File: lcset.tst

package info (click to toggle)
gap-utils 0.93-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 1,504 kB
  • sloc: xml: 2,167; javascript: 155; makefile: 105
file content (175 lines) | stat: -rw-r--r-- 6,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#@local  a4, k4, rc, lc, a, b, d, f, g, h, H1, H2, H3, K1, K2, K3, lc1, lc4, M, matcyc, rc5, s 

#############################################################################
##  adapted from gapdev/tst/tstinstall/cset.tst for left cosets 
## 
##  test of group intersection and LeftCoset
##
gap> START_TEST("lcset.tst");

# section 5.2.1: basic coset tests
gap> a4 := Group( (1,2,3), (2,3,4) );; SetName( a4, "a4" );
gap> k4 := Group( (1,2)(3,4), (1,3)(2,4) );; SetName( k4, "k4" );
gap> rc := RightCosets( a4, k4 );
[ RightCoset(k4,()), RightCoset(k4,(2,3,4)), RightCoset(k4,(2,4,3)) ]
gap> lc := LeftCosets( a4, k4 );
[ LeftCoset((),k4), LeftCoset((2,4,3),k4), LeftCoset((2,3,4),k4) ]
gap> AsSet( lc[2] );
[ (2,4,3), (1,2,3), (1,3,4), (1,4,2) ]
gap> LeftCoset( (1,4,2), k4 ) = lc[2];
true
gap> Representative( lc[2] );
(2,4,3)
gap> ActingDomain( lc[2] );
k4
gap> (1,4,3) in lc[3];
true
gap> (1,2,3)*lc[2] = lc[3];
true
gap> lc[2]^(1,3,2) = lc[3];
true

# section 5.2.2
gap> Inverse( rc[3] ) = lc[3];
true
gap> Inverse( lc[2] ) = rc[2];
true

# many further tests
gap> LeftCoset( (1,2), a4 ) = LeftCoset( (2,3), a4 );
true
gap> () in LeftCoset( (1,2), Group([(1,2,3,4)]) );
false
gap> (1,2) in LeftCoset( (5,6), SymmetricGroup(12) );
true
gap> Length( LeftCosets( SymmetricGroup(5), AlternatingGroup(4) ) );
10
gap> (1,2,3) * LeftCoset( (), AlternatingGroup(4) ) 
>    = LeftCoset( (), AlternatingGroup(4) );
true
gap> IsBiCoset( LeftCoset( (1,2), AlternatingGroup(6) ) );
true
gap> IsBiCoset( LeftCoset( (1,7), AlternatingGroup(6) ) );
false
gap> IsLeftCoset( LeftCoset( (1,2,3), MathieuGroup(12) ) );
true
gap> g:=SymmetricGroup(3);;
gap> h:=Group((1,2));;
gap> List(LeftCosets(g,h), SSortedList);
[ [ (), (1,2) ], [ (1,3,2), (1,3) ], [ (2,3), (1,2,3) ] ]

# test intersecting permutation cosets 
gap> H1 := Group( [ (), (2,7,6)(3,4,5), (1,2,7,5,6,4,3) ] );; 
gap> H2 := Group( [ (1,2,3,4,5,6,7), (5,6,7) ] );; 
gap> H3 := Group( [ (1,2,3,4,5,6,8), (1,3,2,6,4,5), (1,6)(2,3)(4,5)(7,8) ] );; 
gap> AsSet( LeftCoset( (1,5,7,3)(4,6), H1 ) ) = 
>    Intersection( LeftCoset( (3,6)(4,7), H2 ), 
>                  LeftCoset( (1,5,3,8,6,7), H3 ) );
true
gap> AsSet( LeftCoset( (1,2,5,6,7,4,3,8), Group(()) ) ) =
>    Intersection( LeftCoset( (1,5,6,7)(3,8,4), 
>             Group( [ (1,4)(2,5), (1,3,5)(2,4,6), (1,5)(2,4)(3,6) ] ) ),
>                 LeftCoset( (1,2,6,8)(3,7), 
>             Group( [ (3,4), (5,6,7,8), (5,6) ] ) ) );
true
gap> [] = Intersection( LeftCoset( (), SymmetricGroup(4) ), 
>         LeftCoset( (4,7), SymmetricGroup([3..6]) ) );
true
gap> [] = Intersection( LeftCoset( (4,5), Group( [ (1,2,3,4,5) ] ) ), 
>         LeftCoset( (), AlternatingGroup(4) ) );
true
gap> AsSet( LeftCoset( (7,9), SymmetricGroup([3..5]) ) ) =
>    Intersection( LeftCoset( (1,2)(7,9), SymmetricGroup(5) ),
>                  LeftCoset( (7,9), SymmetricGroup([3..7]) ) );
true
gap> [] = Intersection( LeftCoset( (1,4)(3,5), Group([(1,2,3,4,5)]) ), 
>                       LeftCoset( (), SymmetricGroup(3) ) );
true
gap> AsSet( LeftCoset( (4,5), Group( [(5,6)] ) ) ) =
>    Intersection( LeftCoset( (), SymmetricGroup(6) ),
>                  LeftCoset( (4,5), SymmetricGroup([5..8]) ) );
true
gap> AsSet( LeftCoset( (1,4,5), SymmetricGroup(5) ) ) =
>    Intersection( LeftCoset( (), SymmetricGroup(5) ),
>                  LeftCoset( (1,2), SymmetricGroup(5) ) );
true
gap> [] =
>    Intersection( LeftCoset( (1,2), Group( (1,2,3,4,5) ) ),
>                  LeftCoset( (), Group( (1,2,3,5,4) ) ) );
true
gap> [] =
>    Intersection( LeftCoset( (1,2,3), Group( (1,2,3,4,5) ) ),
>                  LeftCoset( (), Group( (1,2,3,5,4) ) ) );
true
gap> AsSet( LeftCoset( (1,2), Group( [ (1,2,3,5,4) ] ) ) ) =
>    Intersection( LeftCoset( (), SymmetricGroup(7) ),
>                  LeftCoset( (1,2), Group( (1,2,3,5,4) ) ) );
true
gap> [] =
>    Intersection( LeftCoset( (), SymmetricGroup([3..7]) ),
>                  LeftCoset( (1,2), Group( (1,2,3,5,4) ) ) );
true

