1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Alexander Hulpke.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file contains the declarations of operations for factor group maps
##
#############################################################################
##
#M NaturalHomomorphismsPool(G) . . . . . . . . . . . . . . initialize method
##
InstallMethod(NaturalHomomorphismsPool,true,[IsGroup],0,
G->rec(GopDone:=false,ker:=[],ops:=[],cost:=[],group:=G,lock:=[],
intersects:=[],blocksdone:=[],in_code:=false,dotriv:=false));
#############################################################################
##
#F EraseNaturalHomomorphismsPool(G) . . . . . . . . . . . . initialize
##
InstallGlobalFunction(EraseNaturalHomomorphismsPool,function(G)
local r;
r:=NaturalHomomorphismsPool(G);
if r.in_code=true then return;fi;
r.GopDone:=false;
r.ker:=[];
r.ops:=[];
r.cost:=[];
r.group:=G;
r.lock:=[];
r.intersects:=[];
r.blocksdone:=[];
r.in_code:=false;
r.dotriv:=false;
r:=NaturalHomomorphismsPool(G);
end);
#############################################################################
##
#F AddNaturalHomomorphismsPool(G,N,op[,cost[,blocksdone]]) . Store operation
## op for kernel N if there is not already a cheaper one
## returns false if nothing had been added and 'fail' if adding was
## forbidden
##
InstallGlobalFunction(AddNaturalHomomorphismsPool,function(arg)
local G, N, op, pool, p, c, perm, ch, diff, nch, nd, involved, i;
G:=arg[1];
N:=arg[2];
op:=arg[3];
# don't store trivial cases
if Size(N)=Size(G) then
Info(InfoFactor,4,"full group");
return false;
elif Size(N)=1 then
# do we really want the trivial subgroup?
if not (HasNaturalHomomorphismsPool(G) and
NaturalHomomorphismsPool(G).dotriv=true) then
Info(InfoFactor,4,"trivial sub: ignore");
return false;
fi;
Info(InfoFactor,4,"trivial sub: OK");
fi;
pool:=NaturalHomomorphismsPool(G);
# split lists in their components
if IsList(op) and not IsInt(op[1]) then
p:=[];
for i in op do
if IsMapping(i) then
c:=Intersection(G,KernelOfMultiplicativeGeneralMapping(i));
else
c:=Core(G,i);
fi;
Add(p,c);
AddNaturalHomomorphismsPool(G,c,i);
od;
# transfer in numbers list
op:=List(p,i->PositionSet(pool.ker,i));
if Length(arg)<4 then
# add the prices
c:=Sum(pool.cost{op});
fi;
# compute/get costs
elif Length(arg)>3 then
c:=arg[4];
else
if IsGroup(op) then
c:=IndexNC(G,op);
elif IsMapping(op) then
c:=Image(op);
if IsPcGroup(c) then
c:=1;
elif IsPermGroup(c) then
c:=NrMovedPoints(c);
else
c:=Size(c);
fi;
fi;
fi;
# check whether we have already a better operation (or whether this normal
# subgroup is locked)
p:=PositionSet(pool.ker,N);
if p=fail then
if pool.in_code then
return fail;
fi;
p:=PositionSorted(pool.ker,N);
# compute the permutation we have to apply finally
perm:=PermList(Concatenation([1..p-1],[Length(pool.ker)+1],
[p..Length(pool.ker)]))^-1;
# first add at the end
p:=Length(pool.ker)+1;
pool.ker[p]:=N;
Info(InfoFactor,2,"Added price ",c," for size ",IndexNC(G,N),
" in group of size ",Size(G));
elif c>=pool.cost[p] then
Info(InfoFactor,4,"bad price");
return false; # nothing added
elif pool.lock[p]=true then
return fail; # nothing added
else
Info(InfoFactor,2,"Changed price ",c," for size ",IndexNC(G,N));
perm:=();
# update dependent costs
ch:=[p];
diff:=[pool.cost[p]-c];
while Length(ch)>0 do
nch:=[];
nd:=[];
for i in [1..Length(pool.ops)] do
if IsList(pool.ops[i]) then
involved:=Intersection(pool.ops[i],ch);
if Length(involved)>0 then
involved:=Sum(diff{List(involved,x->Position(ch,x))});
pool.cost[i]:=pool.cost[i]-involved;
Add(nch,i);
Add(nd,involved);
fi;
fi;
od;
ch:=nch;
diff:=nd;
od;
fi;
if IsMapping(op) and not HasKernelOfMultiplicativeGeneralMapping(op) then
SetKernelOfMultiplicativeGeneralMapping(op,N);
fi;
pool.ops[p]:=op;
pool.cost[p]:=c;
pool.lock[p]:=false;
# update the costs of all intersections that are affected
for i in [1..Length(pool.ker)] do
if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) and p in pool.ops[i] then
pool.cost[i]:=Sum(pool.cost{pool.ops[i]});
fi;
od;
if Length(arg)>4 then
pool.blocksdone[p]:=arg[5];
else
pool.blocksdone[p]:=false;
fi;
if perm<>() then
# sort the kernels anew
pool.ker:=Permuted(pool.ker,perm);
# sort/modify the other components accordingly
pool.ops:=Permuted(pool.ops,perm);
for i in [1..Length(pool.ops)] do
# if entries are lists of integers
if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
pool.ops[i]:=List(pool.ops[i],i->i^perm);
fi;
od;
pool.cost:=Permuted(pool.cost,perm);
pool.lock:=Permuted(pool.lock,perm);
pool.blocksdone:=Permuted(pool.blocksdone,perm);
pool.intersects:=Set(pool.intersects,i->List(i,j->j^perm));
fi;
return perm; # if anyone wants to keep the permutation
end);
#############################################################################
##
#F LockNaturalHomomorphismsPool(G,N) . . store flag to prohibit changes of
## the map to N
##
InstallGlobalFunction(LockNaturalHomomorphismsPool,function(G,N)
local pool;
pool:=NaturalHomomorphismsPool(G);
N:=PositionSet(pool.ker,N);
if N<>fail then
pool.lock[N]:=true;
fi;
end);
#############################################################################
##
#F UnlockNaturalHomomorphismsPool(G,N) . . . clear flag to allow changes of
## the map to N
##
InstallGlobalFunction(UnlockNaturalHomomorphismsPool,function(G,N)
local pool;
pool:=NaturalHomomorphismsPool(G);
N:=PositionSet(pool.ker,N);
if N<>fail then
pool.lock[N]:=false;
fi;
end);
#############################################################################
##
#F KnownNaturalHomomorphismsPool(G,N) . . . . . check whether Hom is stored
## (or obvious)
##
InstallGlobalFunction(KnownNaturalHomomorphismsPool,function(G,N)
return N=G or Size(N)=1
or PositionSet(NaturalHomomorphismsPool(G).ker,N)<>fail;
end);
#############################################################################
##
#F GetNaturalHomomorphismsPool(G,N) . . . . get operation for G/N if known
##
InstallGlobalFunction(GetNaturalHomomorphismsPool,function(G,N)
local pool,p,h,ise,emb,i,j;
if not HasNaturalHomomorphismsPool(G) then
return fail;
fi;
pool:=NaturalHomomorphismsPool(G);
p:=PositionSet(pool.ker,N);
if p<>fail then
h:=pool.ops[p];
