File: primality.gi

package info (click to toggle)
gap 4.14.0-3
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 109,836 kB
  • sloc: ansic: 97,167; xml: 48,195; cpp: 13,955; sh: 4,438; perl: 1,652; javascript: 255; makefile: 252; ruby: 9
file content (1055 lines) | stat: -rw-r--r-- 37,225 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Jack Schmidt.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains declarations for the primality test in the integers.
##

##  This file is meant to improve the primality testing in GAP in two
##  significant ways. (1) IsProbablyPrimeInt has been sped up, and perhaps
##  been better documented. (2) IsPrimeInt can now use N+-1 primality proving
##  algorithms to prove primality (proofs can be produced for all primes
##  less than 10^18, and for most primes up to 10^50 or more). A proof
##  verifier is included to demonstrate the simplicity of the proofs.
##
##  This file is split into five parts.
##
##  (1) Prerequisites, including efficient IsSquareInt
##  routine. Some short tables are also included.
##
##  (2) The optimized Baillie-Pomerance-Selfridge-Wagstaff
##  pseudoprimality test with subtests properly labelled and explained,
##  and bounds given at a more precise level.
##
##  (3) The primality proof production code, which finds a machine
##  verifiable proof for the primality of a (probable) prime. It is
##  based on the paper Brillhart, Lehmer, Selfridge's "New Primality
##  Criteria and Factorizations of 2^m +-1", 1975, hereafter referred
##  to as BLS1975. This paper is available on JSTOR and is very clearly
##  written.
##
##  (4) The primality proof verifier, which detects if the proposed
##  proof in fact satisfies the conditions of one of the results in BLS1975.
##
##  (5) A pretty interface to GAP, with result caching and warnings in
##  the rare event IsPrimeInt is unable to prove primality.
##
#T  Further work: The following would be good future tasks for the
#T  interested developer:
#T
#T  (1) Recursive verification: It is standard for primality proofs
#T  to require "lemmas" where other numbers are proved prime as well.
#T  Currently I make no use of this (and it is not needed for N < 10^18)
#T  so it is not implemented.
#T
#T  (2) Theoretical extensions of BLS1975: one should be able to more
#T  carefully handle the case of multiple composite factors of N+-1
#T  in the earlier portions of the paper, to bring results like Theorem 21
#T  into wider use.
#T
#T  (3) Other tests: One can easily verify ECPP machine proofs, and they
#T  can coexist in the current format. Unfortunately finding ECPP proofs
#T  is a difficult task. Another test, the APRCL, might also be suitable.
#T  However, verification of its certificates is extremely complex and
#T  some experts warn "the probability of an implementation error in the
#T  verification routine is much higher than the probability that a
#T  composite BPSW is found". GAP does have rudimentary support for the
#T  needed algebraic structures, but initial testing shows the overhead
#T  of arithmetic in these rings is an insurmountable obstacle for N in
#T  in the appropriate range.
#T
#T  (4) Direct interface to PARI-lib. For a number of reasons, it might
#T  be advantageous to allow use of PARI from within GAP.
##
##  Testing: All primes < 10^7 tested. All 236021 "Brent factors" tested,
##  but two such primes could not be proven prime (1.8*10^104 and 3.2*10^86).
##
##############################################################################

##############################################################################
##
##  Section 1: Prerequisites
##
##  (a) record our tables of small primes and pseudoprimes
##  (b) Define IsSquareInt
##
##############################################################################


##############################################################################
##
##  Tables - We define a table
##  CompositeSPP2 which contains a list of
##  the composite numbers < 10^7 that are strong pseudoprimes for
##  base 2, and that have no prime factors < 1000.
##
##############################################################################

BindGlobal("CompositeSPP2",
  [ 1194649, 1678541, 2284453, 2304167, 3090091, 3125281,
  3375041, 3400013, 3898129, 4181921, 4360621, 4469471,
  4513841, 4863127, 5044033, 5173169, 5489641, 5919187,
  6226193, 6233977, 6368689, 6787327, 6952037, 7306261,
  7306561, 7820201, 8036033, 8095447, 8725753, 9006401,
  9056501, 9371251, 9729301, 9863461 ]);

MakeImmutable(CompositeSPP2);

##############################################################################
##
##  Caches - install flushable values into the cache if they are not already
##  installed.
##
##############################################################################
InstallFlushableValue(PrimesProofs,[]);
if IsHPCGAP then
    ShareSpecialObj(PrimesProofs);
fi;

##############################################################################
##
#F  IsSquareInt - Check if an integer is a square
##
##  Simple implementation based on the ideas in Cohen's CCANT, Algorithm 1.7.3.
##  Briefly, check if N is a quadratic residue modulo some small prime powers,
##  then test if it is equal to the square of its integer square root.
##
##  Please note: This is unimaginably faster than the simpler RootInt(n)^2=n
##  because of the initial residue tests.
##
##############################################################################
BindGlobal("CCANT_1_7_3_q11",List([1..11],i->0));
BindGlobal("CCANT_1_7_3_q63",List([1..63],i->0));
BindGlobal("CCANT_1_7_3_q64",List([1..64],i->0));
BindGlobal("CCANT_1_7_3_q65",List([1..65],i->0));