# test trivial cases
gap> Intersection( LeftCoset( (), Group([],()) ), 
>                  LeftCoset( (1,2), Group([],()) ) ) = [];
true
gap> Intersection( LeftCoset( (), Group( (1,2,3) ) ), 
>                  LeftCoset( (1,2), Group( (1,2,3) ) ) ) = [];
true
gap> Intersection( LeftCoset( (), AlternatingGroup(6) ), 
>                  LeftCoset( (1,2), AlternatingGroup(6) ) ) = [];
true
gap> Intersection( LeftCoset( (1,2), AlternatingGroup([1..5]) ), 
>                  LeftCoset( (1,2), AlternatingGroup([6..10]) ) ) 
>    = AsSet( LeftCoset( (1,2), Group(()) ) );
true

#coset of pc-group 
gap> d := DihedralGroup( 24 );
<pc group of size 24 with 4 generators>
gap> List( GeneratorsOfGroup(d), x -> Order(x) );
[ 2, 12, 6, 3 ]
gap> s := Subgroup( d, [ d.1, d.4 ] );;  
gap> SetName( s, "s" );
gap> lc4 := LeftCoset( d.2, s );      
LeftCoset(<object>,s)
gap> AsSet( lc4 );
[ f2, f2*f4, f1*f2*f3, f2*f4^2, f1*f2*f3*f4, f1*f2*f3*f4^2 ]
gap> d.2 * d.4 in lc4;
true

# coset of fp-group 
gap> f := FreeGroup(2);;  a := f.1;;  b := f.2;;
gap> g := f / [ a^5, b^4, a*b*a^2*b^3 ]; 
<fp group on the generators [ f1, f2 ]>
gap> Size(g);
20
gap> h := Subgroup( g, [g.1] );; 
gap> SetName( h, "C5" ); 
gap> rc5 := LeftCoset( g.2, h );
LeftCoset(<object>,C5)
gap> AsSet( rc5 );
[ f2, f2*f1, f2*f1^2, f2*f1^3, f2*f1^4 ]

# test intersection non-permutation cosets 
gap> K1 := Group( [ [[-1,0],[0,-1]] ] );;
gap> K2 := Group( [ [[-1,0],[0,1]], [[0,1],[1,0]] ] );; 
gap> K3 := Group( [ - IdentityMat(2) ] );; 
gap> AsSet( LeftCoset( [ [0,1],[1,0] ], K1 ) ) =
>    Intersection( LeftCoset( IdentityMat(2), K2 ),
>                  LeftCoset( [[0,1],[1,0]], K1 ) );
true
gap> AsSet( LeftCoset( [[0,1],[1,0]], K3 ) ) =
>    Intersection( LeftCoset( [[0,-1],[-1,0]], K3 ),
>                  LeftCoset( [[0,1],[1,0]], K3 ) );
true
gap> matcyc := CyclicGroup( IsMatrixGroup, GF(3), 4 );; 
gap> M := GeneratorsOfGroup( matcyc )[1];;
gap> lc1 := LeftCoset( M^2, matcyc );;
gap> Representative(lc1);
[ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
  [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ]

#
gap> STOP_TEST("lcset.tst", 1);