if IsList(h) then
# just stored as intersection. Construct the mapping!
# join intersections
ise:=ShallowCopy(h);
for i in ise do
if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
for j in Filtered(pool.ops[i],j-> not j in ise) do
Add(ise,j);
od;
elif not pool.blocksdone[i] then
h:=GetNaturalHomomorphismsPool(G,pool.ker[i]);
pool.in_code:=true; # don't add any new kernel here
# (which would mess up the numbering)
ImproveActionDegreeByBlocks(G,pool.ker[i],h);
pool.in_code:=false;
fi;
od;
ise:=List(ise,i->GetNaturalHomomorphismsPool(G,pool.ker[i]));
if not (ForAll(ise,IsPcGroup) or ForAll(ise,IsPermGroup)) then
ise:=List(ise,x->x*IsomorphismPermGroup(Image(x)));
fi;
h:=CallFuncList(DirectProduct,List(ise,Image));
emb:=List([1..Length(ise)],i->Embedding(h,i));
emb:=List(GeneratorsOfGroup(G),
i->Product([1..Length(ise)],j->Image(emb[j],Image(ise[j],i))));
ise:=SubgroupNC(h,emb);
h:=GroupHomomorphismByImagesNC(G,ise,GeneratorsOfGroup(G),emb);
SetKernelOfMultiplicativeGeneralMapping(h,N);
pool.ops[p]:=h;
elif IsGroup(h) then
h:=FactorCosetAction(G,h,N); # will implicitly store
fi;
p:=h;
fi;
return p;
end);
#############################################################################
##
#F DegreeNaturalHomomorphismsPool(G,N) degree for operation for G/N if known
##
InstallGlobalFunction(DegreeNaturalHomomorphismsPool,function(G,N)
local p,pool;
pool:=NaturalHomomorphismsPool(G);
p:=First([1..Length(pool.ker)],i->IsIdenticalObj(pool.ker[i],N));
if p=fail then
p:=PositionSet(pool.ker,N);
fi;
if p<>fail then
p:=pool.cost[p];
fi;
return p;
end);
#############################################################################
##
#F CloseNaturalHomomorphismsPool(<G>[,<N>]) . . calc intersections of known
## operation kernels, don't continue anything which is smaller than N
##
InstallGlobalFunction(CloseNaturalHomomorphismsPool,function(arg)
local G,pool,p,comb,i,c,perm,isi,N,discard,Npos,psub,pder,new,co,pos,j,k;
G:=arg[1];
pool:=NaturalHomomorphismsPool(G);
p:=[1..Length(pool.ker)];
Npos:=fail;
if Length(arg)>1 then
# get those p that lie above N
N:=arg[2];
p:=Filtered(p,i->IsSubset(pool.ker[i],N));
if Length(p)=0 then
return;
fi;
SortParallel(List(pool.ker{p},Size),p);
if Size(pool.ker[p[1]])=Size(N) then
# N in pool
Npos:=p[1];
c:=pool.cost[Npos];
p:=Filtered(p,x->pool.cost[x]<c);
fi;
else
SortParallel(List(pool.ker{p},Size),p);
N:=fail;
fi;
if Size(Intersection(pool.ker{p}))>Size(N) then
# cannot reach N
return;
fi;
# determine inclusion, derived
psub:=List(pool.ker,x->0);
pder:=List(pool.ker,x->0);
discard:=[];
for i in [1..Length(p)] do
c:=Filtered(p{[1..i-1]},x->IsSubset(pool.ker[p[i]],pool.ker[x]));
psub[p[i]]:=Set(c);
if ForAny(c,x->pool.cost[x]<=pool.cost[p[i]]) then
AddSet(discard,p[i]);
fi;
c:=DerivedSubgroup(pool.ker[p[i]]);
if N<>fail then c:=ClosureGroup(N,c);fi;
pder[p[i]]:=Position(pool.ker,c);
od;
#if Length(discard)>0 then Error(discard);fi;
#discard:=[];
p:=Filtered(p,x->not x in discard);
for i in discard do psub[i]:=0;od;
new:=p;
repeat
# now intersect, staring from top
if new=p then
comb:=Combinations(new,2);
else
comb:=List(Cartesian(p,new),Set);
fi;
comb:=Filtered(comb,i->not i in pool.intersects and Length(i)>1);
Info(InfoFactor,2,"CloseNaturalHomomorphismsPool: ",Length(comb));
new:=[];
discard:=[];
i:=1;
while i<=Length(comb) do
co:=comb[i];
# unless they contained in each other
if not (co[1] in psub[co[2]] or co[2] in psub[co[1]]
# or there a subgroup below both that is already at least as cheap
or ForAny(Intersection(psub[co[1]],psub[co[2]]),
x->pool.cost[x]<=pool.cost[co[1]]+pool.cost[co[2]])
# or both intersect in an abelian factor?
or (N<>fail and pder[co[1]]<>fail and pder[co[1]]=pder[co[2]]
and pder[co[1]]<>Npos)) then
c:=Intersection(pool.ker[co[1]],pool.ker[co[2]]);
pos:=Position(pool.ker,c);
if pos=fail or pool.cost[pos]>pool.cost[co[1]]+pool.cost[co[2]] then
Info(InfoFactor,3,"Intersect ",co,": ",
Size(pool.ker[co[1]])," ",Size(pool.ker[co[2]]),
" yields ",Size(c));
isi:=ShallowCopy(co);
# unpack 'iterated' lists
if IsList(pool.ops[co[2]]) and IsInt(pool.ops[co[2]][1]) then
isi:=Concatenation(isi{[1]},pool.ops[co[2]]);
fi;
if IsList(pool.ops[co[1]]) and IsInt(pool.ops[co[1]][1]) then
isi:=Concatenation(isi{[2..Length(isi)]},pool.ops[co[1]]);
fi;
isi:=Set(isi);
perm:=AddNaturalHomomorphismsPool(G,c,isi,Sum(pool.cost{co}));
if pos=fail then
pos:=Position(pool.ker,c);
p:=List(p,i->i^perm);
new:=List(new,i->i^perm);
discard:=OnSets(discard,perm);
#pder:=Permuted(List(pder,x->x^perm),perm);
for k in [1..Length(pder)] do
if IsPosInt(pder[k]) then pder[k]:=pder[k]^perm;fi;
od;
Add(pder,0);
pder:=Permuted(pder,perm);
#psub:=Permuted(List(psub,x->OnTuples(x,perm)));
for k in [1..Length(psub)] do
if IsList(psub[k]) then psub[k]:=OnSets(psub[k],perm);fi;
od;
Add(psub,0);
psub:=Permuted(psub,perm);
Apply(comb,j->OnSets(j,perm));
# add new c if needed
for j in p do
if IsSubset(pool.ker[j],c) then
AddSet(psub[j],pos);
if pool.cost[j]>=pool.cost[pos] then
AddSet(discard,j);
fi;
fi;
od;
psub[pos]:=Set(Filtered(p,x->IsSubset(c,pool.ker[x])));
pder[pos]:=fail;
else
if perm<>() then Error("why perm here?");fi;
psub[pos]:=Set(Filtered(p,x->IsSubset(c,pool.ker[x])));
fi;
AddSet(new,pos);
if ForAny(psub[pos],x->pool.cost[x]<=pool.cost[pos]) then
AddSet(discard,pos);
fi;
pder[pos]:=fail;
if c=N and pool.cost[pos]^3<=IndexNC(G,N) then
return; # we found something plausible
fi;
else
Info(InfoFactor,5,"Intersect ",co,": ",
Size(pool.ker[co[1]])," ",Size(pool.ker[co[2]]),
" yields ",Size(c));
fi;
fi;
i:=i+1;
od;
#discard:=[];
for i in discard do psub[i]:=0;od;
p:=Difference(Union(p,new),discard);
new:=Difference(new,discard);
SortParallel(List(pool.ker{p},Size),p);
SortParallel(List(pool.ker{new},Size),new);
until Length(new)=0;
end);
#############################################################################
##
#F FactorCosetAction( <G>, <U>, [<N>] ) operation on the right cosets Ug
## with possibility to indicate kernel
##
BindGlobal("DoFactorCosetAction",function(arg)
local G,u,op,h,N,rt;
G:=arg[1];
u:=arg[2];
if Length(arg)>2 then
N:=arg[3];
else
N:=false;
fi;
if IsList(u) and Length(u)=0 then
u:=G;
Error("only trivial operation ? I Set u:=G;");
fi;
if N=false then
N:=Core(G,u);
fi;
rt:=RightTransversal(G,u);
