File: algliess.gi

package info (click to toggle)
gap 4.14.0-3
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 109,836 kB
  • sloc: ansic: 97,167; xml: 48,195; cpp: 13,955; sh: 4,438; perl: 1,652; javascript: 255; makefile: 252; ruby: 9
file content (1636 lines) | stat: -rw-r--r-- 54,958 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Willem de Graaf.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains functions to construct semisimple Lie algebras of type
##  $A_n$, $B_n$, $C_n$, $D_n$, $E_6$, $E_7$, $E_8$, $F_4$, $G_2$,
##  as s.c. algebras. Also there are the restricted Lie algebras
##  of types W,H,K,S.
##
##  The algorithm used for types $A-G$ is the one described in
##  Kac, Infinite Dimensional Lie Algebras, and de Graaf, Lie Algebras:
##  Theory and Algorithms.
##
##


##############################################################################
##
#F  AddendumSCTable( <T>, <i>, <j>, <k>, <val> )
##
##  This function adds the structure constant c_{ij}^k to the table 'T'.
##  If 'T[i][j]' contains already some constants, then 'k' and 'val' have
##  to be inserted at the right position.
##
BindGlobal( "AddendumSCTable", function( T, i, j, k, val )

    local pos,m,r,inds,cfs;

    pos:= Position( T[i][j][1], k );
    if pos = fail then
      if T[i][j][1] = [] then

        SetEntrySCTable( T, i, j, [ val, k ] );

      else

        m:=T[i][j][1][1];
        r:=1;
        inds:=[];
        cfs:=[];
        while m<k do
          Add(inds,m);
          Add(cfs,T[i][j][2][r]);
          r:=r+1;
          if r > Length(T[i][j][1]) then
            m:= k;
          else
            m:= T[i][j][1][r];
          fi;
        od;
        Add(inds,k);
        Add(cfs,val);
        while r <= Length(T[i][j][1]) do
          Add(inds,T[i][j][1][r]);
          Add(cfs,T[i][j][2][r]);
          r:=r+1;
        od;
        T[i][j]:= [inds,cfs];
        T[j][i]:= [inds,-cfs];

      fi;

    else

      cfs:= ShallowCopy( T[i][j][2] );
      cfs[pos]:= cfs[pos]+val;
      T[i][j]:= [T[i][j][1], cfs];
      cfs:= ShallowCopy( T[j][i][2] );
      cfs[pos]:= cfs[pos]-val;
      T[j][i]:= [T[j][i][1], cfs];

    fi;
end );



BindGlobal( "SimpleLieAlgebraTypeA_G", function( type, n, F )

    local T,               # The table of the Lie algebra constructed.
          i,j,k,l,         # Loop variables.
          lst,             # A list.
          R,               # Positive roots
          cc,              # List of coefficients.
          lenR,            # length of 'R'
          Rij,             # The sum of two roots from 'R'.
          eps,             # The so-called "epsilon"-function.
          epsmat,          # A matrix used to calculate the eps-function.
          dim,             # The dimension of the Lie algebra.
          C,               # Cartan matrix
          L,               # Lie algebra, result
          vectors,         # vectors spanning a Cartan subalgebra
          CSA,             # List of indices of the basis vectors of a Cartan
                           # subalgebra.
          e,
          inds,            # List of indices.
          r,r1,r2,         # Roots.
          roots,           # List of roots.
          primes,          # List of lists of corresponding roots.
          B,               # Basis of a vector space.
          cfs,             # List of coefficient lists.
          d,               # Order of the diagram automorphism.
          found,           # Boolean.
          a,
          q,
          perm,            # Permutation representing the diagram automorphism.
          shorts,
          posR,            # Positive roots.
          CartanMatrixToPositiveRoots; # Function for determining the
                                       # positive roots.


    CartanMatrixToPositiveRoots:= function( C )

        local   rank,  posr,  ready,  ind,  le,  i,  a,  j,  ej,  r,  b,
                q;

        rank:= Length( C );

        # `posr' will be a list of the positive roots. We start with the
        # simple roots, which are simply unit vectors.

        posr:= IdentityMat( rank );

        ready:= false;
        ind:= 1;
        le:= rank;
        while ind <= le  do

            # We loop over those elements of `posR' that have been found in
            # the previous round, i.e., those at positions ranging from
            # `ind' to `le'.

            le:= Length( posr );
            for i in [ind..le] do
                a:= posr[i];

                # We determine whether a+ej is a root (where ej is the j-th
                # simple root.
                for j in [1..rank] do
                    ej:= posr[j];

                    # We determine the maximum number `r' such that a-r*ej is
                    # a root.
                    r:= -1;
                    b:= ShallowCopy( a );
                    while b in posr do
                        b:= b-ej;
                        r:=r+1;
                    od;
                    q:= r-LinearCombination( TransposedMat( C )[j], a );
                    if q>0 and (not a+ej in posr ) then
                        Add( posr, a+ej );
                    fi;
                od;
            od;
            ind:= le+1;
            le:= Length( posr );
        od;

        return posr;
    end;


    # The following function is the so-called epsilon function.
    eps:= function( a, b, epm )
        local rk;

        rk:= Length( epm );
        return Product( [1..rk],i ->
                       Product( [1..rk], j ->
                               epm[i][j] ^ ( a[i]*b[j] ) ) );
    end;

    if type in [ "A", "D", "E" ] then

        # We are in the simply-laced case. Here we construct the root
        # system and the matrix of the epsilon function. Then we can
        # fill the multiplication table directly.

        C:= 2*IdentityMat( n );
        if type = "A" then
            for i in [1..n-1] do
                C[i][i+1]:= -1;
                C[i+1][i]:= -1;
            od;
        elif type = "D" then
            if n < 4 then
                Error("<n> must be >= 4");
            fi;
            for i in [1..n-2] do
                C[i][i+1]:= -1;
                C[i+1][i]:= -1;
            od;
            C[n-2][n]:=-1;
            C[n][n-2]:= -1;
        else

            C:= [
                 [ 2, 0, -1, 0, 0, 0, 0, 0 ], [ 0, 2, 0, -1, 0, 0, 0, 0 ],
                 [ -1, 0, 2, -1, 0, 0, 0, 0 ], [ 0, -1, -1, 2, -1, 0, 0, 0 ],
                 [ 0, 0, 0, -1, 2, -1, 0, 0 ], [ 0, 0, 0, 0, -1, 2, -1, 0 ],
                 [ 0, 0, 0, 0, 0, -1, 2, -1 ], [ 0, 0, 0, 0, 0, 0, -1, 2 ] ];

            if n = 6 then
                C:= C{ [ 1 .. 6 ] }{ [ 1 .. 6 ] };
            elif n = 7 then
                C:= C{ [ 1 .. 7 ] }{ [ 1 .. 7 ] };
            elif n < 6 or 8 < n then
                Error( "<n> must be one of 6, 7, 8" );
            fi;
        fi;
        R:= CartanMatrixToPositiveRoots( C );