Perform([0..32], function(t)
    CCANT_1_7_3_q11[(t^2 mod 11)+1]:=1;
    CCANT_1_7_3_q63[(t^2 mod 63)+1]:=1;
    CCANT_1_7_3_q64[(t^2 mod 64)+1]:=1;
    CCANT_1_7_3_q65[(t^2 mod 65)+1]:=1;
end);
MakeImmutable(CCANT_1_7_3_q11);
MakeImmutable(CCANT_1_7_3_q63);
MakeImmutable(CCANT_1_7_3_q64);
MakeImmutable(CCANT_1_7_3_q65);

BindGlobal("CCANT_1_7_3",
function(n)
local t,r,q;
  if n < 0 then return false; fi;
  t:= n mod 64;
  if(CCANT_1_7_3_q64[t+1]=0) then return false; fi;
  r:= n mod 45045;
    if(CCANT_1_7_3_q63[(r mod 63)+1]=0) then return false;
  elif(CCANT_1_7_3_q65[(r mod 65)+1]=0) then return false;
  elif(CCANT_1_7_3_q11[(r mod 11)+1]=0) then return false;
  else q:=RootInt(n);
    return n=q^2;
  fi;
end);

InstallGlobalFunction(IsSquareInt,CCANT_1_7_3);


##############################################################################
##
#F  LucasMod(P,Q,N,k) - return the reduction modulo N of the k'th terms of
##  the Lucas Sequences U,V associated to x^2+Px+Q.
##
##  Iterative version allows larger k (better=constant in N) memory use and
##  is about twice as fast as the recursive version for k around 1000. This
##  should be callable for k around 2^100000 or so (runtime is log(k)), but
##  the size of N is the biggest concern.
##
InstallMethod(LucasMod,
"iterative method",
[IsInt,IsInt,IsInt,IsInt],
1,
function(P,Q,N,K)
    local Um,Vm,Qm,U2m,V2m,Q2m,U2mp1,V2mp1,Q2mp1,k,s,d,i,P2m4Q,T;
    P2m4Q := P*P-4*Q;
    s := SignInt(K);
    k := AbsInt(K);
    d := LogInt(k+1,2);
    T := 2^d;
    Um := 0;
    Vm := 2 mod N;
    Qm := 1 mod N;
    for i in [d,d-1..0] do
        # T = 2^i
        # k is the 0 through i'th least significant bits of |K|
        # "T <= k" means the i'th bit of |K| is set.
        # If we have found [Um,Vm,Qm]=Lucas(P,Q,m) for m = QuoInt(|K|,2*T),
        # then we can find [Un,Vn,Qn]=Lucas(P,Q,n) for n = QuoInt(|K|,T)
        # using n = 2*m + (i'th bit of |K| is set)
        U2m := Um*Vm mod N;
        V2m := (Vm*Vm - 2*Qm) mod N;
        Q2m := Qm*Qm mod N;
        if T <= k then # replace m with n = 2m+1
            U2mp1 := (P*U2m + V2m)/2 mod N;
            V2mp1 := (P2m4Q*U2m + P*V2m)/2 mod N;
            Q2mp1 := Q2m*Q mod N;
            Um := U2mp1;
            Vm := V2mp1;
            Qm := Q2mp1;
            k := k - T;
        else # replace m with n = 2m
            Um := U2m;
            Vm := V2m;
            Qm := Q2m;
        fi;
        T := T/2;
    od;
    if s < 0 then
        Um := -Um/Qm mod N;
        Vm := Vm/Qm mod N;
        Qm := 1/Qm mod N;
    fi;
    return [Um,Vm,Qm];
end);


##############################################################################
##
##  Section 2: Baillie-Pomerance-Selfridge-Wagstaff pseudoprimality test
##
##  (1) IsStrongPseudoPrimeBaseA
##  (2) IsLucasPseudoPrime (the BPSW version with hardcoded discriminant)
##  (3) IsBPSWPsuedoPrime - main interface to optimized test
##
##############################################################################


##############################################################################
##
#F  IsStrongPseudoPrimeBaseA(N,A) - If A does not have odd multiplicative
##  order mod N, then check -1 in <A>.
##
##############################################################################
InstallGlobalFunction(IsStrongPseudoPrimeBaseA,
function(n,A)
  local e,o,i,x;
  # find $e$ and $o$ odd such that $n-1 = 2^e * o$
  e := 0; o := n-1;   while o mod 2 = 0 do e := e+1; o := o/2; od;
  # look at the seq $A^o, A^{2 o}, A^{4 o}, .., A^{2^e o}=A^{n-1}$
  x := PowerModInt( A, o, n );
  i := 0;
  while i < e and x <> 1 and x <> n-1 do
    x := x * x mod n;
    i := i + 1;
  od;
  # if it is not of the form $.., -1, 1, 1, ..$ then $n$ is composite
  return (x = n-1 or (i = 0 and x = 1));
end);

#
BindGlobal("TraceModQF", function ( p, k, n )
  local kb, trc, i;
  kb := [];
  while k <> 1 do
    if k mod 2 = 0 then
      k := k/2;
      Add(kb, 0);
    else
      k := (k+1)/2;
      Add(kb, 1);
    fi;
  od;
  trc := [p, 2];
  i := Length(kb);
  while i >= 1 do
    if kb[i] = 0 then
      trc := [ (trc[1]^2 - 2) mod n, (trc[1]*trc[2] - p) mod n ];
    else
      trc := [ (trc[1]*trc[2] - p) mod n, (trc[2]^2 - 2) mod n ];
    fi;
    i := i-1;
  od;
  return trc;
end);