if not IsRightTransversalRep(rt) then
# the right transversal has no special `PositionCanonical' method.
rt:=List(rt,i->RightCoset(u,i));
fi;
h:=ActionHomomorphism(G,rt,OnRight,"surjective");
op:=Image(h,G);
SetSize(op,IndexNC(G,N));
# and note our knowledge
SetKernelOfMultiplicativeGeneralMapping(h,N);
AddNaturalHomomorphismsPool(G,N,h);
return h;
end);
InstallMethod(FactorCosetAction,"by right transversal operation",
IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,U)
return DoFactorCosetAction(G,U);
end);
InstallOtherMethod(FactorCosetAction,
"by right transversal operation, given kernel",IsFamFamFam,
[IsGroup,IsGroup,IsGroup],0,
function(G,U,N)
return DoFactorCosetAction(G,U,N);
end);
InstallMethod(FactorCosetAction,"by right transversal operation, Niceo",
IsIdenticalObj,[IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,U)
local hom;
hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
return hom*DoFactorCosetAction(NiceObject(G),Image(hom,U));
end);
InstallOtherMethod(FactorCosetAction,
"by right transversal operation, given kernel, Niceo",IsFamFamFam,
[IsGroup and IsHandledByNiceMonomorphism,IsGroup,IsGroup],0,
function(G,U,N)
local hom;
hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
return hom*DoFactorCosetAction(NiceObject(G),Image(hom,U),Image(hom,N));
end);
# action on lists of subgroups
InstallOtherMethod(FactorCosetAction,
"On cosets of list of groups",IsElmsColls,
[IsGroup,IsList],0,
function(G,L)
local q,i,gens,imgs,d;
if Length(L)=0 or not ForAll(L,x->IsGroup(x) and IsSubset(G,x)) then
TryNextMethod();
fi;
q:=List(L,x->FactorCosetAction(G,x));
gens:=MappingGeneratorsImages(q[1])[1];
imgs:=List(q,x->List(gens,y->ImagesRepresentative(x,y)));
d:=imgs[1];
for i in [2..Length(imgs)] do
d:=SubdirectDiagonalPerms(d,imgs[i]);
od;
imgs:=Group(d);
q:=GroupHomomorphismByImagesNC(G,imgs,gens,d);
return q;
end);
#############################################################################
##
#M DoCheapActionImages(G) . . . . . . . . . . All cheap operations for G
##
InstallMethod(DoCheapActionImages,"generic",true,[IsGroup],0,Ignore);
InstallMethod(DoCheapActionImages,"permutation",true,[IsPermGroup],0,
function(G)
local pool, dom, o, op, Go, j, b, i,allb,newb,mov,allbold,onlykernel,k,
found,type;
onlykernel:=ValueOption("onlykernel");
found:=NrMovedPoints(G);
pool:=NaturalHomomorphismsPool(G);
if pool.GopDone=false then
dom:=MovedPoints(G);
# orbits
o:=OrbitsDomain(G,dom);
o:=Set(o,Set);
# do orbits and test for blocks
for i in o do
if Length(i)<>Length(dom) or
# only works if domain are the first n points
not (1 in dom and 2 in dom and IsRange(dom)) then
op:=ActionHomomorphism(G,i,"surjective");
Range(op:onlyimage); #`onlyimage' forces same generators
AddNaturalHomomorphismsPool(G,Stabilizer(G,i,OnTuples),
op,Length(i));
type:=1;
else
op:=IdentityMapping(G);
type:=2;
fi;
Go:=Image(op,G);
# all minimal and maximal blocks
mov:=MovedPoints(Go);
allb:=ShallowCopy(RepresentativesMinimalBlocks(Go,mov));
allbold:=[];
SortBy(allb,Length);
while Length(allb)>0 do
j:=Remove(allb);
Add(allbold,j);
# even if generic spread, <found, since blocks are always of size
# >1.
if Length(i)/Length(j)<found then
b:=List(Orbit(G,i{j},OnSets),Immutable);
#Add(bl,Immutable(Set(b)));
op:=ActionHomomorphism(G,Set(b),OnSets,"surjective");
ImagesSource(op:onlyimage); #`onlyimage' forces same generators
k:=KernelOfMultiplicativeGeneralMapping(op);
if onlykernel<>fail and k=onlykernel and Length(b)<found then
found:=Length(b);
fi;
AddNaturalHomomorphismsPool(G,k,op);
# also one finer blocks (to make up for iterating only once)
if type=2 then
newb:=Blocks(G,b,OnSets);
else
newb:=Blocks(Go,Blocks(Go,mov,j),OnSets);
fi;
if Length(newb)>1 then
newb:=Union(newb[1]);
if not (newb in allb or newb in allbold) then
Add(allb,newb);
SortBy(allb,Length);
fi;
fi;
fi;
od;
#if Length(i)<500 and Size(Go)>10*Length(i) then
#else
# # one block system
# b:=Blocks(G,i);
# if Length(b)>1 then
# Add(bl,Immutable(Set(b)));
# fi;
# fi;
od;
pool.GopDone:=true;
fi;
end);
BindGlobal("DoActionBlocksForKernel",
function(G,mustfaithful)
local dom, o, bl, j, b, allb,newb;
dom:=MovedPoints(G);
# orbits
o:=OrbitsDomain(G,dom);
o:=Set(o,Set);
# all good blocks
bl:=dom;
allb:=ShallowCopy(RepresentativesMinimalBlocks(G,dom));
for j in allb do
if Length(dom)/Length(j)<Length(bl) and
Size(Core(mustfaithful,Stabilizer(mustfaithful,j,OnSets)))=1
then
b:=Orbit(G,j,OnSets);
bl:=b;
# also one finer blocks (as we iterate only once)
newb:=Blocks(G,b,OnSets);
if Length(newb)>1 then
newb:=Union(newb[1]);
if not newb in allb then
Add(allb,newb);
fi;
fi;
fi;
od;
if Length(bl)<Length(dom) then
return bl;
else
return fail;
fi;
end);
#############################################################################
##
#F GenericFindActionKernel random search for subgroup with faithful core
##
BADINDEX:=1000; # the index that is too big
BindGlobal( "GenericFindActionKernel", function(arg)
local G, N, knowi, goodi, simple, uc, zen, cnt, pool, ise, v, badi,
totalcnt, interrupt, u, nu, cor, zzz,bigperm,perm,badcores,max,i,hard;
G:=arg[1];
N:=arg[2];
if Length(arg)>2 then
knowi:=arg[3];
else
knowi:=IndexNC(G,N);
fi;
# special treatment for solvable groups. This will never be triggered for
# perm groups or nice groups
if Size(N)>1 and HasSolvableFactorGroup(G,N) then
perm:=ActionHomomorphism(G,RightCosets(G,N),OnRight,"surjective");
perm:=perm*IsomorphismPcGroup(Image(perm));
return perm;
fi;
# special treatment for abelian factor
if HasAbelianFactorGroup(G,N) then
if IsPermGroup(G) and Size(N)=1 then
return IdentityMapping(G);
else
perm:=ActionHomomorphism(G,RightCosets(G,N),OnRight,"surjective");
fi;
return perm;
fi;
bigperm:=IsPermGroup(G) and NrMovedPoints(G)>10000;
# what is a good degree:
goodi:=Minimum(Int(knowi*9/10),LogInt(IndexNC(G,N),2)^2);
simple:=HasIsNonabelianSimpleGroup(G) and IsNonabelianSimpleGroup(G) and Size(N)=2;
uc:=TrivialSubgroup(G);
