D12.2, 6 );|
[ f2, f3, f2*f3, f3^2, f2*f3^2, <identity> of ... ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{GeneratorsAndInverses}}
\logpage{[ 5, 1, 4 ]}\nobreak
\hyperdef{L}{X820B71307E41BEE5}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{GeneratorsAndInverses({\mdseries\slshape G})\index{GeneratorsAndInverses@\texttt{GeneratorsAndInverses}}
\label{GeneratorsAndInverses}
}\hfill{\scriptsize (operation)}}\\
This function has been transferred from package \textsf{RCWA}.
This operation returns a list containing the generators of $G$ followed by the inverses of these generators.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@GeneratorsAndInverses( D12 );|
[ f1, f2, f3, f1, f2*f3^2, f3^2 ]
!gapprompt@gap>| !gapinput@GeneratorsAndInverses( SymmetricGroup(5) ); |
[ (1,2,3,4,5), (1,2), (1,5,4,3,2), (1,2) ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{UpperFittingSeries}}
\logpage{[ 5, 1, 5 ]}\nobreak
\hyperdef{L}{X84CF95227F9D562F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{UpperFittingSeries({\mdseries\slshape G})\index{UpperFittingSeries@\texttt{UpperFittingSeries}}
\label{UpperFittingSeries}
}\hfill{\scriptsize (attribute)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{LowerFittingSeries({\mdseries\slshape G})\index{LowerFittingSeries@\texttt{LowerFittingSeries}}
\label{LowerFittingSeries}
}\hfill{\scriptsize (attribute)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{FittingLength({\mdseries\slshape G})\index{FittingLength@\texttt{FittingLength}}
\label{FittingLength}
}\hfill{\scriptsize (attribute)}}\\
These three functions have been transferred from package \textsf{ResClasses}.
\index{Fitting series} The upper and lower Fitting series and the Fitting length of a solvable group
are described here: \href{https://en.wikipedia.org/wiki/Fitting_length} {\texttt{https://en.wikipedia.org/wiki/Fitting{\textunderscore}length}}.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@UpperFittingSeries( D12 ); LowerFittingSeries( D12 );|
[ Group([ ]), Group([ f3, f2*f3 ]), Group([ f1, f3, f2*f3 ]) ]
[ D12, Group([ f3 ]), Group([ ]) ]
!gapprompt@gap>| !gapinput@FittingLength( D12 );|
2
!gapprompt@gap>| !gapinput@S4 := SymmetricGroup( 4 );;|
!gapprompt@gap>| !gapinput@UpperFittingSeries( S4 );|
[ Group(()), Group([ (1,2)(3,4), (1,4)(2,3) ]), Group([ (1,2)(3,4), (1,4)
(2,3), (2,4,3) ]), Group([ (3,4), (2,3,4), (1,2)(3,4) ]) ]
!gapprompt@gap>| !gapinput@List( last, StructureDescription );|
[ "1", "C2 x C2", "A4", "S4" ]
!gapprompt@gap>| !gapinput@LowerFittingSeries( S4 );|
[ Sym( [ 1 .. 4 ] ), Alt( [ 1 .. 4 ] ), Group([ (1,4)(2,3), (1,3)
(2,4) ]), Group(()) ]
!gapprompt@gap>| !gapinput@List( last, StructureDescription );|
[ "S4", "A4", "C2 x C2", "1" ]
!gapprompt@gap>| !gapinput@FittingLength( S4);|
3
\end{Verbatim}
}
\section{\textcolor{Chapter }{Left Cosets for Groups}}\label{sec-leftcosets}
\logpage{[ 5, 2, 0 ]}
\hyperdef{L}{X7FE4848B7DE6B3FD}{}
{
\subsection{\textcolor{Chapter }{LeftCoset}}
\logpage{[ 5, 2, 1 ]}\nobreak
\hyperdef{L}{X8340B4537F17DCD3}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{LeftCoset({\mdseries\slshape g, U})\index{LeftCoset@\texttt{LeftCoset}}
\label{LeftCoset}
}\hfill{\scriptsize (operation)}}\\
Since \textsf{GAP} uses right actions by default, the library contains the operation \texttt{RightCoset(U,g)} for constructing the right coset $Ug$ of a subgroup $U \leq G$ and an element $g \in G$. It has been noted in the reference manual that, by inverting all the
elements in $Ug$, the left coset $g^{-1}U$ is obtained.
Just for the sake of completeness, from August 2022 this package provides the
operation \texttt{LeftCoset(g,U)} for constructing the left coset $gU$. Users are strongly recommended to continue to use \texttt{RightCoset} for all serious calculations, since left cosets have a much simpler
implementation and do not behave exactly like right cosets.
The methods for left cosets which are provided generally work by converting $gU$ to $Ug^{-1}$; applying the equivalent method for right cosets; and, if necessary,
converting back again to left cosets.
$G$ acts on left cosets by \texttt{OnLeftInverse}: $(gU)^{g_0} = g_0^{-1}*(gU) = (g_0^{-1}g)U$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@a4 := Group( (1,2,3), (2,3,4) );; SetName( a4, "a4" );|
!gapprompt@gap>| !gapinput@k4 := Group( (1,2)(3,4), (1,3)(2,4) );; SetName( k4, "k4" );|
!gapprompt@gap>| !gapinput@rc := RightCosets( a4, k4 );|
[ RightCoset(k4,()), RightCoset(k4,(2,3,4)), RightCoset(k4,(2,4,3)) ]
!gapprompt@gap>| !gapinput@lc := LeftCosets( a4, k4 );|
[ LeftCoset((),k4), LeftCoset((2,4,3),k4), LeftCoset((2,3,4),k4) ]
!gapprompt@gap>| !gapinput@AsSet( lc[2] );|
[ (2,4,3), (1,2,3), (1,3,4), (1,4,2) ]
!gapprompt@gap>| !gapinput@LeftCoset( (1,4,2), k4 ) = lc[2];|
true
!gapprompt@gap>| !gapinput@Representative( lc[2] );|
(2,4,3)
!gapprompt@gap>| !gapinput@ActingDomain( lc[2] );|
k4
!gapprompt@gap>| !gapinput@(1,4,3) in lc[3];|
true
!gapprompt@gap>| !gapinput@(1,2,3)*lc[2] = lc[3];|
true
!gapprompt@gap>| !gapinput@lc[2]^(1,3,2) = lc[3];|
true
\end{Verbatim}
\subsection{\textcolor{Chapter }{Inverse}}\label{subsec-inverse}
\logpage{[ 5, 2, 2 ]}
\hyperdef{L}{X793E48267EF5FD77}{}
{
The inverse of the left coset $gU$ is the right coset $Ug^{-1}$, and conversely. This is an abuse of the attribute \texttt{Inverse}, since the standard requirement, that $x*x^{-1}$ is an identity, does not hold.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Inverse( rc[3] ) = lc[3];|
true
!gapprompt@gap>| !gapinput@Inverse( lc[2] ) = rc[2];|
true
\end{Verbatim}
}
}
\section{\textcolor{Chapter }{Functions for group homomorphisms}}\label{sec-homomorphisms}
\logpage{[ 5, 3, 0 ]}
\hyperdef{L}{X80A512877F515DE7}{}
{
\subsection{\textcolor{Chapter }{EpimorphismByGenerators}}
\logpage{[ 5, 3, 1 ]}\nobreak
\hyperdef{L}{X80C9A0B583FEA7B9}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{EpimorphismByGenerators({\mdseries\slshape G, H})\index{EpimorphismByGenerators@\texttt{EpimorphismByGenerators}}
\label{EpimorphismByGenerators}
}\hfill{\scriptsize (operation)}}\\
This function has been transferred from package \textsf{RCWA}.
It constructs a group homomorphism which maps the generators of $G$ to those of $H$. Its intended use is when $G$ is a free group, and a warning is printed when this is not the case. Note that
anything may happen if the resulting map is not a homomorphism!
