1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#############################################################################
##
#W maps.gi GAP4 package `Utils' Stefan Kohl
## Chris Wensley
#Y Copyright (C) 2015-2019, The GAP Group
#############################################################################
##
#F EpimorphismByGenerators( <D1>, <D2> ) . epi: gen's of <D1>->gen's of <D2>
##
InstallMethod( EpimorphismByGenerators, "for groups", ReturnTrue,
[ IsGroup, IsGroup ], 0,
function( G, H )
if not ( IsFreeGroup( G ) ) then
Print( "Warning: calling GroupHomomorphismByImagesNC without checks\n" );
fi;
return GroupHomomorphismByImagesNC( G, H, GeneratorsOfGroup(G),
GeneratorsOfGroup(H) );
end );
##############################################################################
##
#M Pullback . . . . . . . . . for two group homomorphisms with a common range
##
InstallMethod( Pullback, "for two group homomorphisms", true,
[ IsGroupHomomorphism, IsGroupHomomorphism ], 0,
function( nu, mu )
local M, N, P, NxM, projM, pmu, projN, pnu, genNxM, e, genL, L,
imphi, phi, impsi, psi, info;
M := Source( mu );
P := Range( mu );
N := Source( nu );
if not ( Range(nu) = P ) then
Error( "homs nu,mu should have a common range" );
fi;
NxM := DirectProduct( N, M );
genNxM := GeneratorsOfGroup( NxM );
projN := Projection( NxM, 1 );
pnu := projN * nu;
projM := Projection( NxM, 2 );
pmu := projM * mu;
if IsFinite( NxM ) then
genL := [ ];
L := Subgroup( NxM, [ One(NxM) ] );
for e in NxM do
if ImageElm( pnu, e ) = ImageElm( pmu, e ) then
if not ( e in L ) then
Add( genL, e );
L := Group( genL );
fi;
fi;
od;
else
return fail;
fi;
imphi := List( genL, g -> ImageElm( projN, g ) );
phi := GroupHomomorphismByImages( L, N, genL, imphi );
impsi := List( genL, g -> ImageElm( projM, g ) );
psi := GroupHomomorphismByImages( L, M, genL, impsi );
info := rec( directProduct := NxM, projections := [phi,psi] );
SetPullbackInfo( L, info );
return L;
end );
#############################################################################
##
#M CentralProduct( <G1>, <G2>, <Z1>, <Phi> )
##
InstallMethod( CentralProduct,
[ "IsGroup", "IsGroup", "IsGroup", "IsGroupHomomorphism" ],
function( G1, G2, Z1, Phi )
local gens, imgs, dp, emb1, emb2, N, proj, G;
if not ( IsSubset( G1, Z1 ) and IsCentral( G1, Z1 ) ) then
Error( "<Z1> must be a central subgroup of <G1>" );
fi;
gens:= GeneratorsOfGroup( Z1 );
imgs:= List( gens, x -> (x^-1)^Phi );
if not ( IsSubset( G2, imgs ) and
ForAll( imgs, x -> IsCentral( G2, x ) ) ) then
Error( "<Phi> must map <Z1> to a central subgroup of <G2>" );
fi;
dp:= DirectProduct( G1, G2 );
emb1:= Embedding( dp, 1 );
emb2:= Embedding( dp, 2 );
N:= SubgroupNC( dp,
List( [ 1 .. Length( gens ) ], i -> gens[i]^emb1 * imgs[i]^emb2 ) );
proj:= NaturalHomomorphismByNormalSubgroup( dp, N );
G:= Image( proj );
SetCentralProductInfo( G, rec( projection:= proj, phi:= Phi ) );
return G;
end );
##############################################################################
##
#M IdempotentEndomorphisms . . . . . . . . . . . . . . . . . . . for a group
#M IdempotentEndomorphismsData . . . . . . . . . . . . . . . . . for a group
#M IdempotentEndomorphismsWithImage . . . . . for a group and a chosen image
##
InstallMethod( IdempotentEndomorphismsWithImage,
"for a list of group generators and a chosen image",
[ IsList, IsGroup ], 0,
function( genG, R )
local G, numG, r, q, norm, n, reps, i, j, rc;
G := Group( genG );
if not IsSubgroup( G, R ) then
Error( "R should be a subgroup of G" );
fi;
numG := Length( genG );
r := Size( R );
q := Size( G )/r;
norm := Filtered( NormalSubgroups( G ), N -> ( Size( N ) = q ) and
IsTrivial( Intersection( N, R ) ) );
n := Length( norm );
reps := [ ];
for i in [1..n] do
Add( reps, [ ] );
for j in [1..numG] do