# look if it is worth to look at action on N
# if not abelian: later replace by abelian Normal subgroup
if IsAbelian(N) and (Size(N)>50 or IndexNC(G,N)<Factorial(Size(N)))
and Size(N)<50000 then
zen:=Centralizer(G,N);
if Size(zen)=Size(N) then
cnt:=0;
repeat
cnt:=cnt+1;
zen:=Centralizer(G,Random(N));
if (simple or Size(Core(G,zen))=Size(N)) and
IndexNC(G,zen)<IndexNC(G,uc) then
uc:=zen;
fi;
# until enough searched or just one orbit
until cnt=9 or (IndexNC(G,zen)+1=Size(N));
AddNaturalHomomorphismsPool(G,N,uc,IndexNC(G,uc));
else
Info(InfoFactor,3,"centralizer too big");
fi;
fi;
pool:=NaturalHomomorphismsPool(G);
pool.dotriv:=true;
CloseNaturalHomomorphismsPool(G,N);
pool.dotriv:=false;
ise:=Filtered(pool.ker,x->IsSubset(x,N));
if Length(ise)=0 then
ise:=G;
else
ise:=Intersection(ise);
fi;
# try a random extension step
# (We might always first add a random element and get something bigger)
v:=N;
#if Length(arg)=3 then
## in one example 512->90, ca. 40 tries
#cnt:=Int(arg[3]/10);
#else
#cnt:=25;
#fi;
badcores:=[];
badi:=BADINDEX;
hard:=ValueOption("hard");
if hard=fail then
hard:=100000;
elif hard=true then
hard:=10000;
fi;
totalcnt:=0;
interrupt:=false;
cnt:=20;
repeat
u:=v;
repeat
repeat
if Length(arg)<4 or Random(1,2)=1 then
if IsCyclic(u) and Random(1,4)=1 then
# avoid being stuck with a bad first element
u:=Subgroup(G,[Random(G)]);
fi;
if Length(GeneratorsOfGroup(u))<2 then
# closing might cost a big stabilizer chain calculation -- just
# recreate
nu:=Group(Concatenation(GeneratorsOfGroup(u),[Random(G)]));
else
nu:=ClosureGroup(u,Random(G));
fi;
else
if Length(GeneratorsOfGroup(u))<2 then
# closing might cost a big stabilizer chain calculation -- just
# recreate
nu:=Group(Concatenation(GeneratorsOfGroup(u),[Random(arg[4])]));
else
nu:=ClosureGroup(u,Random(arg[4]));
fi;
fi;
SetParent(nu,G);
totalcnt:=totalcnt+1;
if KnownNaturalHomomorphismsPool(G,N) and
Minimum(IndexNC(G,v),knowi)<hard
and 5*totalcnt>Minimum(IndexNC(G,v),knowi,1000) then
# interrupt if we're already quite good
interrupt:=true;
fi;
if ForAny(badcores,x->IsSubset(nu,x)) then
nu:=u;
fi;
# Abbruchkriterium: Bis kein Normalteiler, es sei denn, es ist N selber
# (das brauchen wir, um in einigen trivialen F"allen abbrechen zu
# k"onnen)
#Print("nu=",Length(GeneratorsOfGroup(nu))," : ",Size(nu),"\n");
until
# der Index ist nicht so klein, da"s wir keine Chance haben
((not bigperm or
Length(Orbit(nu,MovedPoints(G)[1]))<NrMovedPoints(G)) and
(IndexNC(G,nu)>50 or Factorial(IndexNC(G,nu))>=IndexNC(G,N)) and
not IsNormal(G,nu)) or IsSubset(u,nu) or interrupt;
Info(InfoFactor,4,"Index ",IndexNC(G,nu));
u:=nu;
until totalcnt>300 or
# und die Gruppe ist nicht zuviel schlechter als der
# beste bekannte Index. Daf"ur brauchen wir aber wom"oglich mehrfache
# Erweiterungen.
interrupt or (((Length(arg)=2 or IndexNC(G,u)<knowi)));
if IndexNC(G,u)<knowi then
#Print("Index:",IndexNC(G,u),"\n");
if simple and u<>G then
cor:=TrivialSubgroup(G);
else
cor:=Core(G,u);
fi;
if Size(cor)>Size(N) and IsSubset(cor,N) and not cor in badcores then
Add(badcores,cor);
fi;
# store known information(we do't act, just store the subgroup).
# Thus this is fairly cheap
pool.dotriv:=true;
zzz:=AddNaturalHomomorphismsPool(G,cor,u,IndexNC(G,u));
if IsPerm(zzz) and zzz<>() then
CloseNaturalHomomorphismsPool(G,N);
fi;
pool.dotriv:=false;
zzz:=DegreeNaturalHomomorphismsPool(G,N);
Info(InfoFactor,3," ext ",cnt,": ",IndexNC(G,u)," best degree:",zzz);
if cnt<10 and Size(cor)>Size(N) and IndexNC(G,u)*2<knowi and
ValueOption("inmax")=fail then
if IsSubset(SolvableRadical(u),N) and Size(N)<Size(SolvableRadical(u)) then
# only affine ones are needed, rest will have wrong kernel
max:=DoMaxesTF(u,["1"]:inmax,cheap);
else
max:=TryMaximalSubgroupClassReps(u:inmax,cheap);
fi;
max:=Filtered(max,x->IndexNC(G,x)<knowi and IsSubset(x,N));
for i in max do
cor:=Core(G,i);
AddNaturalHomomorphismsPool(G,cor,i,IndexNC(G,i));
od;
zzz:=DegreeNaturalHomomorphismsPool(G,N);
Info(InfoFactor,3," Maxes: ",Length(max)," best degree:",zzz);
fi;
else
zzz:=DegreeNaturalHomomorphismsPool(G,N);
fi;
if IsInt(zzz) then
knowi:=zzz;
fi;
cnt:=cnt-1;
if cnt=0 and zzz>badi then
badi:=Int(badi*12/10);
Info(InfoWarning+InfoFactor,2,
"index unreasonably large, iterating ",badi);
cnt:=20;
totalcnt:=0;
interrupt:=false;
v:=N; # all new
fi;
until interrupt or cnt<=0 or zzz<=goodi;
Info(InfoFactor,1,zzz," vs ",badi);
return GetNaturalHomomorphismsPool(G,N);
end );
#############################################################################
##
#F SmallerDegreePermutationRepresentation( <G> )
##
InstallGlobalFunction(SmallerDegreePermutationRepresentation,function(G)
local o, s, k, gut, erg, H, hom, b, ihom, improve, map, loop,bl,
i,cheap,k2,change;
change:=false;
Info(InfoFactor,1,"Smaller degree for order ",Size(G),", deg: ",NrMovedPoints(G));
cheap:=ValueOption("cheap");
if cheap="skip" then
return IdentityMapping(G);
fi;
cheap:=cheap=true;
if Length(GeneratorsOfGroup(G))>7 then
s:=SmallGeneratingSet(G);
if Length(s)=0 then s:=[One(G)];fi;
if Length(s)<Length(GeneratorsOfGroup(G))-1 then
Info(InfoFactor,1,"reduced to ",Length(s)," generators");
H:=Group(s);
change:=true;
SetSize(H,Size(G));
return SmallerDegreePermutationRepresentation(H);
fi;
fi;
# deal with large abelian components first (which could be direct)
if cheap<>true then
hom:=MaximalAbelianQuotient(G);
i:=IndependentGeneratorsOfAbelianGroup(Image(hom));
o:=List(i,Order);
if ValueOption("norecurse")<>true and
Product(o)>20 and Sum(o)*4<NrMovedPoints(G) then
Info(InfoFactor,2,"append abelian rep");
s:=AbelianGroup(IsPermGroup,o);
ihom:=GroupHomomorphismByImagesNC(Image(hom),s,i,GeneratorsOfGroup(s));
erg:=SubdirectDiagonalPerms(
List(GeneratorsOfGroup(G),x->Image(ihom,Image(hom,x))),
GeneratorsOfGroup(G));
k:=Group(erg);SetSize(k,Size(G));
hom:=GroupHomomorphismByImagesNC(G,k,GeneratorsOfGroup(G),erg);
return hom*SmallerDegreePermutationRepresentation(k:norecurse);
fi;
fi;