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G := Group( (1,2,3), (3,4,5), (5,6,7), (7,8,9) );;|
!gapprompt@gap>| !gapinput@phi := EpimorphismByGenerators( FreeGroup("a","b","c","d"), G );|
[ a, b, c, d ] -> [ (1,2,3), (3,4,5), (5,6,7), (7,8,9) ]
!gapprompt@gap>| !gapinput@PreImagesRepresentativeNC( phi, (1,2,3,4,5,6,7,8,9) );|
d*c*b*a
!gapprompt@gap>| !gapinput@a := G.1;; b := G.2;; c := G.3;; d := G.4;;|
!gapprompt@gap>| !gapinput@d*c*b*a;|
(1,2,3,4,5,6,7,8,9)
!gapprompt@gap>| !gapinput@## note that it is easy to produce nonsense: |
!gapprompt@gap>| !gapinput@epi := EpimorphismByGenerators( Group((1,2,3)), Group((8,9)) );|
Warning: calling GroupHomomorphismByImagesNC without checks
[ (1,2,3) ] -> [ (8,9) ]
!gapprompt@gap>| !gapinput@IsGroupHomomorphism( epi );|
true
!gapprompt@gap>| !gapinput@Image( epi, (1,2,3) ); |
()
!gapprompt@gap>| !gapinput@Image( epi, (1,3,2) );|
(8,9)
\end{Verbatim}
\subsection{\textcolor{Chapter }{Pullback}}
\logpage{[ 5, 3, 2 ]}\nobreak
\hyperdef{L}{X7C705F2A79F8E43C}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Pullback({\mdseries\slshape hom1, hom2})\index{Pullback@\texttt{Pullback}}
\label{Pullback}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PullbackInfo({\mdseries\slshape G})\index{PullbackInfo@\texttt{PullbackInfo}}
\label{PullbackInfo}
}\hfill{\scriptsize (attribute)}}\\
If $\phi_1 : G_1 \to H$ and $\phi_2 : G_2 \to H$ are two group homomorphisms with the same range, then their \emph{pullback} is the subgroup of $G_1 \times G_2$ consisting of those elements $(g_1,g_2)$ such that $\phi_1 g_1 = \phi_2 g_2$.
The attribute \texttt{PullbackInfo} of a pullback group \texttt{P} is similar to \texttt{DirectProductInfo} for a direct product of groups. Its value is a record with the following
components:
\begin{description}
\item[{\texttt{directProduct}}] the direct product $G_1 \times G_2$, and
\item[{\texttt{projections}}] a list with the two projections onto $G_1$ and $G_2$.
\end{description}
There are no embeddings in this record, but it is possible to use the
embeddings into the direct product, see \texttt{Embedding} (\textbf{Reference: Embedding}).
}
\begin{Verbatim}[commandchars=@|C,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>C @gapinput|s4 := Group( (1,2),(2,3),(3,4) );;C
@gapprompt|gap>C @gapinput|s3 := Group( (5,6),(6,7) );;C
@gapprompt|gap>C @gapinput|c3 := Subgroup( s3, [ (5,6,7) ] );;C
@gapprompt|gap>C @gapinput|f := GroupHomomorphismByImages( s4, s3, C
@gapprompt|>C @gapinput| [(1,2),(2,3),(3,4)], [(5,6),(6,7),(5,6)] );; C
@gapprompt|gap>C @gapinput|i := GroupHomomorphismByImages( c3, s3, [(5,6,7)], [(5,6,7)] );; C
@gapprompt|gap>C @gapinput|Pfi := Pullback( f, i );C
Group([ (2,3,4)(5,7,6), (1,2)(3,4) ])
@gapprompt|gap>C @gapinput|StructureDescription( Pfi );C
"A4"
@gapprompt|gap>C @gapinput|info := PullbackInfo( Pfi );C
rec( directProduct := Group([ (1,2), (2,3), (3,4), (5,6,7) ]),
projections := [ [ (2,3,4)(5,7,6), (1,2)(3,4) ] -> [ (2,3,4), (1,2)(3,4) ],
[ (2,3,4)(5,7,6), (1,2)(3,4) ] -> [ (5,7,6), () ] ] )
@gapprompt|gap>C @gapinput|g := (1,2,3)(5,6,7);; C
@gapprompt|gap>C @gapinput|ImageElm( info!.projections[1], g );C
(1,2,3)
@gapprompt|gap>C @gapinput|ImageElm( info!.projections[2], g );C
(5,6,7)
@gapprompt|gap>C @gapinput|dp := info!.directProduct;; C
@gapprompt|gap>C @gapinput|a := ImageElm( Embedding( dp, 1 ), (1,4,3) );; C
@gapprompt|gap>C @gapinput|b := ImageElm( Embedding( dp, 2 ), (5,7,6) );; C
@gapprompt|gap>C @gapinput|a*b in Pfi;C
true
\end{Verbatim}
\subsection{\textcolor{Chapter }{CentralProduct}}
\logpage{[ 5, 3, 3 ]}\nobreak
\hyperdef{L}{X78DD2C617B992BE2}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CentralProduct({\mdseries\slshape G1, G2, Z1, Phi})\index{CentralProduct@\texttt{CentralProduct}}
\label{CentralProduct}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CentralProductInfo({\mdseries\slshape G})\index{CentralProductInfo@\texttt{CentralProductInfo}}
\label{CentralProductInfo}
}\hfill{\scriptsize (attribute)}}\\
This function was added by Thomas Breuer, following discussions with Hongyi
Zhao (see \href{https://github.com/gap-packages/hap/issues/73} {\texttt{https://github.com/gap\texttt{\symbol{45}}packages/hap/issues/73}}).
Let \mbox{\texttt{\mdseries\slshape G1}} and \mbox{\texttt{\mdseries\slshape G2}} be two groups, \mbox{\texttt{\mdseries\slshape Z1}} be a central subgroup of \mbox{\texttt{\mdseries\slshape G1}}, and \mbox{\texttt{\mdseries\slshape Phi}} be an isomorphism from \mbox{\texttt{\mdseries\slshape Z1}} to a central subgroup of \mbox{\texttt{\mdseries\slshape G2}}. The \emph{central product} defined by these arguments is the factor group of the direct product of \mbox{\texttt{\mdseries\slshape G1}} and \mbox{\texttt{\mdseries\slshape G2}} by the central subgroup $\{ (z, (\mbox{\texttt{\mdseries\slshape Phi}}(z))^{-1}) : z \in \mbox{\texttt{\mdseries\slshape Z1}} \}$.
The attribute \texttt{CentralProductInfo} of a group $G$ that has been created by \texttt{CentralProduct} is similar to \texttt{PullbackInfo} (\ref{PullbackInfo}) for pullback groups. Its value is a record with the following components.
\begin{description}
\item[{\texttt{projection}}] the epimorphism from the direct product of \mbox{\texttt{\mdseries\slshape G1}} and \mbox{\texttt{\mdseries\slshape G2}} to $G$, and
\item[{\texttt{phi}}] the map \mbox{\texttt{\mdseries\slshape Phi}}.
\end{description}
Note that one can access the direct product as the \texttt{Source} (\textbf{Reference: Source}) value of the \texttt{projection} map, and one can access \mbox{\texttt{\mdseries\slshape G1}} and \mbox{\texttt{\mdseries\slshape G2}} as the two embeddings of this direct product, see \texttt{Embedding} (\textbf{Reference: Embedding}).
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@g1 := DihedralGroup( 8 );|
<pc group of size 8 with 3 generators>
!gapprompt@gap>| !gapinput@c1 := Centre( g1 );|
Group([ f3 ])
!gapprompt@gap>| !gapinput@cp1 := CentralProduct( g1, g1, c1, IdentityMapping( c1 ) );|
Group([ f1, f2, f5, f3, f4, f5 ])
!gapprompt@gap>| !gapinput@IdGroup( cp1 ) = IdGroup( ExtraspecialGroup( 2^5, "+" ) );|
true
!gapprompt@gap>| !gapinput@g2 := QuaternionGroup( 8 );|
<pc group of size 8 with 3 generators>
!gapprompt@gap>| !gapinput@c2 := Centre( g2 );|
Group([ y2 ])
!gapprompt@gap>| !gapinput@cp2 := CentralProduct( g2, g2, c2, IdentityMapping( c2 ) );|
Group([ f1, f2, f5, f3, f4, f5 ])
!gapprompt@gap>| !gapinput@IdGroup( cp2 ) = IdGroup( ExtraspecialGroup( 2^5, "+" ) );|
true
!gapprompt@gap>| !gapinput@info2 := CentralProductInfo( cp2 );|
rec( phi := IdentityMapping( Group([ y2 ]) ),
projection := [ f1, f2, f3, f4, f5, f6 ] -> [ f1, f2, f5, f3, f4, f5 ] )
!gapprompt@gap>| !gapinput@Source( Embedding( Source( info2.projection ), 1 ) ) = g2;|
true
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{IdempotentEndomorphisms}}
\logpage{[ 5, 3, 4 ]}\nobreak
\hyperdef{L}{X801038CB808FC956}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IdempotentEndomorphisms({\mdseries\slshape G})\index{IdempotentEndomorphisms@\texttt{IdempotentEndomorphisms}}
\label{IdempotentEndomorphisms}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IdempotentEndomorphismsData({\mdseries\slshape G})\index{IdempotentEndomorphismsData@\texttt{IdempotentEndomorphismsData}}
\label{IdempotentEndomorphismsData}
}\hfill{\scriptsize (attribute)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IdempotentEndomorphismsWithImage({\mdseries\slshape genG, R})\index{IdempotentEndomorphismsWithImage@\texttt{IdempotentEndomorphismsWithImage}}
\label{IdempotentEndomorphismsWithImage}
}\hfill{\scriptsize (operation)}}\\
An endomorphism $f : G \to G$ is idempotent if $f^2=f$. It has an image $R \leqslant G$; is the identity map when restricted to $R$; and has a kernel $N$ which has trivial intersection with $R$ and has size $|G|/|R|$.
