1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#############################################################################
##
#W matrix.gi GAP4 package `Utils' Pedro A. Garcia-Sanchez
##
#Y Copyright (C) 2023, The GAP Group
InstallMethod( DirectSumBlock, "for a matrix",
[ IsMatrixOrMatrixObj, IsInt, IsList, IsList ], 0,
function( M, level, blocks, answer )
local nrM, ncM, nM, nr0, nc0, found, nlzr, nlzc, ntzr, ntzc, nlz, ntz,
B, nrB, ncB, nB, nr, nc, i, j, k, i0, j0, nzr, nzc, rest, sub,
bls, nrbls, ncbls, pr1, diag0, up0, low0, imax, jmax,
len1, ok, ans;
nrM := NumberRows( M );
ncM := NumberColumns( M );
nM := Minimum( [ nrM, ncM ] );
## deal with the diagonal case first
if IsDiagonalMatrix( M ) then
bls := List( [1..nM], i -> [ [ M[i,i] ] ] );
if ( ncM > nM ) then
sub := ExtractSubMatrix( M, [nM], [nM..ncM] )[1];
bls[nM] := [ sub ];
fi;
if ( nrM > nM ) then
sub := ExtractSubMatrix( M, [nM..nrM], [nM] )[1];
bls[ nM] := [ sub ];
fi;
blocks[1] := Concatenation( blocks[1], bls );
ans := Concatenation( blocks[1], blocks[2] );
if not ( ans in answer ) then
Add( answer, ans );
fi;
return 0;
fi;
## check for leading or trailing rows or columns of zeros
nlzr := 0;
found := false;
i := 0;
while not found do
i := i+1;
if ForAll( [1..ncM], j -> M[i,j] = 0 ) then
nlzr := nlzr + 1;
else
found := true;
fi;
od;
nlzc := 0;
found := false;
j := 0;
while not found do
j := j+1;
if ForAll( [1..nrM], i -> M[i,j] = 0 ) then
nlzc := nlzc + 1;
else
found := true;
fi;
od;
ntzr := 0;
found := false;
i := nrM + 1;
while not found do
i := i-1;
if ForAll( [1..ncM], j -> M[i,j] = 0 ) then
ntzr := ntzr + 1;
else
found := true;
fi;
od;
ntzc := 0;
found := false;
j := ncM + 1;
while not found do
j := j-1;
if ForAll( [1..nrM], i -> M[i,j] = 0 ) then
ntzc := ntzc + 1;
else
found := true;
fi;
od;
## add any leading or trailing blocks [ [0] ]
nlz := Minimum( [ nlzr, nlzc ] );
if ( nlz > 0 ) then
blocks[1] := Concatenation( blocks[1],
ListWithIdenticalEntries( nlz, [ [0] ] ) );
fi;
ntz := Minimum( [ ntzr, ntzc ] );
if ( ntz > 0 ) then
blocks[2] := Concatenation(
ListWithIdenticalEntries( ntz, [ [0] ] ), blocks[2] );
fi;
B := ExtractSubMatrix( M, [nlz+1..nrM-ntz], [nlz+1..ncM-ntz] );
nrB := NumberRows( B );
ncB := NumberColumns( B );
nB := Minimum( [nrB, ncB] );
bls := [ ];
if ( nrB = 1 ) or ( ncB = 1 ) then
Add( blocks[1], B );
ans := Concatenation( blocks[1], blocks[2] );
if not ( ans in answer ) then
Add( answer, ans );
fi;
return 0;
fi;
## find first non-zero entry in column 1
found := false;
pr1 := 0;
while ( not found ) and ( pr1 < nrB-1 ) do
pr1 := pr1 + 1;
found := B[pr1,1] <> 0;
od;
## determine ranges for i0 and j0
diag0 := nB+1;
i := nB+1;
while ( i > 1 ) do
i := i-1;
if ( B[i,i] <> 0 ) then
diag0 := i;
fi;
od;
up0 := [diag0,diag0];
j := 1;
found := false;
while ( not found ) and ( j < ncB ) do
j := j+1;
k := Minimum( [ j-1, nrB ] );
for i in [1..k] do
if ( B[i,j] <> 0 ) then
up0 := [i,j];
found := true;
fi;
od;
od;
low0 := [diag0,diag0];
i := 1;
found := false;
while ( not found ) and ( i < nrB ) do
i := i+1;
k := Minimum( [ i-1, ncB ] );
for j in [1..k] do
if ( B[i,j] <> 0 ) then
low0 := [i,j];
found := true;
fi;
od;
od;
imax := diag0;
jmax := diag0;
if ( up0[2] < low0[2] ) then
jmax := low0[2] - 1;
fi;
if ( low0[1] < up0[1] ) then
imax := up0[1] - 1;
fi;
if ( up0[1] < low0[1] ) then
imax := Minimum( imax, low0[1] - 1 );
fi;
if ( low0[2] < up0[2] ) then
jmax := Minimum( jmax, up0[2] - 1 );
fi;
if ( low0[1] > nrB ) then
imax := up0[1];
fi;
if ( up0[1] > ncM ) then
jmax := low0[2];
fi;
i0 := 0;
while ( i0 < imax ) do
i0 := i0 + 1;
i := i0;
j0 := 0;
while ( j0 < jmax ) do
found := false;
j0 := j0 + 1;
if ( j0 <= pr1 ) then
j := j0;
rest := MutableCopyMatrix( B );
nr := NumberRows( rest );
nc := NumberColumns( rest );
i := i0;
j := j0;
nzr := true;
nzc := true;
while nzr or nzc do
nzr := ForAny( [1..i],
i1 -> ForAny( [j+1..nc], j1->rest[i1][j1]<>0 ) );
nzc := ForAny( [i+1..nr],
i1 -> ForAny( [1..j], j1->rest[i1][j1]<>0 ) );
if nzr then
j := j+1;
fi;
if nzc then
i := i+1;
fi;
od;
bls := List( [1..i], i1 -> rest[i1]{[1..j]} );
## check if we have filled all columns and rows
nzc := ntzc - ntz;
nrbls := NumberRows( bls );
ncbls := NumberColumns( bls );
if ( nzc > 0 ) and ( ncbls + nzc = ncB ) then
## add zero columns at the end of the block
j := j + nzc;
bls := List( [1..i], i1 -> rest[i1]{[1..j]} );
fi;
nzr := ntzr - ntz;
if ( nzr > 0 ) and ( nrbls + nzr = nrB ) then
## add zero rows at the end of the block
i := i + nzr;
bls := List( [1..i], i1 -> rest[i1]{[1..j]} );
fi;
Add( blocks[1], bls );
len1 := Length( blocks[1] );
rest := List( [i+1..nr], i1 -> rest[i1]{[j+1..nc]} );
if ( rest <> [ ] ) then
ok := DirectSumBlock( rest,level+1,blocks,answer );
else
ans := Concatenation( blocks[1], blocks[2] );
if not ( ans in answer ) then
Add( answer, ans );
fi;
fi;
blocks := [ blocks[1]{[1..len1-1]}, blocks[2] ];
fi;
od;
od;
return Length( answer );
end );
InstallMethod( DirectSumDecompositionMatrices, "for a matrix",
[ IsMatrixOrMatrixObj ], 0,
function( M )
local L, blocks, answer, a, ma;
blocks := [ [], [] ];
answer := [ ];
L := DirectSumBlock( M, 1, blocks, answer );
## check that the answers are correct
for a in answer do
ma := DirectSumMat( a );
if not ( ma = M ) then
Display( ma );
Error( "direct sum of decomposition <> original matrix" );
fi;
od;
return answer;
end );
|