##############################################################################
##
#F  IsBPSWLucasPseudoPrime(N) - Check if N is a Lucas pseudoprime for
##  x^2+P*x+1 where P is the smallest positive integer such that P^2 - 4 is
##  not a square mod N. N should be odd. N should be prime or greater
##  than 100.
##
##############################################################################
InstallGlobalFunction(IsBPSWLucasPseudoPrime,
function(N)
  local P;
  if N = 2 then return true; fi;
  if IsSquareInt(N) or IsEvenInt(N) then return false; fi;
  P:=2;
  while Jacobi( P^2-4, N ) <> -1 do P:=(P+1) mod N; if P = 2 then return fail; fi; od;
  return TraceModQF(P,N+1,N) = [2,P];
end);

##  There are several variations on how to choose the parameters for the Lucas
##  test. The first two are based on PSW1980, p1024, and are also found in
##  BW1980, p1401. The next two parameter choices are from BW1980 p1409.
##  The next is reported to be a suggestion of Wei Dei. The final is the version
##  used by GAP, which was the fastest in the tests I ran. GAP was 5% faster
##  than the fastest of the other variants, and with TraceModQF function, was
##  twice as fast. Therefore the following code is simply commented out, and
##  the hard-wired version left. JS

#BPSWLucasParameters_PSW1980_A := function(N)
#  local D,o;
#  D:=5; o:=1;
#  while Jacobi(D,N) <> -1 do D:=(-D-2*o) mod N; o:=-o; od;
#  return [D,1,(1-D)/4 mod N];
#end;
#BPSWLucasParameters_PSW1980_B := function(N)
#  local D,P;
#  D:=5;
#  while Jacobi(D,N) <> -1 do D:=D+4; od;
#  P:=RootInt(D);
#  P:=P + ((P+1) mod 2);
#  while P^2 < D do P:=P+2; od;
#  return [D mod N,P mod N,(P^2-D)/4 mod N];
#end;
#BPSWLucasParameters_BW1980_Astar := function(N)
#  local D,o;
#  D:=5; o:=1;
#  while Jacobi(D,N) <> -1 do D:=(-D-2*o) mod N; o:=-o; od;
#  if (1-D)/4 mod N in [1,N-1] then return [5,5,5]; fi;
#  return [D,1,(1-D)/4 mod N];
#end;
#BPSWLucasParameters_BW1980_Bstar := function(N)
#  local D,P;
#  D:=5;
#  while Jacobi(D,N) <> -1 do D:=D+4; od;
#  P:=RootInt(D);
#  P:=P + ((P+1) mod 2);
#  while P^2 < D do P:=P+2; od;
#  if (P^2-D)/4 mod N in [1,N-1] then return [D,(P+2) mod N,(P+(P^2-D)/4 + 1) mod N]; fi;
#  return [D mod N,P mod N,(P^2-D)/4 mod N];
#end;
#BPSWLucasParameters_WeiDei := function(N)
#  local D,k;
#  k:=1;
#  while Jacobi((2*k+1)^2 - 4,N) = 1 do k:=k+1; od;
#  D:=(2*k+1)^2 - 4;
#  return [D,1,(1-D)/4];
#end;
#BPSWLucasParameters_GAP := function(N)
#  local P;
#  P:=2;
#  while Jacobi( P^2-4, N ) <> -1 do P:=(P+1) mod N; if P = 2 then return fail; fi; od;
#  return [ (P^2-4) mod N, P, 1 ];
#end;
#InstallGlobalFunction(IsBPSWLucasPseudoPrime,
#function(N)
#  local params, func, lucas;
#  if N = 2 then return true; fi;
#  if IsSquareInt(N) or IsEvenInt(N) then return false; fi;
#  if ValueOption("BPSWLucasParameters") = fail
#  then func:=BPSWLucasParameters_GAP;
#  else func:=ValueOption("BPSWLucasParameters");
#  fi;
#  if ValueOption("BPSWLucasTest") = fail then
#    if func = BPSWLucasParameters_GAP
#    then lucas:=function(N,D,P) return TraceModQF(P,N+1,N) = [2,P]; end;
#    else lucas:=IsLucasPseudoPrimeDP;
#    fi;
#  else lucas:=ValueOption("BPSWLucasTest");
#  fi;
#  params := CALL_FUNC_LIST(func,[N]);
#  if Jacobi(params[1],N) = 0 and params[1] < N and 0 < params[1] then return false; fi;
#  return CALL_FUNC_LIST(lucas,[N, params[1], params[2]]);
#end);

##############################################################################
##
#F  IsLucasPseudoPrimeDP(N,D,P) - Check if N is a Lucas pseudoprime for
##  x^2+P*x+(P^2-D)/4. D must be a nonsquare mod N, and N must be odd or prime.
##
##############################################################################
InstallGlobalFunction(IsLucasPseudoPrimeDP,
function(N,D,P)
  local Q;
  if N = 2 then return true; fi;
  Q := (P^2-D)/4 mod N;
  if not ( IsOddInt(N) and 0 <> Q mod N and Jacobi(D,N) = -1 ) then Error(); fi;
  return IsOddInt(N) and 0 <> Q mod N and Jacobi(D,N) = -1 and 0 = LucasMod(P,Q,N,N+1)[1];
end);

