File: factgrp.gi

package info (click to toggle)
gap 4.14.0-3
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 109,836 kB
  • sloc: ansic: 97,167; xml: 48,195; cpp: 13,955; sh: 4,438; perl: 1,652; javascript: 255; makefile: 252; ruby: 9
file content (1862 lines) | stat: -rw-r--r-- 58,441 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Alexander Hulpke.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the declarations of operations for factor group maps
##

#############################################################################
##
#M  NaturalHomomorphismsPool(G) . . . . . . . . . . . . . . initialize method
##
InstallMethod(NaturalHomomorphismsPool,true,[IsGroup],0,
  G->rec(GopDone:=false,ker:=[],ops:=[],cost:=[],group:=G,lock:=[],
         intersects:=[],blocksdone:=[],in_code:=false,dotriv:=false));

#############################################################################
##
#F  EraseNaturalHomomorphismsPool(G) . . . . . . . . . . . . initialize
##
InstallGlobalFunction(EraseNaturalHomomorphismsPool,function(G)
local r;
  r:=NaturalHomomorphismsPool(G);
  if r.in_code=true then return;fi;
  r.GopDone:=false;
  r.ker:=[];
  r.ops:=[];
  r.cost:=[];
  r.group:=G;
  r.lock:=[];
  r.intersects:=[];
  r.blocksdone:=[];
  r.in_code:=false;
  r.dotriv:=false;
  r:=NaturalHomomorphismsPool(G);
end);

#############################################################################
##
#F  AddNaturalHomomorphismsPool(G,N,op[,cost[,blocksdone]]) . Store operation
##       op for kernel N if there is not already a cheaper one
##       returns false if nothing had been added and 'fail' if adding was
##       forbidden
##
InstallGlobalFunction(AddNaturalHomomorphismsPool,function(arg)
local G, N, op, pool, p, c, perm, ch, diff, nch, nd, involved, i;
  G:=arg[1];
  N:=arg[2];
  op:=arg[3];

  # don't store trivial cases
  if Size(N)=Size(G) then
    Info(InfoFactor,4,"full group");
    return false;
  elif Size(N)=1 then
    # do we really want the trivial subgroup?
    if not (HasNaturalHomomorphismsPool(G) and
      NaturalHomomorphismsPool(G).dotriv=true) then
      Info(InfoFactor,4,"trivial sub: ignore");
      return false;
    fi;
    Info(InfoFactor,4,"trivial sub: OK");
  fi;

  pool:=NaturalHomomorphismsPool(G);

  # split lists in their components
  if IsList(op) and not IsInt(op[1]) then
    p:=[];
    for i in op do
      if IsMapping(i) then
        c:=Intersection(G,KernelOfMultiplicativeGeneralMapping(i));
      else
        c:=Core(G,i);
      fi;
      Add(p,c);
      AddNaturalHomomorphismsPool(G,c,i);
    od;
    # transfer in numbers list
    op:=List(p,i->PositionSet(pool.ker,i));
    if Length(arg)<4 then
      # add the prices
      c:=Sum(pool.cost{op});
    fi;
  # compute/get costs
  elif Length(arg)>3 then
    c:=arg[4];
  else
    if IsGroup(op) then
      c:=IndexNC(G,op);
    elif IsMapping(op) then
      c:=Image(op);
      if IsPcGroup(c) then
        c:=1;
      elif IsPermGroup(c) then
        c:=NrMovedPoints(c);
      else
        c:=Size(c);
      fi;
    fi;
  fi;

  # check whether we have already a better operation (or whether this normal
  # subgroup is locked)

  p:=PositionSet(pool.ker,N);
  if p=fail then
    if pool.in_code then
      return fail;
    fi;
    p:=PositionSorted(pool.ker,N);
    # compute the permutation we have to apply finally
    perm:=PermList(Concatenation([1..p-1],[Length(pool.ker)+1],
                   [p..Length(pool.ker)]))^-1;

