1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
#############################################################################
##
#W lists.gi GAP4 package `Utils' Stefan Kohl
##
#Y Copyright (C) 2015-2025, The GAP Group
#############################################################################
## these functions have been transferred from ResClasses
##
#F DifferencesList( <list> ) . . . . differences of consecutive list entries
#F QuotientsList( <list> ) . . . . . . quotients of consecutive list entries
#F FloatQuotientsList( <list> ) . . . . . . . . . . . . dito, but as floats
##
BindGlobal( "DifferencesList",
list -> List( [ 2..Length(list) ],
pos -> list[ pos ] - list[ pos-1 ] ) );
BindGlobal( "QuotientsList",
function( list )
local len, pos, quot;
len := Length( list );
quot := ListWithIdenticalEntries( len-1, 0 );
for pos in [1..len-1] do
if IsZero( list[pos] ) then
quot[pos] := fail;
else
quot[pos] := list[pos+1]/list[pos];
fi;
od;
return quot;
end );
BindGlobal( "FloatQuotientsList",
list -> List( QuotientsList( list ), Float ) );
#############################################################################
## this function has been transferred from ResClasses
##
#M RandomCombination( S, k ) . . . . . . . . . . . . . . . . default method
##
InstallMethod( RandomCombination, "default method",
ReturnTrue, [ IsListOrCollection, IsPosInt ],
function ( S, k )
local c, elm, i;
if k > Size(S) then return fail; fi;
c := [];
for i in [1..k] do
repeat
elm := Random(S);
until not elm in c;
Add(c,elm);
od;
return Set(c);
end );
#############################################################################
## this function has been transferred from RCWA
##
#F SearchCycle( <list> ) . a utility function for detecting cycles in lists
##
BindGlobal( "SearchCycle",
function ( list )
local preperiod, cycle, startpos, mainpart, mainpartdiffs,
elms, inds, min, n, d, i, j;
n := Length(list);
mainpart := list{[Int(n/3)..n]};
elms := Set(mainpart);
cycle := [elms[1]];
startpos := Filtered(Positions(list,elms[1]),i->i>n/3);
if Length(elms) = 1 then
if ValueOption("alsopreperiod") <> true then return cycle; else
i := Length(list);
repeat i := i - 1; until i = 0 or list[i] <> elms[1];
preperiod := list{[1..i]};
return [preperiod,cycle];
fi;
fi;
i := 0;
repeat
i := i + 1;
inds := Intersection(startpos+i,[1..n]);
if inds = [] then return fail; fi;
min := Minimum(list{inds});
Add(cycle,min);
startpos := Filtered(startpos,j->j+i<=n and list[j+i]=min);
if Length(startpos) <= 1 then return fail; fi;
mainpartdiffs := DifferencesList(Intersection(startpos,[Int(n/3)..n]));
if mainpartdiffs = [] then return fail; fi;
d := Maximum(mainpartdiffs);
until Length(cycle) = d;
if Minimum(startpos) > n/2
or n-Maximum(startpos)-d+1 > d
or list{[Maximum(startpos)+d..n]}<>cycle{[1..n-Maximum(startpos)-d+1]}
then return fail; fi;
if ValueOption("alsopreperiod") <> true then return cycle; else
i := Minimum(startpos) + Length(cycle);
repeat
i := i - Length(cycle);
until i <= 0 or list{[i..i+Length(cycle)-1]} <> cycle;
preperiod := list{[1..i+Length(cycle)-1]};
return [preperiod,cycle];
fi;
end );
##############################################################################
## this function has been transferred from XMod
##
#M DistinctRepresentatives( <L> )
##
InstallMethod( DistinctRepresentatives, "for a list of sets", true,
[ IsList ], 0,
function( L )
local n, rep, U, len, i, j, k, used, found, S, T, M, P, x, y, z;
if not ( IsList( L ) and
( ForAll( L, IsList ) or ForAll( L, IsSet ) ) ) then
Error( "argument should be a list of sets" );
fi;
n := Length( L );
U := [1..n];
len := 0 * U;
for i in U do
S := L[i];
if IsList( S ) then
S := Set( S );
fi;
len[i] := Length( S );
if ( len[i] = 0 ) then
Error( "subsets must be non-empty" );
fi;
if not ForAll( S, j -> ( j in U ) ) then
Error( "each set must be a subset of [1..n]" );
fi;
od;
rep := 0 * U;
used := 0 * U;