        # We conctruct `epsmat', which satisfies
        #                  /
        #                 |-1 if i=j,
        #  epsmat[i][j] = |-1 if i and j are connected, and i>j
        #                 | 1 if i and j are not connected or i<j.
        #                  \
        # (where `connected' means connected in the Dynkin diagram.

        epsmat:= [];
        for i in [ 1 .. n ] do
            epsmat[i]:= [];
            for j in [ 1 .. i-1 ] do
                epsmat[i][j]:= 1;
            od;
            epsmat[i][i]:= -1;
            for j in [ i+1 .. n ] do
                epsmat[i][j]:= (-1)^C[i][j];
            od;
        od;

        lenR:= Length( R );
        dim:= 2*lenR + n;

        posR:= List( R, r -> Zero(F)*r );

        # Initialize the s.c. table
        T:= EmptySCTable( dim, Zero(F), "antisymmetric" );

        lst:= [ 1 .. n ] + 2 * lenR;

        for i in [1..lenR] do
            for j in [i..lenR] do
                Rij:= R[i]+R[j];
                if Rij in R then
                    k:= Position(R,Rij);
                    e:= eps(R[i],R[j],epsmat)*One(F);
                    SetEntrySCTable( T, i, j, [ e, k ] );
                    SetEntrySCTable( T, i+lenR, j+lenR, [ -e, k+lenR ] );
                fi;
                if i = j and T[i][j+lenR] = [[],[]] then
                    # We form the product x_{\alpha_i}*x_{-\alpha_i}, which
                    # will be an element of the Cartan subalgebra.

                    inds:= Filtered( [1..n], x -> R[i][x] <> 0 );
                    T[i][j+lenR]:= [ lst{inds}, R[i]{inds}*One(F) ];
                    T[j+lenR][i]:= [ lst{inds}, -R[i]{inds}*One(F) ];
                fi;
            od;
        od;
        for i in [1..lenR] do
            for j in [1..lenR] do
                Rij:= R[i]-R[j];
                if Rij in R then
                    k:= Position(R,Rij);
                    SetEntrySCTable( T, i, j+lenR,
                            [-One(F)*eps(R[i],-R[j],epsmat),k] );
                elif -Rij in R then
                    k:= Position(R,-Rij);
                    SetEntrySCTable( T, i, j+lenR,
                            [One(F)*eps(R[i],-R[j],epsmat),k+lenR] );
                fi;
            od;
            for j in [1..n] do

                # We take care of the comutation relations of the form
                # [h_j,x_{\beta_i}]= < \beta_i, \alpha_j > x_{\beta_i}.
                cc:= LinearCombination( R[i], C[j] );
                if cc <> 0*cc then

                    posR[i][j]:= One(F)*cc;

                    T[2*lenR+j][i]:=[[i],[One(F)*cc]];
                    T[i][2*lenR+j]:=[[i],[-One(F)*cc]];
                    T[2*lenR+j][i+lenR]:=[[i+lenR],[-One(F)*cc]];
                    T[i+lenR][2*lenR+j]:=[[i+lenR],[One(F)*cc]];
                fi;
            od;
        od;

        L:= LieAlgebraByStructureConstants( F, T );

        # A Cartan subalgebra is spanned by the last 'n' basis elements.
        CSA:= [ dim-n+1 .. dim ];
        vectors:= BasisVectors( CanonicalBasis( L ) ){ CSA };
        SetCartanSubalgebra( L, SubalgebraNC( L, vectors, "basis" ) );
        SetIsRestrictedLieAlgebra( L, Characteristic( F ) > 0 );

    elif type in [ "B", "C", "F", "G" ] then

        # Now we are in the non simply laced case. In each case we construct
        # a simply laced root system, which has a diagram automorphism.
        # We take an epsilon function which is invariant under the diagram
        # automorphism. Furthermore, the permutation `perm' will represent
        # the diagram aotomorphism as acting on the roots (so that
        # Permuted( r, perm ) is the result of applying the diagram
        # automorphism to the root r).

        if type = "B" then

            # In this case we construct D_{n+1}.
            if n <= 1 then
                Error( "<n> must be >= 2");
            fi;
            C:= 2*IdentityMat( n+1 );
            for i in [1..n-1] do
                C[i][i+1]:= -1;
                C[i+1][i]:= -1;
            od;
            C[n-1][n+1]:=-1;
            C[n+1][n-1]:= -1;
            R:= CartanMatrixToPositiveRoots( C );

            epsmat:= NullMat( n+1, n+1 ) + 1;
            for i in [ 1 .. n-1 ] do
                epsmat[i+1][i]:= -1;
                epsmat[i][i]:= -1;
            od;
            epsmat[n+1][n-1]:= -1;
            epsmat[n][n]:= -1;
            epsmat[n+1][n+1]:= -1;

            perm:= (n,n+1);
            d:= 2;

        elif type = "C" then

            # In this case we construct A_{2n-1}.
            if n < 2 then
                Error( "<n> must be >= 3");
            fi;
            C:= 2*IdentityMat( 2*n-1 );
            for i in [1..2*n-2] do
                C[i][i+1]:= -1;
                C[i+1][i]:= -1;
            od;
            R:= CartanMatrixToPositiveRoots( C );

            epsmat:= NullMat( 2*n-1, 2*n-1 ) + 1;
            for i in [ 1 .. n-1 ] do
                epsmat[i][i+1]:= -1;
                epsmat[i][i]:= -1;
            od;
            for i in [n..2*n-2] do
                epsmat[i+1][i]:= -1;
                epsmat[i][i]:= -1;
            od;
            epsmat[2*n-1][2*n-1]:= -1;

            perm:= ();
            for i in [1..n-1] do
                perm:= perm*(i,2*n-i);
            od;
            d:= 2;

        elif type = "F" then

            # In this case we construct E_6.
            if n <> 4 then
                Error( "<n> must be equal to 4");
            fi;

            C:= IdentityMat( 6 );
            C[1][3]:=-1; C[2][4]:=-1; C[3][4]:=-1; C[4][5]:=-1; C[5][6]:=-1;
            C:= C+TransposedMat( C );
            R:= CartanMatrixToPositiveRoots( C );

            epsmat:= NullMat( 6, 6 ) + 1;
            for i in [1..6] do epsmat[i][i]:= -1; od;
            epsmat[1][3]:=-1; epsmat[3][4]:=-1; epsmat[5][4]:=-1;
            epsmat[6][5]:=-1; epsmat[2][4]:=-1;

            perm:= (1,6)*(3,5);
            d:= 2;

        elif type = "G" then

            # In this case we conctruct D_4.
            if n <> 2 then
                Error( "<n> must be equal to 2");
            fi;

            C:= IdentityMat( 4 );
            C[1][2]:=-1; C[2][3]:=-1; C[2][4]:=-1;
            C:= C+TransposedMat( C );
            R:= CartanMatrixToPositiveRoots( C );

            epsmat:= NullMat( 4, 4 ) + 1;
            for i in [1..4] do epsmat[i][i]:= -1; od;
            epsmat[1][2]:=-1; epsmat[4][2]:=-1; epsmat[3][2]:=-1;

            perm:= (1,3,4);
            d:= 3;

        fi;