rc := norm[i]*genG[j];
Add( reps[i], First( rc, g -> g in R ) );
od;
od;
return reps;
end );
InstallMethod( IdempotentEndomorphismsData, "for a group", [ IsGroup ], 0,
function( G )
local genG, R, data, images;
genG := SmallGeneratingSet( G );
images := [ ];
for R in AllSubgroups( G ) do
data := IdempotentEndomorphismsWithImage( genG, R );
if ( data <> [ ] ) then
Add( images, data );
fi;
od;
return rec( gens := genG, images := images );
end );
InstallMethod( IdempotentEndomorphisms, "for a group", [ IsGroup ], 0,
function( G )
local data, genG, images, len, L, i, im;
data := IdempotentEndomorphismsData( G );
genG := data!.gens;
G := Group( genG );
images := data!.images;
len := Length( images );
L := [ ];
for i in [1..len] do
for im in images[i] do
Add( L, GroupHomomorphismByImages( G, G, genG, im ) );
od;
od;
return L;
end );
##############################################################################
##
#M DirectProductOfFunctions . . . . . . for two groups and two homomorphisms
##
InstallMethod( DirectProductOfFunctions, "for two groups and two homs",
[ IsGroup, IsGroup, IsGroupHomomorphism, IsGroupHomomorphism ], 0,
function( G, H, f1, f2 )
local infoG, gpsG, G1, G2, infoH, gpsH, H1, H2, eG1, eG2, eH1, eH2,
mgi1, mgi2, genG, imH1, imH2, imH;
if not HasDirectProductInfo( G ) and HasDirectProductInfo( H ) then
Error( "first two parameters should be direct products" );
fi;
infoG := DirectProductInfo( G );
gpsG := infoG!.groups;
G1 := gpsG[1];
G2 := gpsG[2];
if not ( ( G1 = Source( f1 ) ) and ( G2 = Source( f2 ) ) ) then
Error( "f1,f2 should have source G1,G2" );
fi;
eG1 := Embedding( G, 1 );
eG2 := Embedding( G, 2 );
mgi1 := MappingGeneratorsImages( f1 );
mgi2 := MappingGeneratorsImages( f2 );
infoH := DirectProductInfo( H );
gpsH := infoH!.groups;
H1 := gpsH[1];
H2 := gpsH[2];
if not ( ( H1 = Range( f1 ) ) and ( H2 = Range( f2 ) ) ) then
Error( "f1,f2 should have range H1,H2" );
fi;
eH1 := Embedding( H, 1 );
eH2 := Embedding( H, 2 );
genG := Concatenation( List( mgi1[1], g -> ImageElm( eG1, g ) ),
List( mgi2[1], g -> ImageElm( eG2, g ) ) );
imH1 := List( mgi1[2], h -> ImageElm( eH1, h ) );
imH2 := List( mgi2[2], h -> ImageElm( eH2, h ) );
imH := Concatenation( imH1, imH2 );
return GroupHomomorphismByImagesNC( G, H, genG, imH );
end );
##############################################################################
##
#M DirectProductOfAutomorphismGroups . . . . . . for two automorphism groups
##
InstallMethod( DirectProductOfAutomorphismGroups, "for two groups",
[ IsGroup, IsGroup ], 0,
function( A1, A2 )
local gen1, gen2, G1, G2, id1, id2, dp, dp1, dp2, gen12, A12,
em1, em2, pr1, pr2, info;
if not ( IsGroupOfAutomorphisms(A1) and IsGroupOfAutomorphisms(A2) ) then
Error( "A1,A2 should be automorphism groups" );
fi;
gen1 := GeneratorsOfGroup( A1 );
gen2 := GeneratorsOfGroup( A2 );
G1 := Source( gen1[1] );
G2 := Source( gen2[1] );
if not ( IsGroup( G1 ) and IsGroup( G2 ) ) then
Error( "A1,A2 should be automorphism groups of groups G1,G2" );
fi;
id1 := IdentityMapping( G1 );
id2 := IdentityMapping( G2 );
dp := DirectProduct( G1, G2 );
dp1 := List( gen1, g -> DirectProductOfFunctions( dp, dp, g, id2 ) );
dp2 := List( gen2, g -> DirectProductOfFunctions( dp, dp, id1, g ) );
gen12 := Concatenation( dp1, dp2 );
A12 := Group( gen12 );
em1 := GroupHomomorphismByImages( A1, A12, gen1, dp1 );
em2 := GroupHomomorphismByImages( A2, A12, gen2, dp2 );
pr1 := GroupHomomorphismByImages( A12, A1, gen12,
Concatenation( gen1, List( gen2, g -> id1 ) ) );
pr2 := GroupHomomorphismByImages( A12, A2, gen12,
Concatenation( List( gen1, g -> id2 ), gen2 ) );
info := rec( embeddings := [ em1, em2 ],
groups := [ A1, A2 ],
projections := [ pr1, pr2 ] );
SetDirectProductInfo( A12, info );
return A12;
end );
|