    # first add at the end
    p:=Length(pool.ker)+1;
    pool.ker[p]:=N;
    Info(InfoFactor,2,"Added price ",c," for size ",IndexNC(G,N),
         " in group of size ",Size(G));
  elif c>=pool.cost[p] then
    Info(InfoFactor,4,"bad price");
    return false; # nothing added
  elif pool.lock[p]=true then
    return fail; # nothing added
  else
    Info(InfoFactor,2,"Changed price ",c," for size ",IndexNC(G,N));
    perm:=();
    # update dependent costs
    ch:=[p];
    diff:=[pool.cost[p]-c];
    while Length(ch)>0 do
      nch:=[];
      nd:=[];
      for i in [1..Length(pool.ops)] do
        if IsList(pool.ops[i]) then
          involved:=Intersection(pool.ops[i],ch);
          if Length(involved)>0 then
            involved:=Sum(diff{List(involved,x->Position(ch,x))});
            pool.cost[i]:=pool.cost[i]-involved;
            Add(nch,i);
            Add(nd,involved);
          fi;
        fi;
      od;
      ch:=nch;
      diff:=nd;
    od;
  fi;

  if IsMapping(op) and not HasKernelOfMultiplicativeGeneralMapping(op) then
    SetKernelOfMultiplicativeGeneralMapping(op,N);
  fi;
  pool.ops[p]:=op;
  pool.cost[p]:=c;
  pool.lock[p]:=false;

  # update the costs of all intersections that are affected
  for i in [1..Length(pool.ker)] do
    if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) and p in pool.ops[i] then
      pool.cost[i]:=Sum(pool.cost{pool.ops[i]});
    fi;
  od;

  if Length(arg)>4 then
    pool.blocksdone[p]:=arg[5];
  else
    pool.blocksdone[p]:=false;
  fi;

  if perm<>() then
    # sort the kernels anew
    pool.ker:=Permuted(pool.ker,perm);
    # sort/modify the other components accordingly
    pool.ops:=Permuted(pool.ops,perm);
    for i in [1..Length(pool.ops)] do
      # if entries are lists of integers
      if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
        pool.ops[i]:=List(pool.ops[i],i->i^perm);
      fi;
    od;
    pool.cost:=Permuted(pool.cost,perm);
    pool.lock:=Permuted(pool.lock,perm);
    pool.blocksdone:=Permuted(pool.blocksdone,perm);
    pool.intersects:=Set(pool.intersects,i->List(i,j->j^perm));
  fi;

  return perm; # if anyone wants to keep the permutation
end);


#############################################################################
##
#F  LockNaturalHomomorphismsPool(G,N)  . .  store flag to prohibit changes of
##                                                               the map to N
##
InstallGlobalFunction(LockNaturalHomomorphismsPool,function(G,N)
local pool;
  pool:=NaturalHomomorphismsPool(G);
  N:=PositionSet(pool.ker,N);
  if N<>fail then
    pool.lock[N]:=true;
  fi;
end);


#############################################################################
##
#F  UnlockNaturalHomomorphismsPool(G,N) . . .  clear flag to allow changes of
##                                                               the map to N
##
InstallGlobalFunction(UnlockNaturalHomomorphismsPool,function(G,N)
local pool;
  pool:=NaturalHomomorphismsPool(G);
  N:=PositionSet(pool.ker,N);
  if N<>fail then
    pool.lock[N]:=false;
  fi;
end);


#############################################################################
##
#F  KnownNaturalHomomorphismsPool(G,N) . . . . .  check whether Hom is stored
##                                                               (or obvious)
##
InstallGlobalFunction(KnownNaturalHomomorphismsPool,function(G,N)
  return N=G or Size(N)=1
      or PositionSet(NaturalHomomorphismsPool(G).ker,N)<>fail;
end);