##############################################################################
##
#F  IsStrongLucasPseudoPrimeDP(N,D,P) - Check if N is a strong Lucas
##  pseudoprime for x^2+P*x+(P^2-D)/4. N must be odd or prime.
##
##############################################################################
InstallGlobalFunction(IsStrongLucasPseudoPrimeDP,
function(N,D,P)
  local Q,d,s,J,L,r,Qi;
  if N = 2 then return true; fi;
  if N in [-1,0,1] then return false; fi;
  if not ( IsOddInt(N) and GcdInt(N,D)=1 ) then return false; fi;
  Q := (P^2-D)/4 mod N;
  J := Jacobi(D,N);
  d := N - J; s:=0; while IsEvenInt(d) do s:=s+1; d:=d/2; od; # Now N-(D/N) = 2^s * d, d odd
  L := LucasMod(P,Q,N,d);
  # Does n divide U_d ?
  if L[1] = 0 then return true; fi;
  # Does n divide V_{2^r d} for some r=0,1,...,s-1 ?
  Qi := PowerModInt(Q,d,N);
  for r in [0..s-1] do
    if L[2] = 0 then return true; fi;
    # L is [Ui,Vi], make it [U2i,V2i] = [ Ui*Vi, Vi^2 - 2Q^i], where i=2^s d
    L[1] := L[1]*L[2] mod N;
    L[2] := (L[2]^2 - 2*Qi) mod N;
    Qi   := Qi*Qi mod N;
  od;
  return false;
end);

##############################################################################
##
#F  IsBSPWPseudoPrime(N) - Check if N is a Baillie-Pomerance-Selfridge-Wagstaff
##  pseudoprime (that is, N is a possibly composite number with no proper
##  divisors less than 1000, N is a strong pseudoprime base 2, and N is a
##  Lucas pseudoprime as above.
##
##############################################################################
InstallGlobalFunction(IsBPSWPseudoPrime,
function(n)
  # Step 1 handle n with prime factors < 103
  # 1a: if n < 103, then n is prime exactly when it is listed
  # 1b: if n is even and >=103, then it is not prime
  # 1c-g: if n has a prime factor < 103, then it is not coprime
  # to 3*5*..*101 split up into factors < 2^28.
  # 1h: A composite number with no factors < 103 must itself be >= 103^2
  n := AbsInt(n);
  if n < 1000 then return n in Primes;
  elif 0 = n mod 2 then return false;
  elif 1<>GcdInt(n,257041785) then return false; # 3*5*7*11*13*17*19*53
  elif 1<>GcdInt(n, 11559991) then return false; # 83*79*43*41
  elif 1<>GcdInt(n,259860509) then return false; # 89*73*47*37*23
  elif 1<>GcdInt(n, 12596323) then return false; # 97*71*59*31
  elif 1<>GcdInt(n, 11970823) then return false; # 101*67*61*29
  elif n < 10609 then return true;
  fi;

  # Step 2 handle n with prime factors < 1000
  # Note that if n < 1000 we have already finished.
  # 2a: Check Gcd(n,Product(Primes{[27..168]}) = 1
  # 2b: If n < 1009^2 is composite, then it has a prime factor < 1009
  if 1<>GcdInt(n,
841284107844892882230924743483896036230303226400884429367479745\
182396425076313801080105888842525657179186823477095844441732607\
309415612117497325122570590402649274666448191740488756513678929\
402959775310209214502833707784648441319210161128261125112776114\
119620471154579797706399078932717575475133487349361392344929340\
84356041841547537781640044258066541550710400764797315999285813)
  then return false;
  elif n < 1018081 then return true;
  fi;

  # Step 3 check if strong pseudo-prime base 2
  # 3a: check for strong pseudo-prime base
  # 3b: the composite pseudo-primes base 2 less than 10^7 with no
  # factors < 1000 are listed in CompositeSPP2
  if not IsStrongPseudoPrimeBaseA(n,2) then return false;
  elif n < 10^7 then return not n in CompositeSPP2;
  fi;

  # Step 4 Check for Lucas pseudo prime
  if not IsBPSWLucasPseudoPrime(n) then return false;
  fi;

  # Step 5 Give up and call it a pseudoprime.
  return true;
end);

#############################################################################
##
##  Note by http://www.trnicely.net/misc/bpsw.html we have that if
##  N < 2^64 is a BPSW-pp, then N is in fact prime.
##
#############################################################################
BindGlobal("BPSW_ProvedBound", 2^64);

#############################################################################
##
##  Section 3: Primality proof production, based on BLS 1975
##
##  (1) Find witnesses for each divisor (either Fermat or Lucas)
##  (2) Suitable Factor N+-1 to decide which witness are needed
##  (3) Main routine
##  (4) Simpler main routine which appears to be very adequate
##
#############################################################################

##  Applicability: A number of results are used from BLS1975, but perhaps
##  Theorem 21 has the widest theoretical use. In short, if one factors
##  the odd parts of N+-1 into E,F (possibly composite) factors each of
##  which has no prime divisors less than B and into various smaller prime
##  factors, and if N < B^(E+F+Max(E,F)), then Fermat and Lucas witnesses
##  for those factors suffice to prove primality. In particular, if N < B^3,
##  then we will succeed in our proof production. Currently GAP's FactorsInt
##  gives us a value of B=10^6, and applicability for N < 10^18.