# known simple?
if HasIsSimpleGroup(G) and IsSimpleGroup(G)
and NrMovedPoints(G)>=SufficientlySmallDegreeSimpleGroupOrder(Size(G))
then return IdentityMapping(G);
fi;
if not IsTransitive(G,MovedPoints(G)) then
o:=ShallowCopy(OrbitsDomain(G,MovedPoints(G)));
SortBy(o, Length);
for loop in [1..2] do
s:=[];
# Try subdirect product
k:=G;
gut:=[];
for i in [1..Length(o)] do
s:=Stabilizer(k,o[i],OnTuples);
if Size(s)<Size(k) then
k:=s;
Add(gut,i);
fi;
od;
# reduce each orbit separately
o:=o{gut};
# second run: now take the big orbits first
Sort(o,function(a,b)return Length(a)>Length(b);end);
od;
SortBy(o, Length);
erg:=List(GeneratorsOfGroup(G),i->());
k:=G;
for i in [1..Length(o)] do
Info(InfoFactor,1,"Try to shorten orbit ",i," Length ",Length(o[i]));
s:=ActionHomomorphism(G,o[i],OnPoints,"surjective");
k2:=Image(s,k);
k:=Stabilizer(k,o[i],OnTuples);
H:=Range(s);
# is there an action that is good enough for improving the overall
# kernel, even if it is not faithful? If so use the best of them.
b:=DoActionBlocksForKernel(H,k2);
if b<>fail then
Info(InfoFactor,2,"Blocks for kernel reduce to ",Length(b));
b:=ActionHomomorphism(H,b,OnSets,"surjective");
s:=s*b;
fi;
s:=s*SmallerDegreePermutationRepresentation(Image(s));
Info(InfoFactor,1,"Shortened to ",NrMovedPoints(Range(s)));
erg:=SubdirectDiagonalPerms(erg,List(GeneratorsOfGroup(G),i->Image(s,i)));
od;
if NrMovedPoints(erg)<NrMovedPoints(G) then
s:=Group(erg,()); # `erg' arose from `SubdirectDiagonalPerms'
SetSize(s,Size(G));
s:=GroupHomomorphismByImagesNC(G,s,GeneratorsOfGroup(G),erg);
SetIsBijective(s,true);
return s;
fi;
return IdentityMapping(G);
fi; # intransitive treatment
# if the original group has no stabchain we probably do not want to keep
# it (or a homomorphisms pool) there -- make a copy for working
# intermediately with it.
if not HasStabChainMutable(G) then
H:= GroupWithGenerators( GeneratorsOfGroup( G ),One(G) );
change:=true;
if HasSize(G) then
SetSize(H,Size(G));
fi;
if HasBaseOfGroup(G) then
SetBaseOfGroup(H,BaseOfGroup(G));
fi;
else
H:=G;
fi;
hom:=IdentityMapping(H);
b:=NaturalHomomorphismsPool(H);
b.dotriv:=true;
AddNaturalHomomorphismsPool(H,TrivialSubgroup(H),hom,NrMovedPoints(H));
b.dotriv:=false;
# cheap initial block reduction?
if IsTransitive(H,MovedPoints(H)) then
improve:=true;
while improve and (cheap or NrMovedPoints(H)*5>Size(H)) do
improve:=false;
bl:=Blocks(H,MovedPoints(H));
map:=ActionHomomorphism(G,bl,OnSets,"surjective");
ImagesSource(map:onlyimage); #`onlyimage' forces same generators
bl:=KernelOfMultiplicativeGeneralMapping(map);
AddNaturalHomomorphismsPool(G,bl,map);
if Size(bl)=1 then
hom:=hom*map;
H:=Image(map);
change:=true;
Info(InfoFactor,2," quickblocks improved to degree ",NrMovedPoints(H));
fi;
od;
fi;
b:=NaturalHomomorphismsPool(H);
b.dotriv:=true;
if change then
DoCheapActionImages(H:onlykernel:=TrivialSubgroup(H));
else
DoCheapActionImages(H);
fi;
CloseNaturalHomomorphismsPool(H,TrivialSubgroup(H));
b.dotriv:=false;
map:=GetNaturalHomomorphismsPool(H,TrivialSubgroup(H));
if map<>fail and Image(map)<>H then
Info(InfoFactor,2,"cheap actions improved to degree ",NrMovedPoints(H));
hom:=hom*map;
H:=Image(map);
fi;
o:=DegreeNaturalHomomorphismsPool(H,TrivialSubgroup(H));
if cheap<>true and (IsBool(o) or o*2>=NrMovedPoints(H)) then
s:=GenericFindActionKernel(H,TrivialSubgroup(H),NrMovedPoints(H));
if s<>fail then
hom:=hom*s;
fi;
fi;
return hom;
end);
#############################################################################
##
#F ImproveActionDegreeByBlocks( <G>, <N> , hom )
## extension of <U> in <G> such that \bigcap U^g=N remains valid
##
InstallGlobalFunction(ImproveActionDegreeByBlocks,function(G,N,oh)
local gimg,img,dom,b,improve,bp,bb,i,k,bestdeg,subo,op,bc,bestblock,bdom,
bestop,sto,subomax;
Info(InfoFactor,1,"try to find block systems");
# remember that we computed the blocks
b:=NaturalHomomorphismsPool(G);
# special case to use it for improving a permutation representation
if Size(N)=1 then
Info(InfoFactor,1,"special case for trivial subgroup");
b.ker:=[N];
b.ops:=[oh];
b.cost:=[Length(MovedPoints(Range(oh)))];
b.lock:=[false];
b.blocksdone:=[false];
subomax:=20;
else
subomax:=500;
fi;
i:=PositionSet(b.ker,N);
if b.blocksdone[i] then
return DegreeNaturalHomomorphismsPool(G,N); # we have done it already
fi;
b.blocksdone[i]:=true;
if not IsPermGroup(Range(oh)) then
return 1;
fi;
gimg:=Image(oh,G);
img:=gimg;
dom:=MovedPoints(img);
bdom:=fail;
if IsTransitive(img,dom) then
# one orbit: Blocks
repeat
b:=Blocks(img,dom);
improve:=false;
if Length(b)>1 then
if Length(dom)<40000 then
subo:=ApproximateSuborbitsStabilizerPermGroup(img,dom[1]);
subo:=Difference(List(subo,i->i[1]),dom{[1]});
else
subo:=fail;
fi;
bc:=First(b,i->dom[1] in i);
if subo<>fail and (Length(subo)<=subomax) then
Info(InfoFactor,2,"try all seeds");
# if the degree is not too big or if we are desperate then go for
# all blocks
# greedy approach: take always locally best one (otherwise there
# might be too much work to do)
bestdeg:=Length(dom);
bp:=[]; #Blocks pool
i:=1;
while i<=Length(subo) do
if subo[i] in bc then
bb:=b;
else
bb:=Blocks(img,dom,[dom[1],subo[i]]);
fi;
if Length(bb)>1 and not (bb[1] in bp or Length(bb)>bestdeg) then
Info(InfoFactor,3,"found block system ",Length(bb));
# new nontriv. system found
AddSet(bp,bb[1]);
# store action
op:=1;# remove old homomorphism to free memory
if bdom<>fail then
bb:=Set(bb,i->Immutable(Union(bdom{i})));
fi;
op:=ActionHomomorphism(gimg,bb,OnSets,"surjective");
if HasSize(gimg) and not HasStabChainMutable(gimg) then
sto:=StabChainOptions(Range(op));
sto.limit:=Size(gimg);