        # Now `roots' will be the list of positive roots of the resulting Lie
        # algebra. They are formed from the roots in `R' by applying the
        # diagram automorphism. If a r\in R is invariant under the
        # automorphism, then it is added to `roots' (and its prime is
        # the root itself). Otherwise we add \frac{1}{d}(r+\phi(r)+\cdots
        # + \phi^{d-1}(r)), where \phi is the diagram automorphism.
        # In this case the prime of the root are all \phi^i(r).

        if d = 2 then

            roots:= [ ];
            primes:= [ ];
            for r in R do
                r1:= Permuted( r, perm );
                if r = r1 then
                    Add( roots, r );
                    Add( primes, [ r ] );
                else
                    if not (r+r1)/2 in roots then
                        Add( roots, (r+r1)/2 );
                        Add( primes, [ r, r1 ] );
                    fi;
                fi;
            od;

            B:= Basis( VectorSpace( Rationals, roots{[1..n]} ),roots{[1..n]});
            cfs:= List( roots, x -> Coefficients( B, x ) );

        elif d = 3 then
            roots:= [ ];
            primes:= [ ];
            for r in R do
                r1:= Permuted( r, perm );
                if r = r1 then
                    Add( roots, r );
                    Add( primes, [ r ] );
                else
                    r2:= (r+r1+Permuted(r1,perm))/3;
                    if not r2 in roots then
                        Add( roots, r2 );
                        Add( primes, [ r, r1, Permuted( r1, perm ) ] );
                    fi;
                fi;
            od;

            B:= Basis( VectorSpace( Rationals, roots{[1..n]} ),roots{[1..n]});
            cfs:= List( roots, x -> Coefficients( B, x ) );
        fi;

        # `shorts' will be a list of indices indicating where the
        # short simple roots are. The coefficients on those places
        # in `cfs' need to be divided by `d'.

        shorts:= Filtered( [1..n], ii -> Length( primes[ii] ) > 1 );
        for i in [1..Length(cfs)] do
            for j in shorts do
                cfs[i][j]:= cfs[i][j]/d;
            od;
        od;

        Append( R, -R );
        lenR:= Length( roots );
        dim:= 2*lenR + n;

        posR:= List( [1..lenR], ii -> List( [1..n], jj -> Zero( F ) ) );

        # Initialize the s.c. table
        T:= EmptySCTable( dim, Zero(F), "antisymmetric" );

        lst:= [ 1 .. n ] + 2 * lenR;

        for i in [1..lenR] do
            for j in [i..lenR] do
                Rij:= roots[i]+roots[j];
                if Rij in roots then

                    # We look for `r' in `primes[i]' and `r1' in `primes[j]'
                    # such that `r+r1' lies in `R'.
                    found:= false;
                    for k in [1..Length(primes[i])] do
                        if found then break; fi;
                        r:= primes[i][k];
                        for l in [1..Length(primes[j])] do
                            r1:= primes[j][l];
                            if r+r1 in R then
                                found := true; break;
                            fi;
                        od;
                    od;

                    # `q' will be the maximal integer such that `roots[i]-
                    # roots[j]' is a root.

                    k:= Position( roots, Rij );
                    q:=0; a:= roots[i] - roots[j];
                    while a in roots or -a in roots do
                        q:=q+1;
                        a:= a-roots[j];
                    od;

                    e:= eps(r,r1,epsmat)*(q+1)*One(F);
                    SetEntrySCTable( T, i, j, [ e, k ] );
                    SetEntrySCTable( T, i+lenR, j+lenR, [ -e, k+lenR ] );
                fi;
                if i = j and T[i][j+lenR] = [[],[]] then
                    # We form the product x_{\alpha_i}*x_{-\alpha_i}, which
                    # will be an element of the Cartan subalgebra.

                    inds:= Filtered( [1..n], x -> cfs[i][x] <> 0 );
                    if Length( primes[i] ) = 1 then
                        T[i][j+lenR]:= [ lst{inds}, cfs[i]{inds}*One(F) ];
                        T[j+lenR][i]:= [ lst{inds}, -cfs[i]{inds}*One(F) ];
                    else
                        T[i][j+lenR]:= [ lst{inds}, cfs[i]{inds}*d*One(F) ];
                        T[j+lenR][i]:= [ lst{inds}, -cfs[i]{inds}*d*One(F) ];
                    fi;
                fi;
            od;
        od;
        for i in [1..lenR] do
            for j in [1..lenR] do
                Rij:= roots[i]-roots[j];
                if Rij in roots then

                    found:= false;
                    for k in [1..Length(primes[i])] do
                        if found then break; fi;
                        r:= primes[i][k];
                        for l in [1..Length(primes[j])] do
                            r1:= primes[j][l];
                            if r-r1 in R then
                                found := true; break;
                            fi;
                        od;
                    od;

                    k:= Position( roots, Rij );
                    q:=0; a:= roots[i] + roots[j];
                    while a in roots or -a in roots do
                        q:=q+1;
                        a:= a+roots[j];
                    od;

                    SetEntrySCTable( T, i, j+lenR,
                            [-One(F)*(q+1)*eps(r,-r1,epsmat),k] );

                elif -Rij in roots then

                    found:= false;
                    for k in [1..Length(primes[i])] do
                        if found then break; fi;
                        r:= primes[i][k];
                        for l in [1..Length(primes[j])] do
                            r1:= primes[j][l];
                            if r-r1 in R then
                                found := true; break;
                            fi;
                        od;
                    od;

                    k:= Position( roots, -Rij );
                    q:=0; a:= roots[i] + roots[j];
                    while a in roots or -a in roots do
                        q:=q+1;
                        a:= a+roots[j];
                    od;
                    SetEntrySCTable( T, i, j+lenR,
                            [One(F)*(q+1)*eps(r,-r1,epsmat),k+lenR] );
                fi;
            od;
            for j in [1..n] do

                # Now we take care of the relations [h,x_{\beta}]....

                cc:= LinearCombination( roots[i], C[j] );
                if Length( primes[j] ) > 1 then
                    # i.e., `roots[j]' is "short".
                    cc:= d*cc;
                fi;

                if cc <> 0*cc then

                    posR[i][j]:= One(F)*cc;

                    T[2*lenR+j][i]:=[[i],[One(F)*cc]];
                    T[i][2*lenR+j]:=[[i],[-One(F)*cc]];
                    T[2*lenR+j][i+lenR]:=[[i+lenR],[-One(F)*cc]];
                    T[i+lenR][2*lenR+j]:=[[i+lenR],[One(F)*cc]];
                fi;
            od;
        od;

        L:= LieAlgebraByStructureConstants( F, T );

        # A Cartan subalgebra is spanned by the last 'n' basis elements.
        CSA:= [ dim-n+1 .. dim ];
        vectors:= BasisVectors( CanonicalBasis( L ) ){ CSA };
        SetCartanSubalgebra( L, SubalgebraNC( L, vectors, "basis" ) );
        SetIsRestrictedLieAlgebra( L, Characteristic( F ) > 0 );

    fi;