rep[1] := L[1][1];
used[ rep[1] ] := 1;
for i in [2..n] do
found := false;
S := L[i];
j := 0;
while ( ( j < len[i] ) and not found ) do
j := j+1;
x := S[j];
if ( used[x] = 0 ) then
rep[i] := x;
used[x] := i;
found := true;
fi;
od;
# construct the graph component
T := ShallowCopy( S );
M := List( T );
P := 0 * U;
for x in M do
P[x] := i;
od;
j := 0;
while not found do
j := j+1;
x := M[j];
k := used[x];
if ( k = 0 ) then
# reassign representatives
y := P[x];
while ( y <> i ) do
z := rep[y];
rep[y] := x;
used[x] := y;
x := z;
y := P[x];
od;
rep[i] := x;
used[x] := i;
found := true;
else
for y in L[k] do
if not ( y in T ) then
Add( M, y );
P[y] := k;
T := Union( T, [y] );
fi;
od;
fi;
if ( ( not found ) and ( j = Length( M ) ) ) then
Print( "Hall condition not satisfied!\n" );
return false;
fi;
od;
od;
return rep;
end );
##############################################################################
## this function has been transferred from XMod
##
#M CommonRepresentatives( <J>, <K> )
##
InstallMethod( CommonRepresentatives, "for a pair of lists/sets", true,
[ IsList, IsList ], 0,
function( J, K )
local U, i, j, k, m, n, lenJ, lenK, S, L, I, rep, perm, common;
if not ( ForAll( J, IsList ) or ForAll( J, IsSet ) ) then
Error( "first argument should be a list of sets" );
fi;
m := Length( J );
if not ( ForAll( K, IsList ) or ForAll( K, IsSet ) ) then
Error( "second argument should be a list of sets" );
fi;
n := Length( K );
if not ( m = n ) then
Error( "lists <J> and <K> have unequal length" );
fi;
U := [1..n];
lenJ := 0 * U;
lenK := 0 * U;
for i in U do
S := J[i];
if IsList( S ) then
S := Set( S );
fi;
lenJ[i] := Length( S );
if ( lenJ[i] = 0 ) then
Error( "sets must be non-empty" );
fi;
S := K[i];
if IsList( S ) then
S := Set( S );
fi;
lenK[i] := Length( S );
if ( lenK[i] = 0 ) then
Error( "sets must be non-empty" );
fi;
od;
L := List( U, x -> [ ] );
for i in U do
S := J[i];
for j in U do
I := Intersection( S, K[j] );
if ( Length( I ) > 0 ) then
Add( L[i], j );
fi;
od;
od;
rep := DistinctRepresentatives( L );
perm := PermList( rep );
K := Permuted( K, perm^-1 );
common := 0 * U;
for i in U do
I := Intersection( J[i], K[i] );
common[i] := I[1];
od;
return [ common, rep ];
end );
##############################################################################
## this function has been transferred from XMod
##
#M CommonTransversal
##
InstallMethod( CommonTransversal, "for left and right cosets of a subgroup",
true, [ IsGroup, IsGroup ], 0,
function( G, H )
local R, ER, EL, T;
if not IsSubgroup( G, H ) then
Error( "<H> must be a subgroup of <G>" );
fi;
R := RightCosets( G, H );
ER := List( R, Elements );
EL := List( ER, C -> List( C, Inverse ) );
Info( InfoUtils, 3, "right cosets: ", ER );
Info( InfoUtils, 3, " left cosets: ", EL );
T := CommonRepresentatives( EL, ER );
return T[1];
end );
##############################################################################
## this function has been transferred from XMod
##
#M IsCommonTransversal
##
InstallMethod( IsCommonTransversal, "for group, subgroup, list", true,
[ IsGroup, IsGroup, IsList ], 0,
function( G, H, T )
local eG, eH, oG, oH, g, h, t, pos, ind, found;
if not IsSubgroup( G, H ) then
Print( "second group must be subgroup of first\n" );
return fail;
fi;
oG := Size( G );
oH := Size( H );
eG := Elements( G );
eH := Elements( H );
ind := oG/oH;
found := 0 * [1..oG];
for t in T do
if not ( t in eG ) then
Print( "element of T not in G\n" );
return false;
fi;
for h in eH do
g := t*h;
pos := Position( eG, g );
found[pos] := found[pos] +1;
g := h*t;
pos := Position( eG, g );
found[pos] := found[pos] + 1;
od;
od;
for t in [1..oG] do
if not ( found[t] = 2 ) then
Print( eG[t], " found ", found[t], " times\n" );
return false;
fi;
od;
return true;
end );
#############################################################################
##
#E lists.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|