1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
##############################################################################
##
#W lists.gd GAP4 package `Utils' Stefan Kohl
##
#Y Copyright (C) 2015-2025, The GAP Group
#############################################################################
## these functions have been transferred from ResClasses
##
#F DifferencesList( <list> ) . . . . differences of consecutive list entries
#F QuotientsList( <list> ) . . . . . . quotients of consecutive list entries
#F FloatQuotientsList( <list> ) . . . . . . . . . . . . dito, but as floats
##
DeclareGlobalName( "DifferencesList" );
DeclareGlobalName( "QuotientsList" );
DeclareGlobalName( "FloatQuotientsList" );
#############################################################################
## this function has been transferred from ResClasses
##
#F RandomCombination( S, k )
##
## Returns a random unordered <k>-tuple of distinct elements of the set <S>.
##
DeclareOperation( "RandomCombination", [ IsListOrCollection, IsPosInt ] );
#############################################################################
## this function has been transferred from RCWA
##
#F SearchCycle( <l> ) . . . a utility function for detecting cycles in lists
##
DeclareGlobalName( "SearchCycle" );
#############################################################################
## these functions have been have been transferred from XMod
##
#O DistinctRepresentatives( <L> )
#O CommonRepresentatives( <J>, <K> )
#O CommonTransversal( <G>, <H> )
#O IsCommonTransversal( <G>, <H>, <T> )
##
DeclareOperation( "DistinctRepresentatives", [ IsList ] );
DeclareOperation( "CommonRepresentatives", [ IsList, IsList ] );
DeclareOperation( "CommonTransversal", [ IsGroup, IsGroup ] );
DeclareOperation( "IsCommonTransversal", [ IsGroup, IsGroup, IsList ] );
#############################################################################
##
#E lists.gd . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|