##############################################################################
##
#F  PrimalityProof_FindFermat(N,P) - find a base A such that
##  N is a strong Fermat pseudoprime base A and such that
##  GcdInt(A^((N-1)/P)-1,N)=1.
##
##  Return [true,A] if such a base is found, or [false,B] if N
##  has been proven composite (where B may help to verify this).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindFermat,
function(N,p)
  local Np,a,b,c,g;
  Np:=(N-1)/p;
  a:=2;
  while true do
    b:=PowerModInt(a,Np,N);
    if(1<>b) then break; fi;
    a:=a+1;
    if(a=N) then return [fail]; fi;
  od;
  c:=PowerModInt(b,p,N);
  if(1 <> c) then return [false,a]; fi;
  g:=GcdInt(b-1,N);
  if 1 < g and g < N then return [false,g]; fi;
  return [true,a];
end);

##############################################################################
##
#F  PrimalityProof_FindLucas(N,D,K) - Find a polynomial
##  x^2+P*x+Q with discriminant D=P^2-4Q such that the
##  associated LucasSequence U satisfies U(N+1) = 0 mod N
##  and Gcd(U((N+1)/K),N)=1.
##
##  Return [true,P] if such a polynomial is found, and
##  [false,B] if N is shown to be composite (where B
##  may help to verify this).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindLucas,
function(N,D,K)
  local P,Q,g;
  P:=2;
  Q:=((P^2-D)/4) mod N;
  while true do
    if 0 <> LucasMod(P,Q,N,N+1)[1] then return [false,P,Q]; fi;
    g:=GcdInt(N, LucasMod(P,Q,N,(N+1)/K)[1]);
    if 1<g and g<N then return [false,g];
    elif 1=g then return [true,P];
    fi;
    Q:=(Q+P+1) mod N;
    P:=(P+2) mod N;
    if(P=0) then return [fail]; fi;
  od;
end);


##############################################################################
##
#F  PrimalityProof_FindStructure(N) - Find divisors of N+-1 which can be
##  used to prove primality of N based on the ideas in BLS1975.
##
##  The return value is a list of pairs [T,div] where T is the name of a test
##  (either "F" or "L") and div is a divisor of N+-1.
##
##  This routine requires a partial factorization routine.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindStructure,
function(N)
  local cheap, FactIntPartial, factorsp, factorsm, sqrtN,
    F1s, F1, R1, F2s, F2, R2, B, to_check, p, s, r;

  cheap:=ValueOption("cheap");
  FactIntPartial:=ValueOption("FactIntPartial");
  if(cheap=fail) then cheap:=true; fi;
  if(FactIntPartial=fail) then FactIntPartial:=true; fi;

  # try straightforward method first
  if cheap=true and FactIntPartial=true then
    to_check:=Concatenation(
      List(Set(PartialFactorization(N-1,7 : cheap)),p->["F",p]),
      List(Set(PartialFactorization(N+1,7 : cheap)),p->["L",p]));
    if [] <> PrimalityProof_VerifyStructure(N,to_check)
    then return to_check;
    else Info(InfoPrimeInt,1,"Straightforward Fermat-Lucas primality proof failed on ",N);
    fi;
  fi;

  sqrtN:=RootInt(N);
  B:=10^6;

  factorsm:=Factors(N-1 : cheap:=cheap, FactIntPartial:=FactIntPartial);

  if not IsList(factorsm[1]) then
    factorsm:=[factorsm,[1]];
  fi;
  F1s:=Set(factorsm[1]);
  F1:=Product(factorsm[1]);
  R1:=Product(factorsm[2]);

  # BLS1975 Cor1
  if F1 > sqrtN then
    F1:=1;
    to_check:=[];
    for p in Reversed(F1s) do
      AddSet(to_check,p);
      F1:=F1*p^Number(factorsm[1],q->p=q);
      if(F1 > sqrtN) then break; fi;
    od;
    return List(to_check,p->["F",p]);
  # BLS1975 Cor3
  elif B*F1 > sqrtN then
    to_check:=F1s;
    AddSet(to_check,R1);
    return List(to_check,p->["F",p]);
  fi;
  s:=QuoInt(R1,2*F1);
  r:=2*F1*s-R1;
  # BLS1975 Th7
  if N < (B*F1+1)*(2*F1^2+(r-B)*F1+1) and (s=0 or not IsSquareInt(r^2-8*s)) then
    to_check:=F1s;
    AddSet(to_check,R1);
    return List(to_check,p->["F",p]);
  fi;

  factorsp:=Factors(N+1 : cheap:=cheap, FactIntPartial:=FactIntPartial);
  if not IsList(factorsp[1]) then
    factorsp:=[factorsp,[1]];
  fi;
  F2s:=Set(factorsp[1]);
  F2:=Product(factorsp[1]);
  R2:=Product(factorsp[2]);

  # BLS1975 Cor8
  if F2 > sqrtN + 1 then
    F2:=1;
    to_check:=[];
    for p in Reversed(F2s) do
      AddSet(to_check,p);
      F2:=F2*p^Number(factorsp[1],q->p=q);
      if F2 > sqrtN + 1 then break; fi;
    od;
    return List(to_check,p->["L",p]);
  # BLS1975 Cor3
  elif B*F2 > sqrtN then
    to_check:=F2s;
    AddSet(to_check,R2);
    return List(to_check,p->["L",p]);
  fi;
  s:=BestQuoInt(R2,2*F2);
  r:=R2-2*F2*s;
  # BLS1975 Th19
  if N < (B*F2-1)*(2*F2^2 + (B-AbsInt(r))*F2 + 1) and (s=0 or not IsSquareInt(r^2+8*s)) then
    to_check:=F2s;
    AddSet(to_check,R2);
    return List(to_check,p->["L",p]);
  fi;