#############################################################################
##
#F  GetNaturalHomomorphismsPool(G,N)  . . . .  get operation for G/N if known
##
InstallGlobalFunction(GetNaturalHomomorphismsPool,function(G,N)
local pool,p,h,ise,emb,i,j;
  if not HasNaturalHomomorphismsPool(G) then
    return fail;
  fi;
  pool:=NaturalHomomorphismsPool(G);
  p:=PositionSet(pool.ker,N);
  if p<>fail then
    h:=pool.ops[p];
    if IsList(h) then
      # just stored as intersection. Construct the mapping!
      # join intersections
      ise:=ShallowCopy(h);
      for i in ise do
        if IsList(pool.ops[i]) and IsInt(pool.ops[i][1]) then
          for j in Filtered(pool.ops[i],j-> not j in ise) do
            Add(ise,j);
          od;
        elif not pool.blocksdone[i] then
          h:=GetNaturalHomomorphismsPool(G,pool.ker[i]);
          pool.in_code:=true; # don't add any new kernel here
          # (which would mess up the numbering)
          ImproveActionDegreeByBlocks(G,pool.ker[i],h);
          pool.in_code:=false;
        fi;
      od;
      ise:=List(ise,i->GetNaturalHomomorphismsPool(G,pool.ker[i]));
      if not (ForAll(ise,IsPcGroup) or ForAll(ise,IsPermGroup)) then
        ise:=List(ise,x->x*IsomorphismPermGroup(Image(x)));
      fi;

      h:=CallFuncList(DirectProduct,List(ise,Image));
      emb:=List([1..Length(ise)],i->Embedding(h,i));
      emb:=List(GeneratorsOfGroup(G),
           i->Product([1..Length(ise)],j->Image(emb[j],Image(ise[j],i))));
      ise:=SubgroupNC(h,emb);

      h:=GroupHomomorphismByImagesNC(G,ise,GeneratorsOfGroup(G),emb);
      SetKernelOfMultiplicativeGeneralMapping(h,N);
      pool.ops[p]:=h;
    elif IsGroup(h) then
      h:=FactorCosetAction(G,h,N); # will implicitly store
    fi;
    p:=h;
  fi;
  return p;
end);


#############################################################################
##
#F  DegreeNaturalHomomorphismsPool(G,N) degree for operation for G/N if known
##
InstallGlobalFunction(DegreeNaturalHomomorphismsPool,function(G,N)
local p,pool;
  pool:=NaturalHomomorphismsPool(G);
  p:=First([1..Length(pool.ker)],i->IsIdenticalObj(pool.ker[i],N));
  if p=fail then
    p:=PositionSet(pool.ker,N);
  fi;
  if p<>fail then
    p:=pool.cost[p];
  fi;
  return p;
end);


#############################################################################
##
#F  CloseNaturalHomomorphismsPool(<G>[,<N>]) . . calc intersections of known
##         operation kernels, don't continue anything which is smaller than N
##
InstallGlobalFunction(CloseNaturalHomomorphismsPool,function(arg)
local G,pool,p,comb,i,c,perm,isi,N,discard,Npos,psub,pder,new,co,pos,j,k;

  G:=arg[1];
  pool:=NaturalHomomorphismsPool(G);
  p:=[1..Length(pool.ker)];

  Npos:=fail;
  if Length(arg)>1 then
    # get those p that lie above N
    N:=arg[2];
    p:=Filtered(p,i->IsSubset(pool.ker[i],N));
    if Length(p)=0 then
      return;
    fi;
    SortParallel(List(pool.ker{p},Size),p);
    if Size(pool.ker[p[1]])=Size(N) then
      # N in pool
      Npos:=p[1];
      c:=pool.cost[Npos];
      p:=Filtered(p,x->pool.cost[x]<c);
    fi;
  else
    SortParallel(List(pool.ker{p},Size),p);
    N:=fail;
  fi;

  if Size(Intersection(pool.ker{p}))>Size(N) then
    # cannot reach N
    return;
  fi;

  # determine inclusion, derived
  psub:=List(pool.ker,x->0);
  pder:=List(pool.ker,x->0);
  discard:=[];
  for i in [1..Length(p)] do
    c:=Filtered(p{[1..i-1]},x->IsSubset(pool.ker[p[i]],pool.ker[x]));
    psub[p[i]]:=Set(c);
    if ForAny(c,x->pool.cost[x]<=pool.cost[p[i]]) then
      AddSet(discard,p[i]);
    fi;
    c:=DerivedSubgroup(pool.ker[p[i]]);
    if N<>fail then c:=ClosureGroup(N,c);fi;
    pder[p[i]]:=Position(pool.ker,c);
  od;
#if Length(discard)>0 then Error(discard);fi;
#discard:=[];
  p:=Filtered(p,x->not x in discard);
  for i in discard do psub[i]:=0;od;