    R:= Objectify( NewType( NewFamily( "RootSystemFam", IsObject ),
                IsAttributeStoringRep and IsRootSystemFromLieAlgebra ),
                rec() );
    SetUnderlyingLieAlgebra( R, L );
    SetPositiveRoots( R, posR );
    SetNegativeRoots( R, -posR );
    SetSimpleSystem( R, posR{[1..n]} );
    SetCanonicalGenerators( R, [ CanonicalBasis( L ){[1..n]},
                                 CanonicalBasis( L ){[lenR+1..lenR+n]},
                                 vectors ] );
    SetPositiveRootVectors( R, CanonicalBasis(L){[1..lenR]} );
    SetNegativeRootVectors( R, CanonicalBasis(L){[lenR+1..2*lenR]} );
    SetChevalleyBasis( L, [ PositiveRootVectors( R ),
                            NegativeRootVectors( R ),
                            vectors ] );

    if not ( Characteristic( F ) in [ 2, 3 ] ) then

        C:= 2*IdentityMat( n );
        for i in [1..n] do
            for j in [1..n] do
                if i <> j then
                    q:= 0;
                    r:= posR[i]+posR[j];
                    while r in posR do
                        q:=q+1;
                        r:= r+posR[j];
                    od;
                    C[i][j]:= -q;
                fi;
            od;
        od;

        SetCartanMatrix( R, C );

        SetSemiSimpleType( L, Concatenation( type, String( n ) ) );
    fi;

    SetRootSystem( L, R );

    if Characteristic( F ) = 0 then
       SetIsSimpleAlgebra( L, true );
    fi;

    return L;


end );


##############################################################################
##
#F  SimpleLieAlgebraTypeW( <n>, <F> )
##
##  The Witt Lie algebra is constructed.
##
##  The Witt algebra can be constructed as a subalgebra of the derivation
##  algebra of a certain polynomial algebra.
##  (see e.g. R. Farnsteiner and H. Strade,
##  Modular Lie Algebras and Their Representations, Dekker, New York, 1988.)
##  It is determined by a prime p and list of integers
##  n=(n_1...n_m). It is spanned by the elements
##
##                     x^{\alpha}D_j
##
##  where \alpha=(i_1..i_m) is a multi index such that 0 <= i_k < p^{n_k}-1
##  and 1 <= j <=m. The Lie multiplication is given by
##
##  [x^{\alpha}D_i,x^{\beta}D_j]={(\alpha+\beta-\epsilon_i)\choose (\alpha)}*
##  x^{\alpha+\beta-\epsilon_i}D_j-{(\alpha+\beta-\epsilon_j)\choose(\beta)}*
##  x^{\alpha+\beta-\epsilon_j}D_i.
##
##  (We refer to the above mentioned book for the notation.)
##
BindGlobal( "SimpleLieAlgebraTypeW", function( n, F )

    local p,          # The characteristic of 'F'.
          pn,
          dim,        # The dimension of the resulting Lie algebra.
          eltlist,    # A list of basis elements of the Lie algebra.
          i,j,k,      # Loop variables.
          u,noa,      # Integers.
          a,          # A list of integers.
          T,          # Multiplication table.
          x1,x2,      # Elements from 'eltlist'.
          ex,         # Multi index.
          no,         # Integer (position in a list).
          cf,         # Coefficient (element from 'F').
          L;          # The Lie algebra.

    if not IsList( n ) then
      Error( "<n> must be a list of nonnegative integers" );
    fi;

    p:= Characteristic( F );

    if p = 0 then
      Error( "<F> must be a field of nonzero characteristic" );
    fi;

    pn:=p^Sum( n );
    dim:= Length( n )*pn;
    eltlist:=[];

# First we construct a list of basis elements. A basis element is given by
# a multi index and an integer u such that 1 <= u <=m.

    for i in [0..dim-1] do

# calculate the multi-index a and the derivation D_u belonging to i

      u:= EuclideanQuotient( i, pn )+1;
      noa:= i mod pn;

# Now we calculate the multi index belonging to noa.
# The relation between multi index and number is given as follows:
# if (i_1...i_m) is the multi index then to that index belongs a number
# noa given by
#
#     noa = i_1 + p^n[1]( i_2 + p^n[2]( i_3 + .......))
#

      a:=[];
      for k in [1..Length( n )-1] do
        a[k]:= noa mod p^n[k];
        noa:= (noa-a[k])/(p^n[k]);
      od;
      Add( a, noa );
      eltlist[i+1]:=[a,u];
    od;

# Initialising the table.

    T:=EmptySCTable( dim, Zero( F ), "antisymmetric" );

# Filling the table.

    for i in [1..dim] do
      for j in [i+1..dim] do

# We calculate [x_i,x_j]. This product is a sum of two elements.

        x1:= eltlist[i];
        x2:= eltlist[j];

        if x2[1][x1[2]] > 0 then
          ex:= ShallowCopy( x1[1]+x2[1] );
          ex[x1[2]]:=ex[x1[2]]-1;
          cf:=One(F);
          for k in [1..Length( n )] do
            cf:= Binomial( ex[k], x1[1][k] ) * cf;
          od;
          if cf<>Zero(F) then
            no:=Position(eltlist,[ex,x2[2]]);
            AddendumSCTable( T, i, j, no, cf );
          fi;
        fi;
        if x1[1][x2[2]] > 0 then
          ex:= ShallowCopy( x1[1]+x2[1] );
          ex[x2[2]]:=ex[x2[2]]-1;
          cf:=One(F);
          for k in [1..Length( n )] do
            cf:= Binomial( ex[k], x2[1][k] ) * cf;
          od;
          if cf<>Zero(F) then
            no:=Position(eltlist,[ex,x1[2]]);
            AddendumSCTable( T, i, j, no, -cf );
          fi;
        fi;

      od;
    od;

    L:= LieAlgebraByStructureConstants( F, T );
    SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );

# We also return the list of basis elements of 'L', because this is needed
# in the functions for the Lie algebras of type 'S' and 'H'.

    return [ L, eltlist ];

end );


##############################################################################
##
#F  SimpleLieAlgebraTypeS( <n>, <F> )
##
##  The "special" Lie algebra is constructed as a subalgebra of the
##  Witt Lie algebra. It is spanned by all elements x\in W such that
##  div(x)=0, where W is the Witt algebra.
##  We refer to the book cited in the comments to the function
##  'SimpleLieAlgebraTypeW' for the details.
##
BindGlobal( "SimpleLieAlgebraTypeS", function( n, F )

    local dim,       # The dimension of the Witt algebra.
          i,j,       # Loop variables.
          WW,        # The output of 'SimpleLieAlgebraTypeW'.
          eqs,       # The equation system for a basis of the Lie algebra.
          divlist,   # A list of elements of the Witt algebra.
          x,         # Element from 'divlist'.
          dones,     # A list of the elements of 'divlist' that have already
                     # been processed.
          eq,        # An equation (to be added to 'eqs').
          bas,       # Basis vectors of the solution space.
          L;         # The Lie algebra.