# try only with random (will exclude some chances, but is
# quicker. If the size is OK we have a proof anyhow).
sto.random:=100;
# if gimgbas<>false then
# SetBaseOfGroup(Range(op),
# List(gimgbas,i->PositionProperty(bb,j->i in j)));
# fi;
if Size(Range(op))=Size(gimg) then
sto.random:=1000;
k:=TrivialSubgroup(gimg);
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(bb));
else
k:=[]; # do not trigger improvement
fi;
else
k:=KernelOfMultiplicativeGeneralMapping(op);
SetSize(Range(op),IndexNC(gimg,k));
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(bb));
fi;
# and note whether we got better
#improve:=improve or (Size(k)=1);
if Size(k)=1 and Length(bb)<bestdeg then
improve:=true;
bestdeg:=Length(bb);
bestblock:=bb;
bestop:=op;
fi;
fi;
# break the test loop if we found a fairly small block system
# (iterate greedily immediately)
if improve and bestdeg<i then
i:=Length(dom);
fi;
i:=i+1;
od;
else
Info(InfoFactor,2,"try only one system");
op:=1;# remove old homomorphism to free memory
if bdom<>fail then
b:=Set(b,i->Immutable(Union(bdom{i})));
fi;
op:=ActionHomomorphism(gimg,b,OnSets,"surjective");
if HasSize(gimg) and not HasStabChainMutable(gimg) then
sto:=StabChainOptions(Range(op));
sto.limit:=Size(gimg);
# try only with random (will exclude some chances, but is
# quicker. If the size is OK we have a proof anyhow).
sto.random:=100;
# if gimgbas<>false then
# SetBaseOfGroup(Range(op),
# List(gimgbas,i->PositionProperty(b,j->i in j)));
# fi;
if Size(Range(op))=Size(gimg) then
sto.random:=1000;
k:=TrivialSubgroup(gimg);
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(b));
else
k:=[]; # do not trigger improvement
fi;
else
k:=KernelOfMultiplicativeGeneralMapping(op);
SetSize(Range(op),IndexNC(gimg,k));
# keep action knowledge
op:=oh*op;
SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
AddNaturalHomomorphismsPool(G,
KernelOfMultiplicativeGeneralMapping(op),
op,Length(b));
fi;
if Size(k)=1 then
improve:=true;
bestblock:=b;
bestop:=op;
fi;
fi;
if improve then
# update mapping
bdom:=bestblock;
img:=Image(bestop,G);
dom:=MovedPoints(img);
fi;
fi;
until improve=false;
fi;
Info(InfoFactor,1,"end of blocks search");
return DegreeNaturalHomomorphismsPool(G,N);
end);
#############################################################################
##
#M FindActionKernel(<G>) . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"generic for finite groups",IsIdenticalObj,
[IsGroup and IsFinite,IsGroup],0,GenericFindActionKernel);
RedispatchOnCondition(FindActionKernel,IsIdenticalObj,[IsGroup,IsGroup],
[IsGroup and IsFinite,IsGroup],0);
InstallMethod(FindActionKernel,"general case: can't do",IsIdenticalObj,
[IsGroup,IsGroup],0,ReturnFail);
BindGlobal("FactPermRepMaxDesc",function(g,n,maxlev)
local lim,deg,all,c,recurse,use,start;
if ValueOption("infactorpermrep")=true then return false;fi;
deg:=DegreeNaturalHomomorphismsPool(g,n);
if deg=fail then deg:=infinity;fi;
all:=[];
start:=ClosureGroup(DerivedSubgroup(g),n);
lim:=RootInt(IndexNC(g,n),3)*Maximum(1,LogInt(IndexNC(g,start),2));
c:=start;
Info(InfoFactor,1,"Try maximals for limit ",lim," from ",deg);
recurse:=function(a,lev)
local m,ma,nm,i,j,co,wait,use;
Info(InfoFactor,3,"pop in ",lev);
m:=[a];
while Length(m)>0 do
wait:=[];
ma:=[];
for i in m do
if ForAll(all,y->RepresentativeAction(g,i,y)=fail) then
Add(all,i);
Info(InfoFactor,2,"Maximals of index ",IndexNC(g,i));
nm:=TryMaximalSubgroupClassReps(i:inmax,infactorpermrep,cheap);
nm:=Filtered(nm,x->IndexNC(g,x)<=lim and IsSubset(x,n) and not
IsNormal(g,x));
for j in nm do
if IsSubset(j,c) then
use:=ClosureGroup(n,DerivedSubgroup(j));
if not IsSubset(use,c) then
j:=use;
use:=true;
else
Add(wait,j);
use:=false;
fi;
else
use:=true;
fi;
if use then
co:=Core(g,j);
AddNaturalHomomorphismsPool(g,co,j,IndexNC(g,j));
c:=Intersection(co,c);
Add(ma,j);
fi;
od;
else
Info(InfoFactor,2,"discard conjugate");
fi;
od;
if Length(ma)>0 then
CloseNaturalHomomorphismsPool(g,n);
i:=DegreeNaturalHomomorphismsPool(g,n);
if i<deg then
deg:=i;
Info(InfoFactor,1,"Itmax improves to degree ",deg);
if lev>1 or deg<lim then return true;fi;
fi;
m:=ma;
SortBy(m,x->-Size(x));
elif lev<maxlev then
# no improvement. Go down
wait:=Filtered(wait,x->IndexNC(g,x)*10<=lim);
for i in wait do
if recurse(i,lev+1) then return true;fi;
od;
m:=[];
else
m:=[];
fi;
od;
if Size(c)>Size(n) then
Info(InfoFactor,3,"pop up failure ",Size(c));
else
Info(InfoFactor,3,"pop up found ",Size(c));
fi;
return false;
end;
return recurse(start,1);
end);
#############################################################################
##
#M FindActionKernel(<G>) . . . . . . . . . . . . . . . . . . . . permgrp
##
InstallMethod(FindActionKernel,"perm",IsIdenticalObj,
[IsPermGroup,IsPermGroup],0,
function(G,N)
local pool, dom, bestdeg, blocksdone, o, s, badnormals, cnt, v, u, oo, m,
badcomb, idx, i, comb,act,k,j;
if IndexNC(G,N)<50 then
# small index, anything is OK
return GenericFindActionKernel(G,N);
else
# get the known ones, including blocks &c. which might be of use
DoCheapActionImages(G);
# find smallish layer actions
oo:=ClosureGroup(SolvableRadical(G),N);
dom:=ChiefSeriesThrough(G,[oo,N]);
dom:=Filtered(dom,x->IsSubset(oo,x) and IsSubset(x,N));
i:=2;
while i<=Length(dom) do
j:=i;
while j<Length(dom)
#and HasElementaryAbelianFactorGroup(dom[i-1],dom[j+1])
and IndexNC(dom[i-1],dom[j+1])<=2000 do
j:=j+1;
od;
if IndexNC(dom[i-1],dom[j])<=2000 then
v:=RightTransversal(dom[i-1],dom[j]);
oo:=OrbitsDomain(G,v,function(rep,g)
return v[PositionCanonical(v,rep^g)];
end);
for k in oo do
if Length(k)>1 then
u:=Stabilizer(G,k[1],function(x,g)
return v[PositionCanonical(v,x^g)];
end);
repeat
if not IsNormal(G,u) then
AddNaturalHomomorphismsPool(G,Core(G,u),u,IndexNC(G,u));
fi;
m:=u;
u:=ClosureGroup(N,DerivedSubgroup(u));
until m=u;
fi;
od;
fi;
i:=j+1;
od;
pool:=NaturalHomomorphismsPool(G);
dom:=MovedPoints(G);
# store regular to have one anyway
bestdeg:=IndexNC(G,N);
AddNaturalHomomorphismsPool(G,N,N,bestdeg);
# check if there are multiple orbits
o:=Orbits(G,MovedPoints(G));
s:=List(o,i->Stabilizer(G,i,OnTuples));
if not ForAny(s,i->IsSubset(N,i)) then
Info(InfoFactor,2,"Try reduction to orbits");
s:=List(s,i->ClosureGroup(i,N));
if Intersection(s)=N then
Info(InfoFactor,1,"Reduction to orbits will do");
List(s,i->NaturalHomomorphismByNormalSubgroup(G,i));
fi;
fi;
CloseNaturalHomomorphismsPool(G,N);
# action in orbit image -- sometimes helps
if Length(o)>1 then
for i in o do
act:=ActionHomomorphism(G,i,OnPoints,"surjective");
k:=KernelOfMultiplicativeGeneralMapping(act);
k:=ClosureGroup(k,N); # pre-image of (image of normal subgroup under act)
u:=Image(act,N);
v:=NaturalHomomorphismByNormalSubgroupNC(Image(act),u);
o:=DegreeNaturalHomomorphismsPool(Image(act),u);
if IsInt(o) then # otherwise its solvable factor we do differently
AddNaturalHomomorphismsPool(G,k,act*v,o);
fi;
od;
CloseNaturalHomomorphismsPool(G,N);
fi;
bestdeg:=DegreeNaturalHomomorphismsPool(G,N);
Info(InfoFactor,1,"Orbits and known, best Index ",bestdeg);
blocksdone:=false;