  new:=p;
  repeat
    # now intersect, staring from top
    if new=p then
      comb:=Combinations(new,2);
    else
      comb:=List(Cartesian(p,new),Set);
    fi;
    comb:=Filtered(comb,i->not i in pool.intersects and Length(i)>1);
    Info(InfoFactor,2,"CloseNaturalHomomorphismsPool: ",Length(comb));
    new:=[];
    discard:=[];
    i:=1;
    while i<=Length(comb) do
      co:=comb[i];
      # unless they contained in each other
      if not (co[1] in psub[co[2]] or co[2] in psub[co[1]]
        # or there a subgroup below both that is already at least as cheap
        or ForAny(Intersection(psub[co[1]],psub[co[2]]),
          x->pool.cost[x]<=pool.cost[co[1]]+pool.cost[co[2]])
        # or both intersect in an abelian factor?
        or (N<>fail and pder[co[1]]<>fail and pder[co[1]]=pder[co[2]]
            and pder[co[1]]<>Npos)) then
        c:=Intersection(pool.ker[co[1]],pool.ker[co[2]]);

        pos:=Position(pool.ker,c);
        if pos=fail or pool.cost[pos]>pool.cost[co[1]]+pool.cost[co[2]] then
          Info(InfoFactor,3,"Intersect ",co,": ",
              Size(pool.ker[co[1]])," ",Size(pool.ker[co[2]]),
                " yields ",Size(c));
          isi:=ShallowCopy(co);

          # unpack 'iterated' lists
          if IsList(pool.ops[co[2]]) and IsInt(pool.ops[co[2]][1]) then
            isi:=Concatenation(isi{[1]},pool.ops[co[2]]);
          fi;
          if IsList(pool.ops[co[1]]) and IsInt(pool.ops[co[1]][1]) then
            isi:=Concatenation(isi{[2..Length(isi)]},pool.ops[co[1]]);
          fi;
          isi:=Set(isi);

          perm:=AddNaturalHomomorphismsPool(G,c,isi,Sum(pool.cost{co}));
          if pos=fail then
            pos:=Position(pool.ker,c);
            p:=List(p,i->i^perm);
            new:=List(new,i->i^perm);
            discard:=OnSets(discard,perm);
            #pder:=Permuted(List(pder,x->x^perm),perm);
            for k in [1..Length(pder)] do
              if IsPosInt(pder[k]) then pder[k]:=pder[k]^perm;fi;
            od;
            Add(pder,0);
            pder:=Permuted(pder,perm);
            #psub:=Permuted(List(psub,x->OnTuples(x,perm)));
            for k in [1..Length(psub)] do
              if IsList(psub[k]) then psub[k]:=OnSets(psub[k],perm);fi;
            od;
            Add(psub,0);
            psub:=Permuted(psub,perm);

            Apply(comb,j->OnSets(j,perm));

            # add new c if needed
            for j in p do
              if IsSubset(pool.ker[j],c) then
                AddSet(psub[j],pos);
                if pool.cost[j]>=pool.cost[pos] then
                  AddSet(discard,j);
                fi;
              fi;
            od;
            psub[pos]:=Set(Filtered(p,x->IsSubset(c,pool.ker[x])));
            pder[pos]:=fail;

          else
            if perm<>() then Error("why perm here?");fi;
            psub[pos]:=Set(Filtered(p,x->IsSubset(c,pool.ker[x])));

          fi;
          AddSet(new,pos);
          if ForAny(psub[pos],x->pool.cost[x]<=pool.cost[pos]) then
            AddSet(discard,pos);
          fi;
          pder[pos]:=fail;
          if c=N and pool.cost[pos]^3<=IndexNC(G,N) then
            return; # we found something plausible
          fi;

        else
          Info(InfoFactor,5,"Intersect ",co,": ",
              Size(pool.ker[co[1]])," ",Size(pool.ker[co[2]]),
                " yields ",Size(c));
        fi;

      fi;
      i:=i+1;
    od;
#discard:=[];
    for i in discard do psub[i]:=0;od;
    p:=Difference(Union(p,new),discard);
    new:=Difference(new,discard);
    SortParallel(List(pool.ker{p},Size),p);
    SortParallel(List(pool.ker{new},Size),new);
  until Length(new)=0;

end);