    WW:=SimpleLieAlgebraTypeW( n, F );
    dim:= Dimension( WW[1] );
    divlist:= WW[2];
    for i in [1..dim] do

      #Apply the operator "div" to the elements of divlist.

      divlist[i][1][divlist[i][2]]:=divlist[i][1][divlist[i][2]]-1;
    od;

# At some positions of 'divlist' there will be the same element. An equation
# will then be a vector of 1's and 0's such that a 1 appears at every
# position where there is a copy of a particular element. After this we
# do not need to consider this element again, so we add it to 'dones'.

    eqs:=[]; dones:=[]; i:=1;
    while i <= dim do
      eq:=List([1..dim],x->Zero(F));
      x:=divlist[i];
      if not x in dones then
        Add(dones,x);
        if x[1][x[2]]>=0 then
          eq[i]:= One( F );
          for j in [i+1..dim] do
            if divlist[j][1]=x[1] then
              eq[j]:=One( F );
            fi;
          od;
          Add(eqs,eq);
        fi;
      fi;
      i:=i+1;
    od;

    bas:= NullspaceMat( TransposedMat( eqs ) );
    bas:= List( bas, v -> LinearCombination( Basis( WW[1] ), v ) );

    L:= LieDerivedSubalgebra( Subalgebra( WW[1], bas, "basis" ) );
    SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );
    return L;

end );


##############################################################################
##
#F  SimpleLieAlgebraTypeH( <n>, <F> )
##
##  Just like the special algebra, the Hamiltonian algebra is constructed as
##  a subalgebra of the Witt Lie algebra. It is spanned by the image of
##  a linear map D_H which maps a special kind of polynomial algebra into
##  the Witt algebra. Again we refer to the book cited in the notes to
##  'SimpleLieAlgebraTypeW' for the details.
##
BindGlobal( "SimpleLieAlgebraTypeH", function( n, F )

    local p,      # Chracteristic of 'F'.
          m,      # The length of 'n'.
          i,j,    # Loop variables.
          noa,    # Integer.
          a,      # List of integers "belonging" to 'noa'.
          x1,x2,  # Multi indices.
          mons,   # List of multi indices (or monomials).
          WW,     # The output of 'SimpleLieAlgebraTypeW'.
          cf,     # List of coefficients of an element of the Witt algebra.
          pos,    # Position in a list.
          sp,     # Vector space.
          bas,    # Basis vectors of the Lie algebra.
          L;      # The Lie algebra.

    p:= Characteristic( F );

    if p = 0 then
      Error( "<F> must be a field of nonzero characteristic" );
    fi;

    if not IsList( n ) then
      Error( "<n> must be a list of nonnegative integers" );
    fi;

    m:= Length( n );
    if m mod 2 <> 0 then
      Error( "<n> must be a list of even length" );
    fi;

# 'mons' will be a list of multi indices [i1...1m] such that
# ik < p^n[k] for 1 <= k <= m. The encoding is the same as in
# 'SimpleLieAlgebraTypeW'. The last (or "maximal") element is not taken
# in the list. 'mons' will correspond to the monomials that span the
# algebra which is mapped into the Witt algebra by the map D_H.

    mons:= [];
    for i in [0..p^Sum( n ) - 2 ] do
      a:= [ ];
      noa:= i;
      for j in [1..m-1] do
        a[j]:= noa mod p^n[j];
        noa:= (noa-a[j])/(p^n[j]);
      od;
      a[m]:= noa;
      Add(mons,a);
    od;

    WW:= SimpleLieAlgebraTypeW( n, F );

    for i in [1..Length(mons)] do

# The map D_H is applied to the element 'mons[i]'.

      x1:= mons[i];
      cf:= List( WW[2], e -> Zero(F) );
      for j in [1..m/2] do
        if x1[j] > 0 then
          x2:= ShallowCopy( x1 );
          x2[j]:= x2[j] - 1;
          pos:= Position( WW[2], [x2,j+m/2] );
          cf[pos]:= One( F );
        fi;
        if x1[j+m/2] > 0 then
          x2:= ShallowCopy( x1 );
          x2[j+m/2]:= x2[j+m/2] - 1;
          pos:= Position( WW[2], [x2,j] );
          cf[pos]:= -One( F );
        fi;
      od;
      if cf <> Zero( F )*cf then
        if IsBound( sp ) then
          if not IsContainedInSpan( sp, cf ) then
            CloseMutableBasis( sp, cf );
          fi;
        else
          sp:= MutableBasis( F, [ cf ] );
        fi;
      fi;
    od;

    bas:= BasisVectors( sp );
    bas:= List( bas, x -> LinearCombination( Basis(WW[1]), x ) );
    L:= Subalgebra( WW[1], bas, "basis" );
    SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );
    return L;

end );


##############################################################################
##
#F  SimpleLieAlgebraTypeK( <n>, <F> )
##
##  The kontact algebra has the same underlying vector space as a
##  particular kind of polynomial algebra. On this space a Lie bracket
##  is defined. We refer to the book cited in the comments to the function
##  'SimpleLieAlgebraTypeW' for the details.
##
BindGlobal( "SimpleLieAlgebraTypeK", function( n, F )

    local p,              # The characteristic of 'F'.
          m,              # The length of 'n'.
          pn,             # The dimension of the resulting Lie algebra.
          eltlist,        # List of basis elements of the Lie algebra.
          i,j,k,          # Loop variables.
          noa,            # Integer.
          a,              # The multi index "belonging" to 'noa'.
          T,S,            # Tables of structure constants.
          x1,x2,y1,y2,    # Elements from 'eltlist'.
          r,              # Integer.
          pos,            # Position in a list.
          coef,           # Function calculating a product of binomials.
          v,              # A value.
          vals,           # A list of values.
          ii,             # List of indices.
          cc,             # List of coefficients.
          L;              # The Lie algebra.

    coef:= function( a, b, F )

# Here 'a' and 'b' are two multi indices. This function calculates
# the product of the binomial coefficients 'a[i] \choose b[i]'.

      local cf,i;

      cf:= One( F );
      for i in [1..Length(a)] do
        cf:= Binomial( a[i], b[i] ) * cf;
      od;
      return cf;
    end;


    p:= Characteristic( F );

    if p = 0 then
      Error( "<F> must be a field of nonzero characteristic" );
    fi;

    if not IsList( n ) then
      Error( "<n> must be a list of nonnegative integers" );
    fi;

    m:= Length( n );
    if m mod 2 <> 1 or m = 1 then
      Error( "<n> must be a list of odd length >= 3" );
    fi;

    pn:= p^Sum( n );

    r:= ( m - 1 )/2;

    eltlist:=[];

# First we construct a list of basis elements.

    for i in [0..pn-1] do
      noa:= i;
      a:=[];
      for k in [1..m-1] do
        a[k]:= noa mod p^n[k];
        noa:= (noa-a[k])/(p^n[k]);
      od;
      a[m]:= noa;
      eltlist[i+1]:=a;
    od;

# Initialising the table.

    T:= EmptySCTable( pn, Zero(F), "antisymmetric" );

    for i in [1..pn] do
      for j in [i+1..pn] do

# We calculate [x_i,x_j]. The coefficients of this element w.r.t. the basis
# contained in 'eltlist' will be stored in the vector 'vals'.
# The formula for the commutator is quite complicated, and this leads to
# many if-statements. (These if-statements are largely due to the fact that
# D_i(x^a)=0 if a[i]=0, so that we have to check that this element is not 0.)