The operation \texttt{IdempotentEndomorphismsWithImage(genG,R)} returns a list of the images of the generating set \texttt{genG} of a group $G$ under the idempotent endomorphisms with image $R$.
The attribute \texttt{IdempotentEndomorphismsData(G)} returns a record \texttt{data} with fields \texttt{data.gens}, a fixed generating set for $G$, and \texttt{data.images} a list of the non\texttt{\symbol{45}}empty outputs of \texttt{IdempotentEndomorphismsWithImage(genG,R)} obtained by iterating over all subgroups of $G$.
The operation \texttt{IdempotentEndomorphisms(G)} returns the list of these mappings obtained using \texttt{IdempotentEndomorphismsData(G)}. The first of these is the zero map, the second is the identity.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gens := [ (1,2,3,4), (1,2)(3,4) ];; |
!gapprompt@gap>| !gapinput@d8 := Group( gens );;|
!gapprompt@gap>| !gapinput@SetName( d8, "d8" );|
!gapprompt@gap>| !gapinput@c2 := Subgroup( d8, [ (2,4) ] );;|
!gapprompt@gap>| !gapinput@IdempotentEndomorphismsWithImage( gens, c2 );|
[ [ (), (2,4) ], [ (2,4), () ] ]
!gapprompt@gap>| !gapinput@IdempotentEndomorphismsData( d8 );|
rec( gens := [ (1,2,3,4), (1,2)(3,4) ],
images := [ [ [ (), () ] ], [ [ (), (2,4) ], [ (2,4), () ] ],
[ [ (), (1,3) ], [ (1,3), () ] ],
[ [ (), (1,2)(3,4) ], [ (1,2)(3,4), (1,2)(3,4) ] ],
[ [ (), (1,4)(2,3) ], [ (1,4)(2,3), (1,4)(2,3) ] ],
[ [ (1,2,3,4), (1,2)(3,4) ] ] ] )
!gapprompt@gap>| !gapinput@List( last.images, L -> Length(L) );|
[ 1, 2, 2, 2, 2, 1 ]
!gapprompt@gap>| !gapinput@IdempotentEndomorphisms( d8 ); |
[ [ (1,2,3,4), (1,2)(3,4) ] -> [ (), () ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (2,4) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (2,4), () ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (1,3) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,3), () ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (1,2)(3,4) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,2)(3,4), (1,2)(3,4) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (), (1,4)(2,3) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,4)(2,3), (1,4)(2,3) ],
[ (1,2,3,4), (1,2)(3,4) ] -> [ (1,2,3,4), (1,2)(3,4) ] ]
\end{Verbatim}
The quaternion group \texttt{q8} is an example of a group with a tail: there is only one subgroup in the
lattice which covers the identity subgroup. The only idempotent isomorphisms
of such groups are the identity mapping and the zero mapping because the only
pairs $N,R$ are the whole group and the identity subgroup.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@q8 := QuaternionGroup( 8 );;|
!gapprompt@gap>| !gapinput@IdempotentEndomorphisms( q8 );|
[ [ x, y ] -> [ <identity> of ..., <identity> of ... ], [ x, y ] -> [ x, y ] ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{DirectProductOfFunctions}}
\logpage{[ 5, 3, 5 ]}\nobreak
\hyperdef{L}{X81FA9E6C7F3B9238}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DirectProductOfFunctions({\mdseries\slshape G, H, f1, f2})\index{DirectProductOfFunctions@\texttt{DirectProductOfFunctions}}
\label{DirectProductOfFunctions}
}\hfill{\scriptsize (operation)}}\\
Given group homomorphisms $f_1 : G_1 \to G_2$ and $f_2 : H_1 \to H_2$, this operation return the product homomorphism $f_1 \times f_2 : G_1 \times G_2 \to H_1 \times H_2$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@c4 := Group( (1,2,3,4) );; |
!gapprompt@gap>| !gapinput@c2 := Group( (5,6) );; |
!gapprompt@gap>| !gapinput@f1 := GroupHomomorphismByImages( c4, c2, [(1,2,3,4)], [(5,6)] );;|
!gapprompt@gap>| !gapinput@c3 := Group( (1,2,3) );; |
!gapprompt@gap>| !gapinput@c6 := Group( (1,2,3,4,5,6) );; |
!gapprompt@gap>| !gapinput@f2 := GroupHomomorphismByImages( c3, c6, [(1,2,3)], [(1,3,5)(2,4,6)] );; |
!gapprompt@gap>| !gapinput@c4c3 := DirectProduct( c4, c3 ); |
Group([ (1,2,3,4), (5,6,7) ])
!gapprompt@gap>| !gapinput@c2c6 := DirectProduct( c2, c6 ); |
Group([ (1,2), (3,4,5,6,7,8) ])
!gapprompt@gap>| !gapinput@f := DirectProductOfFunctions( c4c3, c2c6, f1, f2 ); |
[ (1,2,3,4), (5,6,7) ] -> [ (1,2), (3,5,7)(4,6,8) ]
!gapprompt@gap>| !gapinput@ImageElm( f, (1,4,3,2)(5,7,6) ); |
(1,2)(3,7,5)(4,8,6)
\end{Verbatim}
\subsection{\textcolor{Chapter }{DirectProductOfAutomorphismGroups}}
\logpage{[ 5, 3, 6 ]}\nobreak
\hyperdef{L}{X7CB2D5F27F4182AF}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DirectProductOfAutomorphismGroups({\mdseries\slshape A1, A2})\index{DirectProductOfAutomorphismGroups@\texttt{DirectProductOfAutomorphismGroups}}
\label{DirectProductOfAutomorphismGroups}
}\hfill{\scriptsize (operation)}}\\
Let $A_1,A_2$ be groups of automorphism of groups $G_1,G_2$ respectively. The output of this function is a group $A_1 \times A_2$ of automorphisms of $G_1 \times G_2$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@c9 := Group( (1,2,3,4,5,6,7,8,9) );; |
!gapprompt@gap>| !gapinput@ac9 := AutomorphismGroup( c9 );; |
!gapprompt@gap>| !gapinput@q8 := QuaternionGroup( IsPermGroup, 8 );;|
!gapprompt@gap>| !gapinput@aq8 := AutomorphismGroup( q8 );;|
!gapprompt@gap>| !gapinput@A := DirectProductOfAutomorphismGroups( ac9, aq8 );|
<group with 5 generators>
!gapprompt@gap>| !gapinput@genA := GeneratorsOfGroup( A );;|
!gapprompt@gap>| !gapinput@G := Source( genA[1] );|
Group([ (1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)
(14,15,16,17) ])
!gapprompt@gap>| !gapinput@a := genA[1]*genA[5]; |
[ (1,2,3,4,5,6,7,8,9), (10,14,12,16)(11,17,13,15), (10,11,12,13)(14,15,16,17)
] -> [ (1,3,5,7,9,2,4,6,8), (10,16,12,14)(11,15,13,17),
(10,11,12,13)(14,15,16,17) ]
!gapprompt@gap>| !gapinput@ImageElm( a, (1,9,8,7,6,5,4,3,2)(10,14,12,16)(11,17,13,15) );|
(1,8,6,4,2,9,7,5,3)(10,16,12,14)(11,15,13,17)
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Matrices}}\label{chap-matrix}
\logpage{[ 6, 0, 0 ]}
\hyperdef{L}{X812CCAB278643A59}{}
{
\section{\textcolor{Chapter }{Some operations for matrices}}\label{sec-matrix-ops}
\logpage{[ 6, 1, 0 ]}
\hyperdef{L}{X802118FB7C94D6BA}{}
{
\subsection{\textcolor{Chapter }{DirectSumDecompositionMatrices}}
\logpage{[ 6, 1, 1 ]}\nobreak
\hyperdef{L}{X787B89237E1398B6}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{DirectSumDecompositionMatrices({\mdseries\slshape M})\index{DirectSumDecompositionMatrices@\texttt{DirectSumDecompositionMatrices}}
\label{DirectSumDecompositionMatrices}
}\hfill{\scriptsize (operation)}}\\
In June 2023 Hongyi Zhao asked in the Forum for a function to implement matrix
decomposition into blocks. Such a function was then provided by Pedro
Garc{\a'\i}a\texttt{\symbol{45}}S{\a'a}nchez. Hongyi Zhao then requested that
the function be added to \textsf{Utils}. What is provided here is a revised version of the original solution,
returning a list of decompositions.