# use subgroup that fixes a base of N
# get orbits of a suitable stabilizer.
o:=BaseOfGroup(N);
s:=Stabilizer(G,o,OnTuples);
badnormals:=Filtered(pool.ker,i->IsSubset(i,N) and Size(i)>Size(N));
if Size(s)>1 and IndexNC(G,s)/Size(N)<2000 and bestdeg>IndexNC(G,s) then
cnt:=Filtered(OrbitsDomain(s,dom),i->Length(i)>1);
for i in cnt do
v:=ClosureGroup(N,Stabilizer(s,i[1]));
if Size(v)>Size(N) and IndexNC(G,v)<2000
and not ForAny(badnormals,j->IsSubset(v,j)) then
u:=Core(G,v);
if Size(u)>Size(N) and IsSubset(u,N) and not u in badnormals then
Add(badnormals,u);
fi;
AddNaturalHomomorphismsPool(G,u,v,IndexNC(G,v));
fi;
od;
# try also intersections
CloseNaturalHomomorphismsPool(G,N);
bestdeg:=DegreeNaturalHomomorphismsPool(G,N);
Info(InfoFactor,1,"Base Stabilizer and known, best Index ",bestdeg);
if bestdeg<500 and bestdeg<IndexNC(G,N) then
# should be better...
bestdeg:=ImproveActionDegreeByBlocks(G,N,
GetNaturalHomomorphismsPool(G,N));
blocksdone:=true;
Info(InfoFactor,2,"Blocks improve to ",bestdeg);
fi;
fi;
# then we should look at the orbits of the normal subgroup to see,
# whether anything stabilizing can be of use
o:=Filtered(OrbitsDomain(N,dom),i->Length(Orbit(G,i[1]))>Length(i));
Apply(o,Set);
oo:=OrbitsDomain(G,o,OnSets);
s:=G;
for i in oo do
s:=StabilizerOfBlockNC(s,i[1]);
od;
Info(InfoFactor,2,"stabilizer of index ",IndexNC(G,s));
if not ForAny(badnormals,j->IsSubset(s,j)) then
m:=Core(G,s); # the normal subgroup we get this way.
if Size(m)>Size(N) and IsSubset(m,N) and not m in badnormals then
Add(badnormals,m);
fi;
AddNaturalHomomorphismsPool(G,m,s,IndexNC(G,s));
else
m:=G; # guaranteed fail
fi;
if Size(m)=Size(N) and IndexNC(G,s)<bestdeg then
bestdeg:=IndexNC(G,s);
blocksdone:=false;
Info(InfoFactor,2,"Orbits Stabilizer improves to index ",bestdeg);
elif Size(m)>Size(N) then
# no hard work for trivial cases
if 2*IndexNC(G,N)>Length(o) then
# try to find a subgroup, which does not contain any part of m
# For wreath products (the initial aim), the following method works
# fairly well
v:=Subgroup(G,Filtered(GeneratorsOfGroup(G),i->not i in m));
v:=SmallGeneratingSet(v);
cnt:=1;
badcomb:=[];
repeat
Info(InfoFactor,3,"Trying",cnt);
for comb in Combinations([1..Length(v)],cnt) do
#Print(">",comb,"\n");
if not ForAny(badcomb,j->IsSubset(comb,j)) then
u:=SubgroupNC(G,v{comb});
o:=ClosureGroup(N,u);
idx:=Size(G)/Size(o);
if idx<10 and Factorial(idx)*Size(N)<Size(G) then
# the permimage won't be sufficiently large
AddSet(badcomb,Immutable(comb));
fi;
if idx<bestdeg and Size(G)>Size(o)
and not ForAny(badnormals,i->IsSubset(o,i)) then
m:=Core(G,o);
if Size(m)>Size(N) and IsSubset(m,N) then
Info(InfoFactor,3,"Core ",comb," failed");
AddSet(badcomb,Immutable(comb));
if not m in badnormals then
Add(badnormals,m);
fi;
fi;
if idx<bestdeg and Size(m)=Size(N) then
Info(InfoFactor,3,"Core ",comb," succeeded");
bestdeg:=idx;
AddNaturalHomomorphismsPool(G,N,o,bestdeg);
blocksdone:=false;
cnt:=0;
fi;
fi;
fi;
od;
cnt:=cnt+1;
until cnt>Length(v);
fi;
fi;
Info(InfoFactor,2,"Orbits Stabilizer, Best Index ",bestdeg);
# first force blocks
if (not blocksdone) and bestdeg<200 and bestdeg<IndexNC(G,N) then
Info(InfoFactor,3,"force blocks");
bestdeg:=ImproveActionDegreeByBlocks(G,N,
GetNaturalHomomorphismsPool(G,N));
blocksdone:=true;
Info(InfoFactor,2,"Blocks improve to ",bestdeg);
fi;
if bestdeg=IndexNC(G,N) or
(bestdeg>400 and not(bestdeg<=2*NrMovedPoints(G))) then
if GenericFindActionKernel(G,N,bestdeg,s)<>fail then
blocksdone:=true;
fi;
bestdeg:=DegreeNaturalHomomorphismsPool(G,N);
Info(InfoFactor,1," Random search found ",bestdeg);
fi;
if bestdeg>10000 and bestdeg^2>IndexNC(G,N) then
cnt:=bestdeg;
FactPermRepMaxDesc(G,N,5);
bestdeg:=DegreeNaturalHomomorphismsPool(G,N);
if bestdeg<cnt then blocksdone:=false;fi;
Info(InfoFactor,1,"Iterated maximals found ",bestdeg);
fi;
if not blocksdone then
ImproveActionDegreeByBlocks(G,N,GetNaturalHomomorphismsPool(G,N));
fi;
Info(InfoFactor,3,"return hom");
return GetNaturalHomomorphismsPool(G,N);
return o;
fi;
end);
#############################################################################
##
#M FindActionKernel(<G>) . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"Niceo",IsIdenticalObj,
[IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,N)
local hom,hom2;
hom:=NiceMonomorphism(G);
hom2:=GenericFindActionKernel(NiceObject(G),Image(hom,N));
if hom2<>fail then
return hom*hom2;
else
return hom;
fi;
end);
BindGlobal("FACTGRP_TRIV",Group([],()));