#############################################################################
##
#F  FactorCosetAction( <G>, <U>, [<N>] )  operation on the right cosets Ug
##                                        with possibility to indicate kernel
##
BindGlobal("DoFactorCosetAction",function(arg)
local G,u,op,h,N,rt;
  G:=arg[1];
  u:=arg[2];
  if Length(arg)>2 then
    N:=arg[3];
  else
    N:=false;
  fi;
  if IsList(u) and Length(u)=0 then
    u:=G;
    Error("only trivial operation ?  I Set u:=G;");
  fi;
  if N=false then
    N:=Core(G,u);
  fi;
  rt:=RightTransversal(G,u);
  if not IsRightTransversalRep(rt) then
    # the right transversal has no special `PositionCanonical' method.
    rt:=List(rt,i->RightCoset(u,i));
  fi;
  h:=ActionHomomorphism(G,rt,OnRight,"surjective");
  op:=Image(h,G);
  SetSize(op,IndexNC(G,N));

  # and note our knowledge
  SetKernelOfMultiplicativeGeneralMapping(h,N);
  AddNaturalHomomorphismsPool(G,N,h);
  return h;
end);

InstallMethod(FactorCosetAction,"by right transversal operation",
  IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,U)
  return DoFactorCosetAction(G,U);
end);

InstallOtherMethod(FactorCosetAction,
  "by right transversal operation, given kernel",IsFamFamFam,
  [IsGroup,IsGroup,IsGroup],0,
function(G,U,N)
  return DoFactorCosetAction(G,U,N);
end);

InstallMethod(FactorCosetAction,"by right transversal operation, Niceo",
  IsIdenticalObj,[IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,U)
local hom;
  hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
  return hom*DoFactorCosetAction(NiceObject(G),Image(hom,U));
end);

InstallOtherMethod(FactorCosetAction,
  "by right transversal operation, given kernel, Niceo",IsFamFamFam,
  [IsGroup and IsHandledByNiceMonomorphism,IsGroup,IsGroup],0,
function(G,U,N)
local hom;
  hom:=RestrictedNiceMonomorphism(NiceMonomorphism(G),G);
  return hom*DoFactorCosetAction(NiceObject(G),Image(hom,U),Image(hom,N));
end);

# action on lists of subgroups
InstallOtherMethod(FactorCosetAction,
  "On cosets of list of groups",IsElmsColls,
  [IsGroup,IsList],0,
function(G,L)
local q,i,gens,imgs,d;
  if Length(L)=0 or not ForAll(L,x->IsGroup(x) and IsSubset(G,x)) then
    TryNextMethod();
  fi;
  q:=List(L,x->FactorCosetAction(G,x));
  gens:=MappingGeneratorsImages(q[1])[1];
  imgs:=List(q,x->List(gens,y->ImagesRepresentative(x,y)));
  d:=imgs[1];
  for i in [2..Length(imgs)] do
    d:=SubdirectDiagonalPerms(d,imgs[i]);
  od;
  imgs:=Group(d);
  q:=GroupHomomorphismByImagesNC(G,imgs,gens,d);
  return q;
end);


#############################################################################
##
#M  DoCheapActionImages(G) . . . . . . . . . . All cheap operations for G
##
InstallMethod(DoCheapActionImages,"generic",true,[IsGroup],0,Ignore);

InstallMethod(DoCheapActionImages,"permutation",true,[IsPermGroup],0,
function(G)
local pool, dom, o, op, Go, j, b, i,allb,newb,mov,allbold,onlykernel,k,
  found,type;

  onlykernel:=ValueOption("onlykernel");
  found:=NrMovedPoints(G);
  pool:=NaturalHomomorphismsPool(G);
  if pool.GopDone=false then

    dom:=MovedPoints(G);
    # orbits
    o:=OrbitsDomain(G,dom);
    o:=Set(o,Set);