This function is a partial inverse to the undocumented library operation \texttt{DirectSumMat}. So if $L$ is the list of diagonal decompositions of a matrix $M$ then each entry in $L$ is a list of matrices, and the direct sum of each of these lists is equal to
the original $M$.
In the following examples, $M_6$ is an obvious direct sum with $3$ blocks. $M_4$ is an example with three decompositions, while $M_8 = M_4 \oplus M_4$ has $16$ decompositions (not listed).
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M6 := [ [1,2,0,0,0,0], [3,4,0,0,0,0], [5,6,0,0,0,0], |
!gapprompt@>| !gapinput@ [0,0,9,0,0,0], [0,0,0,1,2,3], [0,0,0,4,5,6] ];;|
!gapprompt@gap>| !gapinput@Display( M6 );|
[ [ 1, 2, 0, 0, 0, 0 ],
[ 3, 4, 0, 0, 0, 0 ],
[ 5, 6, 0, 0, 0, 0 ],
[ 0, 0, 9, 0, 0, 0 ],
[ 0, 0, 0, 1, 2, 3 ],
[ 0, 0, 0, 4, 5, 6 ] ]
!gapprompt@gap>| !gapinput@L6 := DirectSumDecompositionMatrices( M6 );|
[ [ [ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ], [ [ 9 ] ], [ [ 1, 2, 3 ], [ 4, 5, 6 ] ]
] ]
!gapprompt@gap>| !gapinput@M4 := [ [0,3,0,0], [0,0,0,0], [0,0,0,0], [0,0,4,0] ];;|
!gapprompt@gap>| !gapinput@Display( M4 );|
[ [ 0, 3, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 4, 0 ] ]
!gapprompt@gap>| !gapinput@L4 := DirectSumDecompositionMatrices( M4 );|
[ [ [ [ 0, 3 ] ], [ [ 0, 0 ], [ 0, 0 ], [ 4, 0 ] ] ],
[ [ [ 0, 3 ], [ 0, 0 ] ], [ [ 0, 0 ], [ 4, 0 ] ] ],
[ [ [ 0, 3 ], [ 0, 0 ], [ 0, 0 ] ], [ [ 4, 0 ] ] ] ]
!gapprompt@gap>| !gapinput@for L in L4 do |
!gapprompt@>| !gapinput@ A := DirectSumMat( L );; |
!gapprompt@>| !gapinput@ if ( A = M4 ) then Print( "yes, A = M4\n" ); fi; |
!gapprompt@>| !gapinput@ od;|
yes, A = M4
yes, A = M4
yes, A = M4
!gapprompt@gap>| !gapinput@M8 := DirectSumMat( M4, M4 );; |
!gapprompt@gap>| !gapinput@Display( M8 );|
[ [ 0, 3, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 4, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 3, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 4, 0 ] ]
!gapprompt@gap>| !gapinput@L8 := DirectSumDecompositionMatrices( M8 );;|
!gapprompt@gap>| !gapinput@Length( L8 ); |
16
\end{Verbatim}
The current method does not, however, catch all possible decompositions. In
the following example the matrix $M_5$ has its third row and third column extirely zero, and the only decomposition
found has a $[0]$ factor. There are clearly two $2$\texttt{\symbol{45}}factor decompositions with a $2$\texttt{\symbol{45}}by\texttt{\symbol{45}}$3$ and a $3$\texttt{\symbol{45}}by\texttt{\symbol{45}}$2$ factor, but these are not found at present.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M5 := [ [1,2,0,0,0], [3,4,0,0,0], [0,0,0,0,0],|
!gapprompt@>| !gapinput@ [0,0,0,6,7], [0,0,0,8,9] ];;|
!gapprompt@gap>| !gapinput@Display(M5);|
[ [ 1, 2, 0, 0, 0 ],
[ 3, 4, 0, 0, 0 ],
[ 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 6, 7 ],
[ 0, 0, 0, 8, 9 ] ]
!gapprompt@gap>| !gapinput@L5 := DirectSumDecompositionMatrices( M5 ); |
[ [ [ [ 1, 2 ], [ 3, 4 ] ], [ [ 0 ] ], [ [ 6, 7 ], [ 8, 9 ] ] ] ]
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Iterators}}\label{chap-iterator}
\logpage{[ 7, 0, 0 ]}
\hyperdef{L}{X85A3F00985453F95}{}
{
\section{\textcolor{Chapter }{Some iterators for groups and their isomorphisms}}\label{sec-group-iters}
\logpage{[ 7, 1, 0 ]}
\hyperdef{L}{X7BB5350081B27D17}{}
{
\index{Iterators} The motivation for adding these operations is partly to give a simple example
of an iterator for a list that does not yet exist, and need not be created.
\subsection{\textcolor{Chapter }{AllIsomorphismsIterator}}
\logpage{[ 7, 1, 1 ]}\nobreak
\hyperdef{L}{X7F8B54D1806C762D}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllIsomorphismsIterator({\mdseries\slshape G, H})\index{AllIsomorphismsIterator@\texttt{AllIsomorphismsIterator}}
\label{AllIsomorphismsIterator}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllIsomorphismsNumber({\mdseries\slshape G, H})\index{AllIsomorphismsNumber@\texttt{AllIsomorphismsNumber}}
\label{AllIsomorphismsNumber}
}\hfill{\scriptsize (operation)}}\\
\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllIsomorphisms({\mdseries\slshape G, H})\index{AllIsomorphisms@\texttt{AllIsomorphisms}}
\label{AllIsomorphisms}
}\hfill{\scriptsize (operation)}}\\
The main \textsf{GAP} library contains functions producing complete lists of group homomorphisms
such as \texttt{AllHomomorphisms}; \texttt{AllEndomorphisms} and \texttt{AllAutomorphisms}. Here we add the missing \texttt{AllIsomorphisms(G,H)} for a list of isomorphisms from $G$ to $H$. The method is simple \texttt{\symbol{45}}\texttt{\symbol{45}} find one
isomorphism $G \to H$ and compose this with all the automorphisms of $G$. In all these cases it may not be desirable to construct a list of
homomorphisms, but just implement an iterator, and that is what is done here.