#############################################################################
##
#M NaturalHomomorphismByNormalSubgroup( <G>, <N> ) . . mapping G ->> G/N
## this function returns an epimorphism from G
## with kernel N. The range of this mapping is a suitable (isomorphic)
## permutation group (with which we can compute much easier).
InstallMethod(NaturalHomomorphismByNormalSubgroupOp,
"search for operation",IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,N)
local proj,h,pool;
# catch the trivial case N=G
if CanComputeIndex(G,N) and IndexNC(G,N)=1 then
h:=FACTGRP_TRIV; # a new group is created
h:=GroupHomomorphismByImagesNC( G, h, GeneratorsOfGroup( G ),
List( GeneratorsOfGroup( G ), i -> () )); # a new group is created
SetKernelOfMultiplicativeGeneralMapping( h, G );
return h;
fi;
# catch trivial case N=1 (IsTrivial might not be set)
if (HasSize(N) and Size(N)=1) or (HasGeneratorsOfGroup(N) and
ForAll(GeneratorsOfGroup(N),IsOne)) then
return IdentityMapping(G);
fi;
# check, whether we already know a factormap
pool:=NaturalHomomorphismsPool(G);
h:=PositionSet(pool.ker,N);
if h<>fail and IsGeneralMapping(pool.ops[h]) then
return GetNaturalHomomorphismsPool(G,N);
fi;
DoCheapActionImages(G);
if HasSolvableRadical(G) and N=SolvableRadical(G) then
h:=GetNaturalHomomorphismsPool(G,N);
fi;
if HasDirectProductInfo(G) and DegreeNaturalHomomorphismsPool(G,N)=fail then
for proj in [1..Length(DirectProductInfo(G).groups)] do
proj:=Projection(G,proj);
h:=NaturalHomomorphismByNormalSubgroup(Image(proj,G),Image(proj,N));
AddNaturalHomomorphismsPool(G,
ClosureGroup(KernelOfMultiplicativeGeneralMapping(proj),N),proj*h);
od;
fi;
CloseNaturalHomomorphismsPool(G,N);
h:=DegreeNaturalHomomorphismsPool(G,N);
if h<>fail and RootInt(h^3,2)<IndexNC(G,N) then
h:=GetNaturalHomomorphismsPool(G,N);
else
h:=fail;
fi;
if h=fail then
# now we try to find a suitable operation
# redispatch upon finiteness test, as following will fail in infinite case
if not HasIsFinite(G) and IsFinite(G) then
return NaturalHomomorphismByNormalSubgroupOp(G,N);
fi;
h:=FindActionKernel(G,N);
if h<>fail then
Info(InfoFactor,1,"Action of degree ",
Length(MovedPoints(Range(h)))," found");
else
Error("I don't know how to find a natural homomorphism for <N> in <G>");
# nothing had been found, Desperately one could try again, but that
# would create a possible infinite loop.
h:= NaturalHomomorphismByNormalSubgroup( G, N );
fi;
fi;
# return the map
return h;
end);
RedispatchOnCondition(NaturalHomomorphismByNormalSubgroupNCOrig,IsIdenticalObj,
[IsGroup,IsGroup],[IsGroup and IsFinite,IsGroup],0);
RedispatchOnCondition(NaturalHomomorphismByNormalSubgroupInParent,true,
[IsGroup],[IsGroup and IsFinite],0);
RedispatchOnCondition(FactorGroupNC,IsIdenticalObj,
[IsGroup,IsGroup],[IsGroup and IsFinite,IsGroup],0);
#############################################################################
##
#M NaturalHomomorphismByNormalSubgroup( <G>, <N> ) . . for solvable factors
##
NH_TRYPCGS_LIMIT:=30000;
InstallMethod( NaturalHomomorphismByNormalSubgroupOp,
"test if known/try solvable factor for permutation groups",
IsIdenticalObj, [ IsPermGroup, IsPermGroup ], 0,
function( G, N )
local map, pcgs, A, filter;
if KnownNaturalHomomorphismsPool(G,N) then
A:=DegreeNaturalHomomorphismsPool(G,N);
if A<50 or (IsInt(A) and A<IndexNC(G,N)/LogInt(IndexNC(G,N),2)^2) then
map:=GetNaturalHomomorphismsPool(G,N);
if map<>fail then
Info(InfoFactor,2,"use stored map");
return map;
fi;
fi;
fi;
if IndexNC(G,N)=1 or Size(N)=1
or Minimum(IndexNC(G,N),NrMovedPoints(G))>NH_TRYPCGS_LIMIT then
TryNextMethod();
fi;
# Make a pcgs based on an elementary abelian series (good for ag
# routines).
pcgs := TryPcgsPermGroup( [ G, N ], false, false, true );
if not IsModuloPcgs( pcgs ) then
TryNextMethod();
fi;
# Construct or look up the pcp group <A>.
A:=CreateIsomorphicPcGroup(pcgs,false,false);
UseFactorRelation( G, N, A );
# Construct the epimorphism from <G> onto <A>.
map := rec();
filter := IsPermGroupGeneralMappingByImages and
IsToPcGroupGeneralMappingByImages and
IsGroupGeneralMappingByPcgs and
IsMapping and IsSurjective and
HasSource and HasRange and
HasPreImagesRange and HasImagesSource and
HasKernelOfMultiplicativeGeneralMapping;
map.sourcePcgs := pcgs;
map.sourcePcgsImages := GeneratorsOfGroup( A );
ObjectifyWithAttributes( map,
NewType( GeneralMappingsFamily
( ElementsFamily( FamilyObj( G ) ),
ElementsFamily( FamilyObj( A ) ) ), filter ),
Source,G,
Range,A,
PreImagesRange,G,
ImagesSource,A,
KernelOfMultiplicativeGeneralMapping,N
);
return map;
end );
#############################################################################
##
#F PullBackNaturalHomomorphismsPool( <hom> )
##
InstallGlobalFunction(PullBackNaturalHomomorphismsPool,function(hom)
local s,r,nat,k;
s:=Source(hom);
r:=Range(hom);
for k in NaturalHomomorphismsPool(r).ker do
nat:=hom*NaturalHomomorphismByNormalSubgroup(r,k);
AddNaturalHomomorphismsPool(s,PreImage(hom,k),nat);
od;
end);
#############################################################################
##
#F TryQuotientsFromFactorSubgroups(<hom>,<ker>,<bound>)
##
InstallGlobalFunction(TryQuotientsFromFactorSubgroups,function(hom,ker,bound)
local s,p,k,it,u,v,d,ma,mak,lev,sub,low;
s:=Source(hom);
p:=Image(hom);
k:=KernelOfMultiplicativeGeneralMapping(hom);
it:=DescSubgroupIterator(p:skip:=4);
repeat
u:=NextIterator(it);
Info(InfoExtReps,2,"Factor subgroup index ",Index(p,u));
v:=PreImage(hom,u);
d:=DerivedSubgroup(v);
if not IsSubset(d,k) then
d:=ClosureGroup(ker,d);
if not IsSubset(d,k) then
ma:=NaturalHomomorphismByNormalSubgroup(v,d);
mak:=Image(ma,k);
lev:=0;
sub:=fail;
while sub=fail do
lev:=lev+1;
low:=ShallowCopy(LowLayerSubgroups(Range(ma),lev));
SortBy(low,x->-Size(x));
sub:=First(low,x->not IsSubset(x,mak));
od;
sub:=PreImage(ma,sub);
Info(InfoExtReps,2,"Found factor permrep ",IndexNC(s,sub));
d:=Core(s,sub);
AddNaturalHomomorphismsPool(s,d,sub);
k:=Intersection(k,d);
if Size(k)=Size(ker) then return;fi;
fi;
fi;
until IndexNC(p,u)>=bound;
end);
#############################################################################
##
#M UseFactorRelation( <num>, <den>, <fac> ) . . . . for perm group factors
##
InstallMethod( UseFactorRelation,
[ IsGroup and HasSize, IsObject, IsPermGroup ],
function( num, den, fac )
local limit;
if not HasSize( fac ) then
if HasSize(den) then
SetSize( fac, Size( num ) / Size( den ) );
else
limit := Size( num );
if IsBound( StabChainOptions(fac).limit ) then
limit := Minimum( limit, StabChainOptions(fac).limit );
fi;
StabChainOptions(fac).limit:=limit;
fi;
fi;
TryNextMethod();
end );
|