        x1:= eltlist[i];
        x2:= eltlist[j];
        vals:= List([1..pn],i->Zero( F ) );

        for k in [1..r] do
          if x1[k] > 0 then

            if x2[k+r] > 0 then
              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[k]:=y1[k]-1; y2[k+r]:=y2[k+r]-1;
              v:=coef( y1+y2, y1, F );
              if v<>Zero(F) then
                pos:= Position( eltlist, y1+y2 );
                vals[pos]:= vals[pos] + v;
              fi;
            fi;

            if x2[ m ] > 0 then
              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[k]:=y1[k]-1; y2[ m ]:=y2[ m ]-1;
              v:=coef(x1+y2,y1,F)*(x2[k]+1);
              if v<>Zero(F) then
                pos:= Position( eltlist, x1+y2 );
                vals[pos]:= vals[pos]-v;
              fi;
            fi;

          fi;

          if x1[ m ] > 0 then

            if x2[k+r] > 0 then
              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[m]:=y1[m]-1; y2[k+r]:=y2[k+r]-1;
              v:=coef( y1+x2, y2, F )*(x1[k+r]+1);
              if v<>Zero( F ) then
                pos:= Position( eltlist, y1+x2 );
                vals[pos]:= vals[pos] + v;
              fi;
            fi;

            if x2[ m ] > 0 then
              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[m]:=y1[m]-1; y2[ m ]:=y2[ m ]-1;
              y1[k+r]:=y1[k+r]+1; y2[k]:=y2[k]+1;
              v:=coef(y1+y2,y1,F)*y1[k+r]*y2[k];
              if v<>Zero(F) then
                pos:= Position( eltlist, y1+y2 );
                vals[pos]:= vals[pos]-v;
              fi;

              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[m]:=y1[m]-1; y2[ m ]:=y2[ m ]-1;
              y1[k]:=y1[k]+1; y2[k+r]:=y2[k+r]+1;
              v:=coef(y1+y2,y1,F)*y1[k]*y2[k+r];
              if v<>Zero(F) then
                pos:= Position( eltlist, y1+y2 );
                vals[pos]:= vals[pos]+v;
              fi;
            fi;

            if x2[k] > 0 then
              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[m]:=y1[m]-1; y2[k]:=y2[k]-1;
              v:=coef( y1+x2, y2, F )*(x1[k]+1);
              if v <> Zero(F) then
                pos:= Position( eltlist, y1+x2 );
                vals[pos]:= vals[pos] + v;
              fi;
            fi;

          fi;

          if x1[k+r] > 0 then

            if x2[k] > 0 then
              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[k+r]:=y1[k+r]-1; y2[k]:=y2[k]-1;
              v:=coef( y1+y2, y1, F );
              if v<>Zero(F) then
                pos:= Position( eltlist, y1+y2 );
                vals[pos]:= vals[pos] - v;
              fi;
            fi;

            if x2[ m ] > 0 then
              y1:= ShallowCopy(x1); y2:= ShallowCopy(x2);
              y1[k+r]:=y1[k+r]-1; y2[ m ]:=y2[ m ]-1;
              v:=coef(x1+y2,y1,F)*(x2[k+r]+1);
              if v<>Zero(F) then
                pos:= Position( eltlist, x1+y2 );
                vals[pos]:= vals[pos]-v;
              fi;
            fi;

          fi;

          if x1[m]>0 then
            y1:= ShallowCopy(x1);
            y1[m]:=y1[m]-1;
            v:=coef(y1+x2,x2,F);
            if v<>Zero(F) then
              pos:= Position( eltlist, y1+x2 );
              vals[pos]:= vals[pos]-2*v;
            fi;
          fi;

          if x2[m]>0 then
            y2:= ShallowCopy(x2);
            y2[m]:=y2[m]-1;
            v:= coef(x1+y2,x1,F);
            if v<>Zero(F) then
              pos:= Position( eltlist, x1+y2 );
              vals[pos]:= vals[pos]+2*v;
            fi;
          fi;

        od;

# We convert 'vals' to multiplication table format.

        ii:=[]; cc:=[];
        for k in [1..Length(vals)] do
          if vals[k] <> Zero( F ) then
            Add(ii,k); Add(cc,vals[k]);
          fi;
        od;

        T[i][j]:=[ii,cc];
        T[j][i]:=[ii,-cc];

      od;
    od;

    if (m + 3) mod p = 0 then

# In this case the kontact algebra is somewhat smaller.

      S:= EmptySCTable( pn-1, Zero(F), "antisymmetric" );
      for i in [1..pn-1] do
        for j in [1..pn-1] do
          S[i][j]:=T[i][j];
        od;
      od;
      T:=S;
    fi;

    L:= LieAlgebraByStructureConstants( F, T );
    SetIsRestrictedLieAlgebra( L, ForAll( n, x -> x=1 ) );
    return L;

end );



##############################################################################
##
#F  SimpleLieAlgebraTypeM( <n>, <F> )
##
##  The Melikyan Lie algebra is constructed.
##
##  The code is due to Erik Postma.
##
##  The Melikyan Lie algebra is most conveniently constructed by
##  viewing it as the direct sum of a Witt type Lie algebra and two
##  of its modules. This is the presentation described by
##  M.I. Kuznetsov, The Melikyan algebras as Lie algebras of the
##  type G2, Comm. Algebra 19 (1991).
##
##  The Melikyan Lie algebra is parametrized by two positive
##  integers, n1 and n2, and can only be defined over fields of
##  characteristic 5. It can be decomposed into a 2*5^(n1 + n2)-dimensional
##  subalgebra isomorphic to W(n1, n2), having a basis of monomials
##  X1^i1 X2^i2 dXk where 0 <= i1 < 5^n1, 0 <= i2 < 5^n2, k in {1, 2}; a
##  5^(n1 + n2)-dimensional module of this subalgebra which we call O,
##  having a basis of elements we call X1^i1 X2^i2 (where i1 and i2 are
##  within the same boundaries); and a 2*5^(n1 + n2)-dimensional
##  module which we call Wtilde, having a basis of elements we
##  call X1^i1 X2^i2 dXk^tilde (again with i1 and i2 within the same
##  boundaries, and with k in {1, 2}).
##
##  The multiplication is described in the above paper and in the code
##  below. We use lists of symbolic descriptions for the basis
##  elements: [i1, i2] for X1^i1 X2^i2 and [[i1, i2], k] for either
##  X1^i1 X2^i2 dXk or X1^i1 X2^i2 dXk^tilde. All valid such
##  symbolic descriptions can be found in two lists, OBasis and
##  WBasis, respectively. In the basis of the full algebra, we first
##  put the elements of W as ordered in WBasis, then the elements of O
##  as ordered in OBasis, and finally the elements of Wtilde, again as
##  ordered in WBasis. Throughout the function below, we describe
##  basis elements using either these symbolic descriptions, or the
##  positions in this basis.