The operation \texttt{AllIsomorphismsNumber} returns the number of isomorphisms iterated over (this is, of course, just the
order of the automorphisms group). The operation \texttt{AllIsomorphisms} produces the list or isomorphisms.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G := SmallGroup( 6,1);; |
!gapprompt@gap>| !gapinput@iter := AllIsomorphismsIterator( G, s3 );;|
!gapprompt@gap>| !gapinput@NextIterator( iter );|
[ f1, f2 ] -> [ (6,7), (5,6,7) ]
!gapprompt@gap>| !gapinput@n := AllIsomorphismsNumber( G, s3 );|
6
!gapprompt@gap>| !gapinput@AllIsomorphisms( G, s3 );|
[ [ f1, f2 ] -> [ (6,7), (5,6,7) ], [ f1, f2 ] -> [ (5,7), (5,6,7) ],
[ f1, f2 ] -> [ (5,6), (5,7,6) ], [ f1, f2 ] -> [ (6,7), (5,7,6) ],
[ f1, f2 ] -> [ (5,7), (5,7,6) ], [ f1, f2 ] -> [ (5,6), (5,6,7) ] ]
!gapprompt@gap>| !gapinput@iter := AllIsomorphismsIterator( G, s3 );;|
!gapprompt@gap>| !gapinput@for h in iter do Print( ImageElm( h, G.1 ) = (6,7), ", " ); od;|
true, false, false, true, false, false,
\end{Verbatim}
\subsection{\textcolor{Chapter }{AllSubgroupsIterator}}
\logpage{[ 7, 1, 2 ]}\nobreak
\hyperdef{L}{X831DA5AE8437578F}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllSubgroupsIterator({\mdseries\slshape G})\index{AllSubgroupsIterator@\texttt{AllSubgroupsIterator}}
\label{AllSubgroupsIterator}
}\hfill{\scriptsize (operation)}}\\
The manual entry for the operation \texttt{AllSubgroups} states that it is only intended to be used on small examples in a classroom
situation. Access to all subgroups was required by the \textsf{XMod} package, so this iterator was introduced here. It used the operations \texttt{LatticeSubgroups(G)} and \texttt{ConjugacyClassesSubgroups(lat)}, and then iterates over the entries in these classes.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@c3c3 := Group( (1,2,3), (4,5,6) );; |
!gapprompt@gap>| !gapinput@iter := AllSubgroupsIterator( c3c3 );|
<iterator>
!gapprompt@gap>| !gapinput@while not IsDoneIterator(iter) do Print(NextIterator(iter),"\n"); od;|
Group( () )
Group( [ (4,5,6) ] )
Group( [ (1,2,3) ] )
Group( [ (1,2,3)(4,5,6) ] )
Group( [ (1,3,2)(4,5,6) ] )
Group( [ (4,5,6), (1,2,3) ] )
\end{Verbatim}
}
\section{\textcolor{Chapter }{Operations on iterators}}\label{sec-iter-ops}
\logpage{[ 7, 2, 0 ]}
\hyperdef{L}{X85413EED812C6497}{}
{
This section considers ways of producing an iterator from one or more
iterators. It may be that operations equivalent to these are available
elsewhere in the library \texttt{\symbol{45}}\texttt{\symbol{45}} if so, the
ones here can be removed in due course.
\subsection{\textcolor{Chapter }{CartesianIterator}}
\logpage{[ 7, 2, 1 ]}\nobreak
\hyperdef{L}{X87395A9181A35301}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{CartesianIterator({\mdseries\slshape iter1, iter2})\index{CartesianIterator@\texttt{CartesianIterator}}
\label{CartesianIterator}
}\hfill{\scriptsize (operation)}}\\
This iterator returns all pairs $[x,y]$ where $x$ is the output of a first iterator and $y$ is the output of a second iterator.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@it1 := Iterator( [ 1, 2, 3 ] );;|
!gapprompt@gap>| !gapinput@it2 := Iterator( [ 4, 5, 6 ] );;|
!gapprompt@gap>| !gapinput@iter := CartesianIterator( it1, it2 );;|
!gapprompt@gap>| !gapinput@while not IsDoneIterator(iter) do Print(NextIterator(iter),"\n"); od;|
[ 1, 4 ]
[ 1, 5 ]
[ 1, 6 ]
[ 2, 4 ]
[ 2, 5 ]
[ 2, 6 ]
[ 3, 4 ]
[ 3, 5 ]
[ 3, 6 ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{UnorderedPairsIterator}}
\logpage{[ 7, 2, 2 ]}\nobreak
\hyperdef{L}{X7C95E27987A812EA}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{UnorderedPairsIterator({\mdseries\slshape iter})\index{UnorderedPairsIterator@\texttt{UnorderedPairsIterator}}
\label{UnorderedPairsIterator}
}\hfill{\scriptsize (operation)}}\\
This operation returns pairs $[x,y]$ where $x,y$ are output from a given iterator \texttt{iter}. Unlike the output from \texttt{CartesianIterator(iter,iter)}, unordered pairs are returned. In the case $L = [1,2,3,\ldots]$ the pairs are ordered as $[1,1],[1,2],[2,2],[1,3],[2,3],[3,3],\ldots$.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L := [6,7,8,9];;|
!gapprompt@gap>| !gapinput@iterL := IteratorList( L );; |
!gapprompt@gap>| !gapinput@pairsL := UnorderedPairsIterator( iterL );; |
!gapprompt@gap>| !gapinput@while not IsDoneIterator(pairsL) do Print(NextIterator(pairsL),"\n"); od;|
[ 6, 6 ]
[ 6, 7 ]
[ 7, 7 ]
[ 6, 8 ]
[ 7, 8 ]
[ 8, 8 ]
[ 6, 9 ]
[ 7, 9 ]
[ 8, 9 ]
[ 9, 9 ]
!gapprompt@gap>| !gapinput@iter4 := IteratorList( [ 4 ] );|
<iterator>
!gapprompt@gap>| !gapinput@pairs4 := UnorderedPairsIterator(iter4);|
<iterator>
!gapprompt@gap>| !gapinput@NextIterator( pairs4 );|
[ 4, 4 ]
!gapprompt@gap>| !gapinput@IsDoneIterator( pairs4 );|
true
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Records}}\label{chap-record}
\logpage{[ 8, 0, 0 ]}
\hyperdef{L}{X7AA1073C7E943DD7}{}
{
\section{\textcolor{Chapter }{Functions for records}}\label{sec-records}
\logpage{[ 8, 1, 0 ]}
\hyperdef{L}{X82B3D1D583CDF0E5}{}
{
\subsection{\textcolor{Chapter }{AssignGlobals}}
\logpage{[ 8, 1, 1 ]}\nobreak
\hyperdef{L}{X84D82EB579B2ACCD}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AssignGlobals({\mdseries\slshape rec})\index{AssignGlobals@\texttt{AssignGlobals}}
\label{AssignGlobals}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
It assigns the record components of \mbox{\texttt{\mdseries\slshape rec}} to global variables with the same names.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@r := rec( a := 1, b := 2, c := 3 );; |
!gapprompt@gap>| !gapinput@AssignGlobals( r );|
The following global variables have been assigned:
[ "a", "b", "c" ]
!gapprompt@gap>| !gapinput@[a,b,c];|
[ 1, 2, 3 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Option records for functions}}\label{sec-options}
\logpage{[ 8, 2, 0 ]}
\hyperdef{L}{X7E6207B47B9AA30C}{}
{
\subsection{\textcolor{Chapter }{OptionRecordWithDefaults}}
\logpage{[ 8, 2, 1 ]}\nobreak
\hyperdef{L}{X8322B9377CC590D2}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{OptionRecordWithDefaults({\mdseries\slshape defaults, useroptions})\index{OptionRecordWithDefaults@\texttt{OptionRecordWithDefaults}}
\label{OptionRecordWithDefaults}
}\hfill{\scriptsize (function)}}\\
This functions has been transferred by Chris Jefferson from other packages. It
simplifies the handling of records which are intended to be used for
expressing configuration options. \mbox{\texttt{\mdseries\slshape defaults}} represents the "default record", and \mbox{\texttt{\mdseries\slshape useroptions}} lets the user give new values for values in \mbox{\texttt{\mdseries\slshape defaults}}.