    # do orbits and test for blocks
    for i in o do
      if Length(i)<>Length(dom) or
        # only works if domain are the first n points
        not (1 in dom and 2 in dom and IsRange(dom)) then
        op:=ActionHomomorphism(G,i,"surjective");
        Range(op:onlyimage); #`onlyimage' forces same generators
        AddNaturalHomomorphismsPool(G,Stabilizer(G,i,OnTuples),
                            op,Length(i));
        type:=1;
      else
        op:=IdentityMapping(G);
        type:=2;
      fi;

      Go:=Image(op,G);
      # all minimal and maximal blocks
      mov:=MovedPoints(Go);
      allb:=ShallowCopy(RepresentativesMinimalBlocks(Go,mov));
      allbold:=[];
      SortBy(allb,Length);
      while Length(allb)>0 do
        j:=Remove(allb);
        Add(allbold,j);
        # even if generic spread, <found, since blocks are always of size
        # >1.
        if Length(i)/Length(j)<found then
          b:=List(Orbit(G,i{j},OnSets),Immutable);

          #Add(bl,Immutable(Set(b)));
          op:=ActionHomomorphism(G,Set(b),OnSets,"surjective");
          ImagesSource(op:onlyimage); #`onlyimage' forces same generators
          k:=KernelOfMultiplicativeGeneralMapping(op);
          if onlykernel<>fail and k=onlykernel and Length(b)<found then
            found:=Length(b);
          fi;
          AddNaturalHomomorphismsPool(G,k,op);

          # also one finer blocks (to make up for iterating only once)
          if type=2 then
            newb:=Blocks(G,b,OnSets);
          else
            newb:=Blocks(Go,Blocks(Go,mov,j),OnSets);
          fi;

          if Length(newb)>1 then
            newb:=Union(newb[1]);
            if not (newb in allb or newb in allbold) then
              Add(allb,newb);
              SortBy(allb,Length);
            fi;
          fi;

        fi;

      od;

      #if Length(i)<500 and Size(Go)>10*Length(i) then
      #else
#        # one block system
#        b:=Blocks(G,i);
#        if Length(b)>1 then
#          Add(bl,Immutable(Set(b)));
#        fi;
#      fi;
    od;

    pool.GopDone:=true;
  fi;

end);

BindGlobal("DoActionBlocksForKernel",
function(G,mustfaithful)
local dom, o, bl, j, b, allb,newb;

  dom:=MovedPoints(G);
  # orbits
  o:=OrbitsDomain(G,dom);
  o:=Set(o,Set);


  # all good blocks
  bl:=dom;
  allb:=ShallowCopy(RepresentativesMinimalBlocks(G,dom));
  for j in allb do
    if Length(dom)/Length(j)<Length(bl) and
      Size(Core(mustfaithful,Stabilizer(mustfaithful,j,OnSets)))=1
      then
        b:=Orbit(G,j,OnSets);
        bl:=b;
        # also one finer blocks (as we iterate only once)
        newb:=Blocks(G,b,OnSets);
        if Length(newb)>1 then
          newb:=Union(newb[1]);
          if not newb in allb then
            Add(allb,newb);
          fi;
        fi;
    fi;
  od;
  if Length(bl)<Length(dom) then
    return bl;
  else
    return fail;
  fi;

end);


#############################################################################
##
#F  GenericFindActionKernel  random search for subgroup with faithful core
##
BADINDEX:=1000; # the index that is too big
BindGlobal( "GenericFindActionKernel", function(arg)
local G, N, knowi, goodi, simple, uc, zen, cnt, pool, ise, v, badi,
totalcnt, interrupt, u, nu, cor, zzz,bigperm,perm,badcores,max,i,hard;

  G:=arg[1];
  N:=arg[2];
  if Length(arg)>2 then
    knowi:=arg[3];
  else
    knowi:=IndexNC(G,N);
  fi;

  # special treatment for solvable groups. This will never be triggered for
  # perm groups or nice groups
  if Size(N)>1 and HasSolvableFactorGroup(G,N) then
    perm:=ActionHomomorphism(G,RightCosets(G,N),OnRight,"surjective");
    perm:=perm*IsomorphismPcGroup(Image(perm));
    return perm;
  fi;