  # BLS1975 Cor11
  if B^3*F1^2*F2 > 2*N or B^3*F1*F2^2 > 2*N then
    return Union(List(F1s,p->["F",p]),List(F2s,p->["L",p]),[ ["F",R1], ["L",R2]]);
  fi;

  if cheap = true then return PrimalityProof_FindStructure(N:cheap:=false); fi;

  return fail;
end);

##############################################################################
##
#F  PrimalityProof(N) - Construct a machine verifiable proof of the primality
##  of (the probable prime) N, following the ideas of the paper Brillhart,
##  Lehmer, Selfridge's "New Primality Criteria and Factorizations of 2^m +-1",
##  1975.
##
##############################################################################
InstallGlobalFunction(PrimalityProof,
function(N)
  local factors,certs,D,J,p,ret;

  if(N<=2) then return fail;
  elif 0 = N mod 2 then return false;
  fi;

  factors:=PrimalityProof_FindStructure(N);
  if(factors=fail) then return fail; fi;

  if(ForAny(factors,p->p[1]="L")) then
    D:=1;
    repeat
      D:=(D+1) mod N;
      if(D=0) then Error(); return fail; fi;
      J:=Jacobi(D,N);
      if(J=0) then Error(); return false; fi;
    until J=-1;
  fi;
  certs:=[];
  for p in factors do
    if p[1]="F" then
      ret:=PrimalityProof_FindFermat(N,p[2]);
      if(ret[1]=fail) then
        Print("\n\n");
        Print("# !!! Please email support@gap-system.org the following:\n");
        Print("# !!! PrimalityProof(",HexStringInt(N),") failed at F",p[2],"\n\n\n");
        Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
        return fail;
      elif(ret[1]=false) then
        if 0 = N mod ret[2] and 1<ret[2] and ret[2]<N
        then Error("# PrimalityProof: ",N," is composite (divisible by ",ret[2],").");
        elif 0 <> ret[2] mod N and 1 <> PowerModInt(ret[2],N-1,N)
        then Error("# PrimalityProof: ",N," is composite (",ret[2],"^",N-1," mod N is not 1).");
        else Error("# PrimalityProof: unknown error. N is supposedly composite.");
        fi;
        return false;
      elif(ret[1]=true) then
        Add(certs,["F",p[2],ret[2]]);
      fi;
    elif p[1]="L" then
      ret:=PrimalityProof_FindLucas(N,D,p[2]);
      if(ret[1]=fail) then
        Print("\n\n");
        Print("# !!! Please email support@gap-system.org the following:\n");
        Print("# !!! PrimalityProof(",HexStringInt(N),") failed at L",p[2],"\n\n\n");
        Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
        return fail;
      elif(ret[1]=false) then
        if 0 = N mod ret[2] and 1<ret[2] and ret[2]<N
        then Error("# PrimalityProof: ",N," is composite (divisible by ",ret[2],").");
        elif 0 <> LucasMod(ret[2],ret[3],N,N-1)[1] mod N
        then Error("# PrimalityProof: ",N," is composite (Lucas(",ret[2],",",ret[3],",N-1) mod N is not 0).");
        else Error("# PrimalityProof: unknown error. N is supposedly composite.");
        fi;
        return false;
      elif(ret[1]=true) then
        Add(certs,["L",p[2],D,ret[2]]);
      fi;
    else
      Error("Unknown certification requested.");
      return fail;
    fi;
  od;
  return certs;
end);


##############################################################################
##
##  Section 4: Primality proof verification
##
##  (1) Verify witnesses
##  (2) Verify the collection of witnesses would provide a primality proof
##  (3) Main interface
##
##############################################################################

##############################################################################
##
#F  PrimalityProof_VerifyWitness(N,witness) - ensure that the proposed
##  witness is valid. In other words check condition II or IV from BLS1975.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_VerifyWitness,
function(N,witness)
  local type, divisor, base, D, P, Q;

  type:=witness[1];
  if( type = "F" ) then
    divisor := witness[2];
    base := witness[3];
    return IsStrongPseudoPrimeBaseA(N,base) and
      GcdInt( PowerModInt(base,(N-1)/divisor,N)-1, N) = 1;
  elif( type = "L" ) then
    divisor := witness[2];
    D := witness[3];
    P := witness[4];
    Q := (P^2-D)/4 mod N;
    return Jacobi(D,N)=-1 and 0 = LucasMod(P,Q,N,N+1)[1]
      and 1 = GcdInt(N, LucasMod(P,Q,N,(N+1)/divisor)[1]);
  fi;
  return fail;
end);


##############################################################################
##
#F  PrimalityProof_VerifyStructure(N,witnesses) - Verify that the collection
##  of witness actually satisfies the hypotheses of one of the results in
##  BLS1975. Failure is indicated by an empty list. Success is a list:
##  [true, NameOfTheorem, AssumedPrimes, DivisorBound, SortOfPrimes ]
##
##  In this case, the routine recognized the proof but may require
##  some lemmas. Every number in AssumedPrimes must be proven prime.
##  Every number in SortOfPrimes must either be (prime and less than
##  DivisorBound) or relatively prime to Factorial(DivisorBound).
##  DivisorBound is always small enough to make this check feasible
##  (currently capped at 10^6).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_VerifyStructure,
function(N,witnesses)
  local Fs,Ls,BF,BL, MaxB, B1, B2, F1s, F2s, R1s, R2s, F1, F2, R1, R2, r, s,
    QuadraticEstimate, GotOne, rets;
  MaxB:=10^6;