The function returns a record with the same component names as \mbox{\texttt{\mdseries\slshape defaults}} and which has the same values as \mbox{\texttt{\mdseries\slshape defaults}}, except for those component names in \mbox{\texttt{\mdseries\slshape useroptions}}, where the values in \mbox{\texttt{\mdseries\slshape useroptions}} are used instead. An error is given if \mbox{\texttt{\mdseries\slshape useroptions}} contains any component names not in \mbox{\texttt{\mdseries\slshape defaults}}. If \mbox{\texttt{\mdseries\slshape useroptions}} is an empty list it is treated as an empty record, and if \mbox{\texttt{\mdseries\slshape useroptions}} is a list of length $1$ containing a record, this record is used as \mbox{\texttt{\mdseries\slshape useroptions}}.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@defaults := rec( a := 1, b := 2, c := 3 );;|
!gapprompt@gap>| !gapinput@OptionRecordWithDefaults( defaults, rec( a := 6) );|
rec( a := 6, b := 2, c := 3 )
!gapprompt@gap>| !gapinput@OptionRecordWithDefaults( defaults, rec( b := 7, c := 8 ) );|
rec( a := 1, b := 7, c := 8 )
!gapprompt@gap>| !gapinput@OptionRecordWithDefaults( defaults, [ ] );|
rec( a := 1, b := 2, c := 3 )
!gapprompt@gap>| !gapinput@OptionRecordWithDefaults( defaults, [ rec( c := 8 ) ] );|
rec( a := 1, b := 2, c := 8 )
!gapprompt@gap>| !gapinput@OptionRecordWithDefaults( defaults, rec( d := 9 ) );|
Error, Unknown option: d
!gapprompt@gap>| !gapinput@OptionRecordWithDefaults( defaults, [ rec( b := 7 ), rec( c := 8 ) ] );|
Error, Too many arguments for function
!gapprompt@gap>| !gapinput@OptionRecordWithDefaults( defaults, [6,7,8] );|
Error, Too many arguments for function
\end{Verbatim}
This function is designed to support functions with optional arguments given
as a variable record, of the form \texttt{function(x,y,options...)}. In the following, very contrived, example function, \texttt{PrintDimensions}, the defaults are given by the variable \texttt{order} which takes values \texttt{h}, \texttt{w} and \texttt{d} having default values $1$, $2$ and $3$. If there is a second argument, then \texttt{OptionRecordWithDefaults( order, arg[2] );} is used to cvhange the values. These three values then determine the order in
which the three dimensions are printed using a \texttt{SortParallel} command.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=]
PrintDimensions := function( arg )
local nargs, dim, order, V, L, len, K, i;
nargs := Length( arg );
dim := [ arg[1]!.height, arg[1]!.width, arg[1]!.depth ];
order := rec( h := 1, w := 2, d := 3 );
V := [ "height", "width", "depth" ];
if ( nargs > 1 ) and IsRecord( arg[2] ) then
order := OptionRecordWithDefaults( order, arg[2] );
fi;
L := [ order!.h, order!.w, order!.d ];
len := Length( L );
K := [ 1..len ];
SortParallel( L, K );
Print( "dimensions: " );
Print( V[K[1]], " = ", dim[K[1]], ", " );
Print( V[K[2]], " = ", dim[K[2]], ", " );
Print( V[K[3]], " = ", dim[K[3]], "\n" );
end;;
\end{Verbatim}
In the example below the first call to \texttt{PrintDimensions} has just one parameter, \texttt{mydim}, so the default order is used. In the second call, alternate values for \texttt{h}, \texttt{w} and \texttt{d} are given, causing the width to be printed first, and then the depth and
height.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@mydim := rec( height := 45, width := 31, depth := 17 ); |
rec( depth := 17, height := 45, width := 31 )
!gapprompt@gap>| !gapinput@PrintDimensions( mydim );|
dimensions: height = 45, width = 31, depth = 17
!gapprompt@gap>| !gapinput@PrintDimensions( mydim, rec( h:=3, w:=1, d:=2 ) );|
dimensions: width = 31, depth = 17, height = 45
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Web Downloads}}\label{chap-download}
\logpage{[ 9, 0, 0 ]}
\hyperdef{L}{X815B0C4B7EBE6E1E}{}
{
The \texttt{Download} operation has been written by Thomas Breuer, incorporating a number of
suggestions from Max Horn, for version 0.77 of \textsf{Utils}. It implements downloading a file from within \textsf{GAP}. It can use the \textsf{IO} or \textsf{curlInterface} packages, or \emph{wget} or \emph{curl}, if installed, and it can be extended with other download methods quite
easily. It is envisaged that, once other packages have started to use it, and
any problems have been addressed, that the functions will be transferred to
the main \textsf{GAP} library.
\section{\textcolor{Chapter }{Functions for downloading files from the web}}\label{sec-download}
\logpage{[ 9, 1, 0 ]}
\hyperdef{L}{X8758CB7F79EFB6ED}{}
{
\subsection{\textcolor{Chapter }{Download}}
\logpage{[ 9, 1, 1 ]}\nobreak
\hyperdef{L}{X7A7438AE8448635E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Download({\mdseries\slshape url[, opt]})\index{Download@\texttt{Download}}
\label{Download}
}\hfill{\scriptsize (function)}}\\
This function downloads the file with the web address \mbox{\texttt{\mdseries\slshape url}}, which must be a string.
The result is a record which has at least the component \texttt{success}, with value \texttt{true} if the download was successful and \texttt{false} otherwise. In the former case, the component \texttt{result} is bound, whose value is a string that contains the contents of the downloaded
file. In the latter case, the component \texttt{error} is bound, whose value is a string that describes the problem.
The function calls the methods stored in the global list \texttt{Download{\textunderscore}Methods} until one of them is successful. Currently there are methods based on the \textsf{GAP} functions \texttt{DownloadURL} (\textbf{curl: DownloadURL}) and \texttt{SingleHTTPRequest} (\textbf{IO: SingleHTTPRequest}), and methods based on the external programs \texttt{wget} and \texttt{curl}.
An optional record \mbox{\texttt{\mdseries\slshape opt}} can be given. The following components are supported.
\begin{description}
\item[{\texttt{maxTime}}] If this component is bound then its value must be a nonnegative integer $n$, meaning that the function gives up after $n$ seconds.
A zero value of $n$ means that no timeout is set, the method will never give up in this case.
The default for $n$ is given by the value of the user preference \texttt{DownloadMaxTime} (see \ref{subsec-DownloadMaxTime}).
\item[{\texttt{target}}] If this component is bound then its value must be a string that is a local
filename, and the function writes the downloaded contents to this file; the
returned record does not have a \texttt{result} component in this case.
\item[{\texttt{verifyCert}}] If this component is bound and has the value \texttt{false} then those download methods that are based on \texttt{curl} or \texttt{wget} will omit the check of the server's certificate.
The same effect is achieved for all \texttt{Download} calls by setting the user preference \texttt{DownloadVerifyCertificate} (see \ref{subsec-DownloadVerifyCertificate}) to \texttt{false} and omitting the \texttt{verifyCert} component from \mbox{\texttt{\mdseries\slshape opt}}.
\end{description}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@url:= "https://www.gap-system.org/index.html";;|
!gapprompt@gap>| !gapinput@res1:= Download( url );;|
!gapprompt@gap>| !gapinput@res1.success;|
true
!gapprompt@gap>| !gapinput@IsBound( res1.result ) and IsString( res1.result );|
true
!gapprompt@gap>| !gapinput@res2:= Download( Concatenation( url, "xxx" ) );;|
!gapprompt@gap>| !gapinput@res2.success;|
false
!gapprompt@gap>| !gapinput@IsBound( res2.error ) and IsString( res2.error );|
true
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{User preference \texttt{DownloadVerifyCertificate}}}\label{subsec-DownloadVerifyCertificate}
\logpage{[ 9, 1, 2 ]}
\hyperdef{L}{X85182BA486E3C2AA}{}
{
\index{DownloadVerifyCertificate@\texttt{DownloadVerifyCertificate}} The value \texttt{true} (the default) means that the server's certificate is checked in calls of \texttt{Download} (\ref{Download}), such that nothing gets downloaded if the certificate is invalid.
If the value is \texttt{false} then download methods are supposed to omit the check of the server's
certificate (this may not be supported by all download methods).
One can set the value of the preference to be \texttt{val} via \texttt{SetUserPreference} (\textbf{Reference: SetUserPreference}), by calling \texttt{SetUserPreference( "utils", "DownloadVerifyCertificate", val )}, and access the current value via \texttt{UserPreference} (\textbf{Reference: UserPreference}), by calling \texttt{UserPreference( "utils", "DownloadVerifyCertificate" )}.
We recommend leaving this preference at its default value \texttt{true}. Sometimes it can be necessary to change it, e.g. to work around issues with
old operating systems which may not be able to correctly verify new
certificates. In general it is better to update such a system, but if that is
not an option, then disabling certificate checks may be a good last resort. }
\subsection{\textcolor{Chapter }{User preference \texttt{DownloadMaxTime}}}\label{subsec-DownloadMaxTime}
\logpage{[ 9, 1, 3 ]}
\hyperdef{L}{X79E10E5B83EF929F}{}
{
\index{DownloadMaxTime@\texttt{DownloadMaxTime}} The value \texttt{0} (the default) means that no timeout is set in calls of \texttt{Download} (\ref{Download}). If the value is a positive integer $n$ then those download methods that support a timeout will give up after $n$ seconds.