BindGlobal( "SimpleLieAlgebraTypeM", function (n, F)
    local   n1,  n2,     # The parameters.
            one, zero,   # Shortcuts to the field elements.
            dimO,  dimW, # Dimensions of the O and W spaces.
            OBasis,      # A representation of a basis for O.
            posO,        # Function to find the position of a given
                         #   OBasis element in the basis.
            OProduct,    # The regular product of two elements of OBasis.
            WBasis,      # A representation of a basis for W.
            div,         # The divergence function for elements of WBasis.
            posW,        # Function to find the position of a WBasis
                         #   element in the basis.
            WOProduct,   # The action of W on O.
            WProduct,    # The regular product of two elements of WBasis.
            WBracket,    # The commutator of two elements of WBasis
                         #   w.r.t. WProduct.
            degrees,     # The list of degrees of different components.
            GradingFunction, # The function giving the grading components.
            tildify, clean, # Utility functions.
            table,  i,  w1,  j,  w2, result,  term,  prod,  x2,  x1, d;
                         # Temporary results and counters.
    if not (IsList (n) and Length (n) = 2 and n [1] > 0 and n [2] > 0)
       then
        Error ("<n> must be a list of two positive integers");
    fi;

    if Characteristic (F) <> 5 then
        Error ("<F> must be a field of characteristic 5");
    fi;

    n1 := n [1];
    n2 := n [2];
    dimO := 5^(n1 + n2);
    dimW := 2*dimO;

    one := One (F);
    zero := Zero (F);

    # The element [a, b] of OBasis represents the element
    #    X1^a X2^b / (a! b!)
    # of the truncated polynomial ring.
    OBasis := Cartesian ([0 .. 5^n1 - 1], [0 .. 5^n2 - 1]);

    # The position of an OBasis element in the basis.
    posO := function (o)
        return o [2] + 5^n2 * o [1] + 1;
    end;

    # Given two OBasis elements x1 and x2, returns a list with a
    # coefficient coeff and the position pos of a basis element, such
    # that
    #    x1 * x2 = coeff * OBasis [pos]
    OProduct := function (x1, x2)
        local pow;
        pow := ShallowCopy (x1 + x2);
        if pow [1] < 5^n1 and pow [2] < 5^n2 then
            return [Binomial (pow [1], x1 [1]) *
                    (Binomial (pow [2], x1 [2]) * one),
                    posO (pow)];
        else
            return [zero, 1];
        fi;
    end;

    # The element [[a, b], c] of WBasis represents the element
    #    O dXc
    # where O is the element of OBasis represented by [a, b].
    WBasis := Cartesian (OBasis, [1, 2]);

    # The divergence: f dX1 + g dX2 -> dX1 (f) + dX2 (g), maps WBasis
    # elements to OBasis elements. Note: if the result is 0, we return
    # that instead of the OBasis element.
    div := function (abc)
        local ab, pos;
        if abc [1] [abc [2]] = 0 then
            return 0;
        fi;
        pos := abc [2];
        ab := ShallowCopy (abc [1]);
        ab [pos] := ab [pos] - 1;
        return ab;
    end;

    # The position of the WBasis element [OBasis (o), c] in the basis,
    # where o is the number of an OBasis element.
    posW := function (o, c)
        return 2 * o + c - 2;
    end;

    # Given a WBasis element [[a1, b1], c1] and an OBasis element [a2,
    # b2], representing the usual monomials, this function computes
    #    p = X1^a1 X2^a2 (dXc1 X1^a2 X2^b2),
    # and returns a list [pos, coeff] with the position in OBasis of
    # the basis element this is a multiple of, and its coefficient; so
    # that
    #    p = coeff * OBasis [pos].
    WOProduct := function (w1, x2)
        local pow;
        if x2 [w1 [2]] > 0 then
            pow := ShallowCopy (x2);
            pow [w1 [2]] := pow [w1 [2]] - 1;
            return OProduct (w1 [1], pow);
        else
            return [zero, 1];
        fi;
    end;

    # Given two WBasis elements [[a1, b1], c1] and [[a2, b2], c2],
    # representing the usual monomials, this
    # function computes
    #    p = X1^a1 X2^a2 (dXc1 (X1^a2 X2^b2)) dXc2,
    # and returns a list [pos, coeff] with the position in WBasis of
    # the basis element this is a multiple of, and its coefficient; so
    # that
    #    p = coeff * WBasis [pos].
    WProduct := function (x1, x2)
        local prod;
        prod := WOProduct (x1, x2 [1]);
        if prod [1] <> zero then
            return [prod [1], posW (prod [2], x2 [2])];
        else
            return [zero, 1];
        fi;
    end;

    # The bracket on W is defined as mapping x1, x2 to their
    # commutator, where the multiplication is as above. This function
    # returns a list ls of, alternatingly, coefficients and positions,
    # such that the bracket of x1 and x2 is equal to
    #   ls [1] * WBasis [ls [2]] + ls [3] * WBasis [ls [4]].
    # However, if any coefficient is 0, the corresponding list
    # elements are omitted. So the list returned has length 4, 2 or 0.
    WBracket := function (x1, x2)
        local result, prod;
        prod := WProduct (x1, x2);
        if prod [1] <> zero then
            result := prod;
        else
            result := [];
        fi;
        prod := WProduct (x2, x1);
        if prod [1] <> zero then
            Append (result, [- prod [1], prod [2]]);
        fi;
        return result;
    end;

    # The order of the basis elements is: first the basis elements of
    # W, then of O, then of Wtilde. Definitions of W, Wtilde and O can
    # be found in H. Strade, Simple Lie Algebras over Fields of
    # Positive Characteristic, Walter de Gruyter - Berlin/New York 2004.
    # This is the realization found in M.I. Kuznetsov, The Melikian
    # algebras as Lie algebras of the type G2, Comm. Algebra 19
    # (1991), 1281-1312.

    # tildify adds cst to each even position in ls. It is useful for
    # mapping a result of WBracket from W to Wtilde, or an OBasis
    # element to the correct position in the full basis.
    tildify := function (ls, cst)
        local i;
        i := 2;
        while IsBound (ls [i]) do
            ls [i] := ls [i] + cst;
            i := i + 2;
        od;
    end;

    # clean is a function that 'cleans' a list before submission to
    # SetEntrySCTable. That is, if any positions are the same, the
    # coefficients are added.
    clean := function (ls)
        local ps, i;
        ps := rec ();
        i := 2;
        while IsBound (ls [i]) do
            if IsBound (ps.(ls [i])) then
                ls [ps.(ls [i]) - 1] := ls [ps.(ls [i]) - 1] + ls [i - 1];
                Unbind (ls [i - 1]);
                Unbind (ls [i]);
            else
                ps.(ls [i]) := i;
            fi;
            i := i + 2;
        od;
        return Compacted (ls);
    end;

    table := EmptySCTable (dimO + 2 * dimW, Zero (F), "antisymmetric");

    for i in [1 .. dimW] do
        w1 := WBasis [i];
        for j in [1 .. dimW] do
            w2 := WBasis [j];

            if i < j then
                # Compute the product for w1 and w2 in W.
                # This is simply [w1, w2].
                SetEntrySCTable (table, i, j, clean (WBracket (w1, w2)));