  QuadraticEstimate:=function(a,b,c)
    if b^2 - 4*a*c < 0 then return 10^100; fi;
    return Int((-b + RootInt(b^2-4*a*c))/(2*a));
  end;

  GotOne:=function(ret) Add(rets,ret); end;
  rets:=[];

  Fs:=List(Filtered(witnesses,wit->wit[1]="F"),wit->wit[2]);
  Ls:=List(Filtered(witnesses,wit->wit[1]="L"),wit->wit[2]);

  # Every number in F1s and F2s is known to be prime
  F1s:=Filtered(Fs,p->p<BPSW_ProvedBound and IsBPSWPseudoPrime(p));
  R1s:=Filtered(Fs,p->p>BPSW_ProvedBound or not IsBPSWPseudoPrime(p));
  F2s:=Filtered(Ls,p->p<BPSW_ProvedBound and IsBPSWPseudoPrime(p));
  R2s:=Filtered(Ls,p->p>BPSW_ProvedBound or not IsBPSWPseudoPrime(p));

  F1:=Product(F1s, p->p^Valuation(N-1,p));
  R1:=Product(R1s, p->p^Valuation(N-1,p));
  F2:=Product(F2s, p->p^Valuation(N+1,p));
  R2:=Product(R2s, p->p^Valuation(N+1,p));

  # Check Co1
  if F1^2 > N then GotOne([ true, "BLS1975-Co1", [] , 1 , [] ]); fi;

  # Check Cor3 and Th7
  if Size(R1s)=1 and R1s[1]=R1 and F1*R1=N-1 then

    # Check Cor3, solving for B1
    B1 := RootInt( Int(N/F1^2) );
    while B1 < MaxB and N >= (B1*F1)^2 do B1:=B1+1; od;

    if B1 < MaxB and N < (B1*F1)^2
    then GotOne([ true, "BLS1975-Co3", [], B1, R1s]);
    fi;

    # Check Th7, solving for B1
    s:=QuoInt(R1,2*F1);
    r:=R1-2*F1*s;
    # Want B1 large so that N>= (B1*F1+1)*(2*F1^2+(r-B1)*F1+1)
    B1 := QuadraticEstimate( -F1^2, 2*F1^3 + r*F1^2, 2*F1^2+r*F1+1-N);
    #B1 := Int(N/(F1+1)/(2*F1^2+r*F1+1));
    while B1 < MaxB and 2*F1^2+(r-B1)*F1+1 > 0 and
      N >= (B1*F1+1)*(2*F1^2+(r-B1)*F1+1)
    do B1:=B1+1; od;

    if B1 < MaxB and N < (B1*F1+1)*(2*F1^2+(r-B1)*F1+1)
    then GotOne([ 0=s or not IsSquareInt(r^2-8*s), "BLS1975-Th7", [], B1, R1s ]);
    fi;
  fi;

  # Check Cor8
  if (F2-1)^2 > N then GotOne([ true, "BLS1975-Co8", [], 1 , [] ]); fi;

  # Check Cor10 and Th19
  if Size(R2s)=1 and R2s[1]=R2 and F2*R2=N+1 then

    # Check Cor10
    # Want large B2 such that (B2*F2-1)^2 <= N
    B2 := RootInt(Int(N/F2^2));
    while B2 < MaxB and (B2*F2-1)^2 <= N do B2:=B2+1; od;

    if B2 < MaxB and N < (B2*F2-1)^2
    then GotOne([ true, "BLS1975-Co10", [], B2, R2s ]);
    fi;

    # Check Th19
    s:=BestQuoInt(R2,2*F2);
    r:=R2-2*F2;
    # Want large B2 such that (B2*F2-1)*(2*F2^2 + (B2-|r|)*F2 +1) <= N
    B2:=QuadraticEstimate(F2^2,
      2*F2^3-F2^2*AbsInt(r),
      F2*AbsInt(r) - 2*F2^2 - 1 - N);
    while B2 < MaxB and (B2*F2-1)*(2*F2^2 + (B2-AbsInt(r))*F2 +1) <= N
    do B2:=B2+1; od;

    if B2 < MaxB and N < (B2*F2-1)*(2*F2^2 + (B2-AbsInt(r))*F2 +1)
    then GotOne([ s=0 or not IsSquareInt(r^2+8*s), "BLS1975-Th19", [], B2, R2s ]);
    fi;
  fi;

  # Check Cor11
  if ( R1=1 or (Size(R1s)=1 and R1s[1]=R1))
    and ( R2=1 or (Size(R2s)=1 and R2s[1]=R2))
  then
    B2 := RootInt( Int(N/F1/F2/Maximum(F1,F2)), 3);
    while B2 < MaxB and B2^3 <= N/F1/F2/Maximum(F1,F2) do B2:=B2+1; od;

    if B2 < MaxB and B2^3 > 2*N/F1/F2/Maximum(F1,F2)
    then GotOne([true, "BLS1975-Co11", [], B2, Set(Concatenation(R1s,R2s))]);
    fi;
  fi;

  # First check Theorem 21, which requires no primality assumptions
  # on the divisors (only a bound the proper prime factors of those
  # divisors).
  if F1*R1 = N-1 and F2*R2 = N+1 then