One can set the value of the preference to be \texttt{val} via \texttt{SetUserPreference} (\textbf{Reference: SetUserPreference}), by calling \texttt{SetUserPreference( "utils", "DownloadMaxTime", val )}, and access the current value via \texttt{UserPreference} (\textbf{Reference: UserPreference}), by calling \texttt{UserPreference( "utils", "DownloadMaxTime" )}. }
}
}
\chapter{\textcolor{Chapter }{Various other functions}}\label{chap-others}
\logpage{[ 10, 0, 0 ]}
\hyperdef{L}{X83EFC3178180D918}{}
{
\section{\textcolor{Chapter }{File operations}}\label{sec-log2html}
\logpage{[ 10, 1, 0 ]}
\hyperdef{L}{X81A0A4FF842B039B}{}
{
\subsection{\textcolor{Chapter }{Log2HTML}}
\logpage{[ 10, 1, 1 ]}\nobreak
\hyperdef{L}{X7B7ECADF85F748BE}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{Log2HTML({\mdseries\slshape filename})\index{Log2HTML@\texttt{Log2HTML}}
\label{Log2HTML}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
This function converts the \textsf{GAP} logfile \texttt{filename} to HTML. It appears that the logfile should be in your current directory. The
extension of the input file must be \texttt{*.log}. The name of the output file is the same as the one of the input file except
that the extension \texttt{*.log} is replaced by \texttt{*.html}. There is a sample CSS file in \texttt{utils/doc/gaplog.css}, which you can adjust to your taste.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@LogTo( "triv.log" );|
!gapprompt@gap>| !gapinput@a := 33^5;|
39135393
!gapprompt@gap>| !gapinput@LogTo(); |
!gapprompt@gap>| !gapinput@Log2HTML( "triv.log" ); |
\end{Verbatim}
}
\section{\textcolor{Chapter }{{\LaTeX} strings}}\label{sec-latex}
\logpage{[ 10, 2, 0 ]}
\hyperdef{L}{X84D2922D87EDE9E9}{}
{
\subsection{\textcolor{Chapter }{IntOrOnfinityToLaTeX}}
\logpage{[ 10, 2, 1 ]}\nobreak
\hyperdef{L}{X87DEB2B58266F858}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{IntOrOnfinityToLaTeX({\mdseries\slshape n})\index{IntOrOnfinityToLaTeX@\texttt{IntOrOnfinityToLaTeX}}
\label{IntOrOnfinityToLaTeX}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{ResClasses}.
\texttt{IntOrInfinityToLaTeX(n)} returns the {\LaTeX} string for \mbox{\texttt{\mdseries\slshape n}}.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@IntOrInfinityToLaTeX( 10^3 );|
"1000"
!gapprompt@gap>| !gapinput@IntOrInfinityToLaTeX( infinity );|
"\\infty"
\end{Verbatim}
\subsection{\textcolor{Chapter }{LaTeXStringFactorsInt}}
\logpage{[ 10, 2, 2 ]}\nobreak
\hyperdef{L}{X7DC642B97CD02F4E}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{LaTeXStringFactorsInt({\mdseries\slshape n})\index{LaTeXStringFactorsInt@\texttt{LaTeXStringFactorsInt}}
\label{LaTeXStringFactorsInt}
}\hfill{\scriptsize (function)}}\\
This function has been transferred from package \textsf{RCWA}.
It returns the prime factorization of the integer $n$ as a string in {\LaTeX} format.
}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@LaTeXStringFactorsInt( Factorial(12) );|
"2^{10} \\cdot 3^5 \\cdot 5^2 \\cdot 7 \\cdot 11"
\end{Verbatim}
}
\section{\textcolor{Chapter }{Conversion to ${\sf Magma}$ strings}}\label{sec-magma}
\logpage{[ 10, 3, 0 ]}
\hyperdef{L}{X79F021B1830B68F6}{}
{
\subsection{\textcolor{Chapter }{ConvertToMagmaInputString}}
\logpage{[ 10, 3, 1 ]}\nobreak
\hyperdef{L}{X8768D7707B4CBBD4}{}
{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{ConvertToMagmaInputString({\mdseries\slshape arg})\index{ConvertToMagmaInputString@\texttt{ConvertToMagmaInputString}}
\label{ConvertToMagmaInputString}
}\hfill{\scriptsize (function)}}\\
The function \texttt{ConvertToMagmaInputString( obj [, str] )} attempts to output a string \texttt{s} which can be read into ${\sf Magma}$ \cite{MAGMA} so as to produce the same group in that computer algebra system. In the second
form the user specifies the name of the resulting object, so that the output
string has the form \texttt{"str := ..."}.
When \texttt{obj} is a permutation group, the operation \texttt{PermGroupToMagmaFormat(obj)} is called. \index{PermGroupToMagmaFormat} This function has been taken from \texttt{other.gi} in the main library where it was called \texttt{MagmaInputString}.
When \texttt{obj} is a pc\texttt{\symbol{45}}group, the operation \texttt{PcGroupToMagmaFormat(obj)} is called. \index{PcGroupToMagmaFormat} This function was private code of Max Horn.
When \texttt{obj} is a matrix group over a finite field, the operation \texttt{MatrixGroupToMagmaFormat(obj)} is called. \index{MatrixGroupToMagmaFormat} This function is a modification of private code of Frank L{\"u}beck.
Hopefully code for other types of group will be added in due course.
These functions should be considered \emph{experimental}, and more testing is desirable.
}
\begin{Verbatim}[commandchars=@AB,fontsize=\small,frame=single,label=Example]
@gappromptAgap>B @gapinputA## permutation groupsB
@gappromptAgap>B @gapinputAConvertToMagmaInputString( Group( (1,2,3,4,5), (3,4,5) ) );B
"PermutationGroup<5|(1,2,3,4,5),\n(3,4,5)>;\n"
@gappromptAgap>B @gapinputAConvertToMagmaInputString( Group( (1,2,3,4,5) ), "c5" ); B
"c5 := PermutationGroup<5|(1,2,3,4,5)>;\n"
@gappromptAgap>B @gapinputA## pc-groupB
@gappromptAgap>B @gapinputAConvertToMagmaInputString( DihedralGroup( IsPcGroup, 10 ) );B
"PolycyclicGroup< f1,f2 |\nf1^2,\nf2^5,\nf2^f1 = f2^4\n>;\n"
@gappromptAgap>B @gapinputA## fp-groupB
@gappromptAgap>B @gapinputAF2 := FreeGroup( 2 );;B
@gappromptAgap>B @gapinputAf := F2.1;; g := F2.2;;B
@gappromptAgap>B @gapinputArelq8 := [ f^4, g^4, f*g*f*g^-1, f^2*g^2 ];; B
@gappromptAgap>B @gapinputAq8 := F2/relq8;; B
@gappromptAgap>B @gapinputAConvertToMagmaInputString( q8 );B
no conversion function yet available for fp-groups
fail
@gappromptAgap>B @gapinputA## matrix groupB
@gappromptAgap>B @gapinputAM := GL(2,5);; Size(M); B
480
@gappromptAgap>B @gapinputAs1 := ConvertToMagmaInputString( M );B
"F := GF(5);\nP := GL(2,F);\ngens := [\nP![2,0,0,1],\nP![4,1,4,0]\n];\nsub<P |\
gens>;\n"
@gappromptAgap>B @gapinputAPrint( s1 );B
F := GF(5);
P := GL(2,F);
gens := [
P![2,0,0,1],
P![4,1,4,0]
];
sub<P | gens>;
@gappromptAgap>B @gapinputAn1 := [ [ Z(9)^0, Z(9)^0 ], [ Z(9)^0, Z(9) ] ];;B
@gappromptAgap>B @gapinputAn2 := [ [ Z(9)^0, Z(9)^3 ], [ Z(9)^4, Z(9)^2 ] ];;B
@gappromptAgap>B @gapinputAN := Group( n1, n2 );; Size( N );B
5760
@gappromptAgap>B @gapinputAs2 := ConvertToMagmaInputString( N, "gpN" );;B
@gappromptAgap>B @gapinputAPrint( s2 );B
F := GF(3^2);
P := GL(2,F);
w := PrimitiveElement(F);
gens := [
P![ 1, 1, 1,w^1],
P![ 1,w^3, 2,w^2]
];
gpN := sub<P | gens>;
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Obsolete functions}}\label{chap-obsolete}
\logpage{[ 11, 0, 0 ]}
\hyperdef{L}{X7F561B1D803182FF}{}
{
\section{\textcolor{Chapter }{Operations from AutoDoc}}\label{sec-obs-folders}
\logpage{[ 11, 1, 0 ]}
\hyperdef{L}{X7A6BB3D084912F35}{}
{
The file functions \texttt{FindMatchingFiles} \index{FindMatchingFiles} and \texttt{CreateDirIfMissing} \index{CreateDirIfMissing} were copied from package \textsf{AutoDoc} where they are named \texttt{AutoDoc{\textunderscore}FindMatchingFiles} and \texttt{AutoDoc{\textunderscore}CreateDirIfMissing}.
The string function \texttt{StringDotSuffix} \index{StringDotSuffix} was also copied from package \textsf{AutoDoc}, where it is named \texttt{AUTODOC{\textunderscore}GetSuffix}. \index{GetSuffix}
The function \texttt{SetIfMissing} \index{SetIfMissing} was also transferred from package \textsf{AutoDoc}, where it is called \texttt{AUTODOC{\textunderscore}SetIfMissing}. It writes into a record provided the position is not yet bound.