                # Compute the product for w1 and w2 in WTilde.
                # This is f1g2 - f2g1 if w1 = f1d1 + f2d2, w2 = g1d1 +
                # g2d2.
                if w1 [2] <> w2 [2] then
                    prod := OProduct (w1 [1], w2 [1]);
                    if prod [1] <> zero then
                        SetEntrySCTable (table, i + dimW + dimO,
                                j + dimW + dimO,
                                [(3 - 2 * w1 [2]) * # This is the coefficient
                                                    # plus or minus one.
                                 prod [1], prod [2] + dimW]);
                    fi;
                fi;
            fi;

            # Compute the product for w1 in W, w2 in WTilde.
            # This is defined as [w1, w2]^tilde + 2 div(w1) w2^tilde
            # [w1, w2]^tilde:
            result := WBracket (w1, w2);
            tildify (result, dimW + dimO);
            # 2 div(w1) w2^tilde:
            d := div (w1);
            if d <> 0 then
                term := OProduct (d, w2 [1]);
                if term [1] <> zero then
                    Append (result, [2 * term [1],
                            posW (term [2], w2 [2]) + dimW + dimO]);
                fi;
            fi;
            SetEntrySCTable (table, i, j + dimW + dimO, clean (result));
        od;

        for j in [1 .. dimO] do
            x2 := OBasis [j];

            # Compute the product for w1 in W, x2 in O.
            # This is w1 (x2) - 2 div (w1) x2.
            # w1 (x2):
            result := WOProduct (w1, x2);
            # - 2 div (w1) x2:
            d := div (w1);
            if d <> 0 then
                term := OProduct (d, x2);
                if term [1] <> zero then
                    Append (result, [-2 * term [1], term [2]]);
                fi;
            fi;
            tildify (result, dimW);
            SetEntrySCTable (table, i, j + dimW, clean (result));

            # Compute the product for w1 in Wtilde, x2 in O.
            # This is - x2 w1^un-tilde.
            # We put it in the table as the product of x2 and w1, so
            # that we don't have to bother with the minus sign.
            result := OProduct (x2, w1 [1]);
            SetEntrySCTable (table, j + dimW, i + dimW + dimO,
                    [result [1], posW (result [2], w1 [2])]);
        od;
    od;

    for i in [1 .. dimO] do
        x1 := OBasis [i];
        for j in [i + 1 .. dimO] do
            x2 := OBasis [j];
            # Compute the product for x1 and x2 in O.
            # This is 2 (x2 dX2(x1) - x1 dX2(x2))dX1^tilde + 2 (x1
            # dX1(x2) - x2 dX1(x1)) dX2^tilde.
            # 2 x2 dX2(x1) dX1:
            result := WProduct ([x2, 2], [x1, 1]);
            result [1] := 2 * result [1];
            # - 2 x1 dX2(x2) dX1:
            term := WProduct ([x1, 2], [x2, 1]);
            Append (result, [- 2 * term [1], term [2]]);
            # 2 x1 dX1(x2) dX2:
            term := WProduct ([x1, 1], [x2, 2]);
            Append (result, [2 * term [1], term [2]]);
            # - 2 x2 dX1(x1) dX2:
            term := WProduct ([x2, 1], [x1, 2]);
            Append (result, [- 2 * term [1], term [2]]);

            tildify (result, dimW + dimO);

            SetEntrySCTable (table, i + dimW, j + dimW,
                    clean (result));
        od;
    od;

    result := LieAlgebraByStructureConstants (F, table);

    SetIsRestrictedLieAlgebra (result, n1 = 1 and n2 = 1);

    degrees := Concatenation (List (WBasis, lst ->
                       lst [1] * [[2, 1], [1, 2]] +
                       \[\]([[-2, -1], [-1, -2]], lst [2])),
                       List (OBasis, lst ->
                             lst * [[2, 1], [1, 2]] + [-1, -1]),
                       List (WBasis, lst ->
                             lst [1] * [[2, 1], [1, 2]] +
                             \[\]([[-1, 0], [0, -1]], lst [2])));
    GradingFunction := d -> Subspace (result,
                               Basis(result) {Positions (degrees, d)});
    SetGrading (result, rec(
            source :=
            FreeLeftModule(Integers, [[1, 0], [0, 1]], "basis"),
            hom_components := GradingFunction,
            non_zero_hom_components := Set (degrees)));

#    GradingFunction := function (d)
#        local degsum, r, oposns;
#        r := d[1] + d[2] mod 3;
#        if r = 0 then
#
#        degsum := (d [1] + d [2] - r) / 3 + 1;
#        oposns := List ([Maximum (0, degsum - 5^n2 + 1) ..
#                         Minimum (degsum, 5^n1 - 1)],
#                        i -> posO ([i, degsum - i]));
#        if r = 0 then
#            return SubspaceNC (result,
#                           Basis (result) {Concatenation (
#                                   List (oposns, p -> posW (p, 1)),
#                                   List (oposns, p -> posW (p, 2)))},
#                           "basis");
#        elif r = 1 then
#            return SubspaceNC (result,
#                           Basis (result) {oposns + dimW},
#                           "basis");
#        else # r = 2
#            return SubspaceNC (result,
#                           Basis (result) {3 * dimO + Concatenation (
#                                   List (oposns, p -> posW (p, 1)),
#                                   List (oposns, p -> posW (p, 2)))},
#                           "basis");
#        fi;
#    end;
#    SetGrading (result,
#            rec (min_degree := -3,
#                max_degree := 3 * (5^n1 + 5^n2) - 7,
#                source := Integers,
#                 hom_components := GradingFunction));

    return result;
end );



##############################################################################
##
#F  SimpleLieAlgebra( <type>, <n>, <F> )
##

InstallGlobalFunction( SimpleLieAlgebra, function( type, n, F )
    local A;

    # Check the arguments.
    if not ( IsString( type ) and ( IsInt( n ) or IsList( n ) ) and
      IsRing( F ) ) then
      Error( "<type> must be a string, <n> an integer, <F> a ring" );
    fi;

    if type in [ "A","B","C","D","E","F","G" ] then
      A := SimpleLieAlgebraTypeA_G( type, n, F );
    elif type = "W" then
      A := SimpleLieAlgebraTypeW( n, F )[1];
    elif type = "S" then
      A := SimpleLieAlgebraTypeS( n, F );
    elif type = "H" then
      A := SimpleLieAlgebraTypeH( n, F );
    elif type = "K" then
      A := SimpleLieAlgebraTypeK( n, F );
    elif type = "M" then
      A := SimpleLieAlgebraTypeM( n, F );
    else
       Error( "<type> must be one of \"A\", \"B\", \"C\", \"D\", \"E\", ",
             "\"F\", \"G\", \"H\", \"K\", \"M\", \"S\", \"W\" " );
    fi;

    # store the pth power images in the family (LB)
    if IsRestrictedLieAlgebra(A) then
        FamilyObj(Representative(A))!.pMapping := PthPowerImages(Basis(A));
    fi;
    return A;
end );