    BF := Sum(Fs,p->Valuation(N-1,p));
    BL := Sum(Ls,p->Valuation(N+1,p));
    B1 := RootInt(N,BF+BL+Maximum(BF,BL));
    while B1 < MaxB and N >= Maximum(B1^BF+1, B1^BL-1)*(B1^BF*B1^BL/2+1)
    do B1:=B1+1; od;

    if B1 < MaxB and N < Maximum(B1^BF+1,B1^BL-1)*(B1^BF*B1^BL/2 + 1)
      and ForAll(Combinations(Fs,2),x->GcdInt(x[1],x[2])=1)
      and ForAll(Combinations(Ls,2),x->GcdInt(x[1],x[2])=1)
    then GotOne( [true, "BLS1975-Th21", [], B1,
      Set(Concatenation( R1s,R2s))]);
    fi;
  fi;

  return rets;
end);

##############################################################################
##
#F  PrimalityProof_Verify(N,proof) - Verbosely verify a proposed primality
##  proof.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_Verify,
function(N,proof)
  local theorems,theorem,x;
  theorems:=PrimalityProof_VerifyStructure(N,proof);
  if theorems = [] then return fail; fi;
  if not ForAll(proof, wit -> PrimalityProof_VerifyWitness(N,wit))
  then return false; fi;

  for theorem in theorems do
    Print("\nNumber proven prime by ",theorem[2],"\n");
    if( theorem[3] <> [] ) then Print("assuming each of ",theorem[3],
      "is prime\n"); fi;
    if theorem[5] <> [] then Print("assuming each of ", theorem[5],
      " have no nontrivial divisors less than ", theorem[4]);
      x := Product(Filtered(Primes,p->p<theorem[4]));
      if theorem[4] < Maximum(Primes) and ForAll(theorem[5], p->
        p in Primes or GcdInt(p,x)=1)
      then Print("(which is true)\n");
      else Print("\n");
      fi;
    fi;
  od;
  return true;
end);


##############################################################################
##
##  Section 5: Pretty interface
##
##  (1) Bind ProbablePrimes2
##  (2) IsPrimeIntReplacement - handle caching and warning
##  (3) IsProbablyPrimeIntReplacement - handle caching
##  (4) Optional code to replace the main gap functions
##
##############################################################################

##############################################################################
##
#F  IsPrimeInt(N) - Perform as IsPrimeInt, but use PrimalityProof
##  to avoid using any unproven primes. Store proofs in PrimesProofs.
##
##############################################################################
InstallGlobalFunction(IsPrimeInt,
function(N)
  local ret;
  N := AbsInt(N);
  atomic readonly Primes2 do
  if(N in Primes2) then return true; fi;
  od;
  ret:= IsBPSWPseudoPrime(N);
  if ret = false  then return false;
  elif ret = true and N < BPSW_ProvedBound then
    atomic readwrite Primes2 do
    AddSet(Primes2,N);
    od;
    return true;
  elif ret = true then
    ret := PrimalityProof(N);
    if PrimalityProof_VerifyStructure(N,ret) <> [] then
      atomic readwrite Primes2, readwrite PrimesProofs do
      AddSet(Primes2,N);
      AddSet(PrimesProofs,MakeImmutable([N,ret]));
      od;
    else
      Info(InfoPrimeInt, 1,
           "IsPrimeInt: probably prime, but not proven: ", N);
      atomic readwrite ProbablePrimes2 do
      AddSet( ProbablePrimes2, N );
      od;
    fi;
    return true;
  fi;
  Error("Bad return from IsBPSWPseudoPrime");
end);

##############################################################################
##
#F  IsProbablyPrimeInt(N) - Perform as isProbablyPrimeInt
##  calling the optimized BPSW test instead of the current GAP default.
##
##  The option "RabinMillerTrials" may be passed to force additional
##  probabilistic tests to be run for larger N. The cost can be quite
##  significant for large N.
##
##############################################################################
InstallGlobalFunction(IsProbablyPrimeInt,
function(N)
  local ret, RabinMillerTrials;
  atomic readonly Primes2, readonly ProbablePrimes2 do
  if(N in Primes2 or N in ProbablePrimes2) then return true; fi;
  od;
  ret := IsBPSWPseudoPrime(N);

  if ret = false then return false;
  # Otherwise is BPSW number, and all such < BPSW_ProvedBound are prime
  elif ret = true and N < BPSW_ProvedBound then
    atomic readwrite Primes2 do
    AddSet(Primes2,N);
    od;
    return true;
  # Otherwise give a dose of Rabin-Miller
  else
    RabinMillerTrials := ValueOption("RabinMillerTrials");
    if RabinMillerTrials = fail then
      RabinMillerTrials:=0;
      # RabinMillerTrials:= RootInt(Maximum(0,LogInt(N,10)-13));
    elif IsFunction(RabinMillerTrials) then
      RabinMillerTrials:=RabinMillerTrials(N);
    fi;
    if ForAll([1..RabinMillerTrials],i->
      IsStrongPseudoPrimeBaseA(N,Random(3,N-1)))
    then
      atomic readwrite ProbablePrimes2 do
      AddSet(ProbablePrimes2,N);
      od;
      return true;
    # Otherwise an error or composite BPSW number has been found.
    else
      Print("\n\n");
      Print("# !!! Please email support@gap-system.org the following:\n");
      Print("# !!! BPSW failed on ",HexStringInt(N),"\n\n\n");
      Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
      return false;
    fi;
  fi;
end);