As from version 0.61, all these functions became obsolete in \textsf{Utils}, but continue to be defined in \textsf{AutoDoc}. }
\section{\textcolor{Chapter }{Functions for printing}}\label{sec-obs-print}
\logpage{[ 11, 2, 0 ]}
\hyperdef{L}{X86F322FC7DECE36F}{}
{
The function \texttt{PrintOneItemPerLine} \index{PrintOneItemPerLine} was used to prints lists vertically, rather than horizontally. Since a very
similar result may be achieved using the \textsf{GAP} library functions \texttt{Perform} and \texttt{Display}, this function became obsolete in version 0.61.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@s3 := SymmetricGroup( 3 );; |
!gapprompt@gap>| !gapinput@L := KnownPropertiesOfObject( GeneratorsOfGroup( s3 ) );;|
!gapprompt@gap>| !gapinput@Perform( L, Display );|
IsFinite
IsSmallList
IsGeneratorsOfMagmaWithInverses
IsGeneratorsOfSemigroup
IsSubsetLocallyFiniteGroup
!gapprompt@gap>| !gapinput@Perform( s3, Display ); |
()
(2,3)
(1,3)
(1,3,2)
(1,2,3)
(1,2)
\end{Verbatim}
}
\section{\textcolor{Chapter }{Other obsolete functions}}\label{sec-obs-others}
\logpage{[ 11, 3, 0 ]}
\hyperdef{L}{X84A4F0B281FA0F94}{}
{
\subsection{\textcolor{Chapter }{Applicable Methods}}\label{subsec-app-meth}
\logpage{[ 11, 3, 1 ]}
\hyperdef{L}{X78B7D1A982BE9866}{}
{
The function \index{PrintApplicableMethod} \texttt{PrintApplicableMethod}, which was included in versions from 0.41 to 0.58, has been removed since it
was considered superfluous. The example shows how to print out a function.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ApplicableMethod( IsCyclic, [ Group((1,2,3),(4,5)) ], 1, 1 );|
#I Searching Method for IsCyclic with 1 arguments:
#I Total: 7 entries
#I Method 4: ``IsCyclic'' at /Applications/gap/gap4r9/lib/grp.gi:30 , value:
36
function( G ) ... end
!gapprompt@gap>| !gapinput@Print( last );|
function ( G )
if Length( GeneratorsOfGroup( G ) ) = 1 then
return true;
else
TryNextMethod();
fi;
return;
end
!gapprompt@gap>| !gapinput@ApplicableMethod( IsCyclic, [ Group((1,2,3),(4,5)) ], 0, 3 );|
function( <1 unnamed arguments> ) ... end
!gapprompt@gap>| !gapinput@Print( last ); |
function ( <<arg-1>> )
<<compiled GAP code from GAPROOT/lib/oper1.g:578>>
end
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{ExponentOfPrime}}\label{subsec-exponent}
\logpage{[ 11, 3, 2 ]}
\hyperdef{L}{X7C1AF2467FB55D79}{}
{
The function \texttt{ExponentOfPrime} \index{ExponentOfPrime} was originally transferred from package \textsf{RCWA}. The command \texttt{ExponentOfPrime(\mbox{\texttt{\mdseries\slshape n}},\mbox{\texttt{\mdseries\slshape p}})} returned the exponent of the prime \mbox{\texttt{\mdseries\slshape p}} in the prime factorization of \mbox{\texttt{\mdseries\slshape n}}.
Since the \textsf{GAP} function \texttt{PValuation} produces the same results, and does so more quickly, this function has been
made obsolete. }
}
}
\chapter{\textcolor{Chapter }{The transfer procedure}}\label{chap-transfer}
\logpage{[ 12, 0, 0 ]}
\hyperdef{L}{X84AC9613842F014C}{}
{
We consider here the process for transferring utility functions from a package \textsf{Home} to \textsf{Utils} which has to avoid the potential problem of duplicate declarations of a
function causing loading problems in \textsf{GAP}.
If the functions in \textsf{Home} all have names of the form \texttt{HOME{\textunderscore}FunctionName} then, in \textsf{Utils}, these functions are likely to be renamed as \texttt{FunctionName} or something similar. In this case the problem of duplicate declarations does
not arise. This is what has happened with transfers from the \textsf{AutoDoc} package.
The case where the function names are unchanged is more complicated. Initially
we tried out a process which allowed repeated declarations and installations
of the functions being transferred. This involved additions to the main
library files \texttt{global.g} and \texttt{oper.g}. Since there were misgivings about interfering in this way with basic
operations such as \texttt{BIND{\textunderscore}GLOBAL}, a simpler (but slightly less convenient) process has been adopted.
Using this alternative procedure, the following steps will be followed when
making transfers from \textsf{Home} to \textsf{Utils}.
\begin{enumerate}
\item (\textsf{Home}:) Offer functions for inclusion. This may be simply done by emailing a list
of functions. More usefully, email the declaration, implementation, test and
documentation files, e.g.: \texttt{home.gd}, \texttt{home.gi}, \texttt{home.tst} and \texttt{home.xml}. (All active authors should be involved.)
\item (\textsf{Home}:) Declare that \textsc{m.n} is the last version of \textsf{Home} to contain these functions, so that \textsc{m.n+1} (or similar) will be the first version of \textsf{Home} to have all these functions removed, and to specify \textsf{Utils} as a required package.
\item (\textsf{Utils}:) Add strings \mbox{\texttt{\mdseries\slshape "home"}} and \mbox{\texttt{\mdseries\slshape "m.n"}} to the list \texttt{UtilsPackageVersions} in the file \texttt{utils/lib/start.gd}.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
UtilsPackageVersions :=
[ "autodoc", "2016.01.31",
"resclasses", "4.2.5",
"home", "m.n",
..., ...
];
\end{Verbatim}
While the transfers are being made, it is essential that any new versions of \textsf{Home} should be tested with the latest version of \textsf{Utils} before they are released, so as to avoid loading failures.
\item (\textsf{Utils}:) Include the function declaration and implementation sections in suitable
files, enclosed within a conditional clause of the form:
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
if OKtoReadFromUtils( "Home" ) then
. . . . . .
<the code>
. . . . . .
fi;
\end{Verbatim}
\index{OKtoReadFromUtils} The function \texttt{OKtoReadFromUtils} returns \texttt{true} only if there is an installed version of \textsf{Home} and if this version is greater than \textsc{m.n}. So, at this stage, \emph{the copied code will not be read}, and the transferred functions can only be called if \textsf{Home} has been installed.
\item (\textsf{Utils}:) Add the test and documentation material to the appropriate files. The
copied code can be tested by temporarily moving \textsf{Home} away from \textsf{GAP}'s package directory.
\item (\textsf{Utils}:) Release a new version of \textsf{Utils} containing all the transferred material.
\item (\textsf{Home}:) Edit out the declarations and implementations of all the transferred
functions, and remove references to them in the manual and tests. Possibly add
a note to the manual that these functions have been transferred. Add \textsf{Utils} to the list of \textsf{Home}'s required packages in \texttt{PackageInfo.g}. Release a new version of \textsf{Home}.
\item (\textsf{Utils}:) In due course, when the new version(s) of \textsf{Home} are well established, it may be safe to remove the conditional clauses
mentioned in item 4 above. The entry for \textsf{Home} in \texttt{UtilsPackageLists} may then be removed.
\end{enumerate}
Finally, a note on the procedure for testing these functions. As long as a
function being transferred still exists in the \textsf{Home} package, the code will not be read from \textsf{Utils}. So, when the tests are run, it is necessary to \texttt{LoadPackage("home")} before the function is called. The file \texttt{utils/tst/testall.g} makes sure that all the necessary packages are loaded before the individual
tests are called. }
\def\bibname{References\logpage{[ "Bib", 0, 0 ]}
\hyperdef{L}{X7A6F98FD85F02BFE}{}
}
\bibliographystyle{alpha}
\bibliography{bib.xml}
\addcontentsline{toc}{chapter}{References}
\def\indexname{Index\logpage{[ "Ind", 0, 0 ]}
\hyperdef{L}{X83A0356F839C696F}{}
}
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Index}
\printindex
\immediate\write\pagenrlog{["Ind", 0, 0], \arabic{page},}
\newpage
\immediate\write\pagenrlog{["End"], \arabic{page}];}
\immediate\closeout\pagenrlog
\end{document}
|