  # special treatment for abelian factor
  if HasAbelianFactorGroup(G,N) then
    if IsPermGroup(G) and Size(N)=1 then
      return IdentityMapping(G);
    else
      perm:=ActionHomomorphism(G,RightCosets(G,N),OnRight,"surjective");
    fi;
    return perm;
  fi;

  bigperm:=IsPermGroup(G) and NrMovedPoints(G)>10000;

  # what is a good degree:
  goodi:=Minimum(Int(knowi*9/10),LogInt(IndexNC(G,N),2)^2);

  simple:=HasIsNonabelianSimpleGroup(G) and IsNonabelianSimpleGroup(G) and Size(N)=2;
  uc:=TrivialSubgroup(G);
  # look if it is worth to look at action on N
  # if not abelian: later replace by abelian Normal subgroup
  if IsAbelian(N) and (Size(N)>50 or IndexNC(G,N)<Factorial(Size(N)))
      and Size(N)<50000 then
    zen:=Centralizer(G,N);
    if Size(zen)=Size(N) then
      cnt:=0;
      repeat
        cnt:=cnt+1;
        zen:=Centralizer(G,Random(N));
        if (simple or Size(Core(G,zen))=Size(N)) and
            IndexNC(G,zen)<IndexNC(G,uc) then
          uc:=zen;
        fi;
      # until enough searched or just one orbit
      until cnt=9 or (IndexNC(G,zen)+1=Size(N));
      AddNaturalHomomorphismsPool(G,N,uc,IndexNC(G,uc));
    else
      Info(InfoFactor,3,"centralizer too big");
    fi;
  fi;

  pool:=NaturalHomomorphismsPool(G);
  pool.dotriv:=true;
  CloseNaturalHomomorphismsPool(G,N);
  pool.dotriv:=false;
  ise:=Filtered(pool.ker,x->IsSubset(x,N));
  if Length(ise)=0 then
    ise:=G;
  else
    ise:=Intersection(ise);
  fi;

  # try a random extension step
  # (We might always first add a random element and get something bigger)
  v:=N;

  #if Length(arg)=3 then
    ## in one example 512->90, ca. 40 tries
    #cnt:=Int(arg[3]/10);
  #else
    #cnt:=25;
  #fi;

  badcores:=[];
  badi:=BADINDEX;
  hard:=ValueOption("hard");
  if hard=fail then
    hard:=100000;
  elif hard=true then
    hard:=10000;
  fi;
  totalcnt:=0;
  interrupt:=false;
  cnt:=20;
  repeat
    u:=v;
    repeat
      repeat
        if Length(arg)<4 or Random(1,2)=1 then
          if IsCyclic(u) and Random(1,4)=1 then
            # avoid being stuck with a bad first element
            u:=Subgroup(G,[Random(G)]);
          fi;
          if Length(GeneratorsOfGroup(u))<2 then
            # closing might cost a big stabilizer chain calculation -- just
            # recreate
            nu:=Group(Concatenation(GeneratorsOfGroup(u),[Random(G)]));
          else
            nu:=ClosureGroup(u,Random(G));
          fi;
        else
          if Length(GeneratorsOfGroup(u))<2 then
            # closing might cost a big stabilizer chain calculation -- just
            # recreate
            nu:=Group(Concatenation(GeneratorsOfGroup(u),[Random(arg[4])]));
          else
            nu:=ClosureGroup(u,Random(arg[4]));
          fi;
        fi;
        SetParent(nu,G);
        totalcnt:=totalcnt+1;
        if KnownNaturalHomomorphismsPool(G,N) and
          Minimum(IndexNC(G,v),knowi)<hard
             and 5*totalcnt>Minimum(IndexNC(G,v),knowi,1000) then
          # interrupt if we're already quite good
          interrupt:=true;
        fi;
        if ForAny(badcores,x->IsSubset(nu,x)) then
          nu:=u;
        fi;
        # Abbruchkriterium: Bis kein Normalteiler, es sei denn, es ist N selber
        # (das brauchen wir, um in einigen trivialen F"allen abbrechen zu
        # k"onnen)
#Print("nu=",Length(GeneratorsOfGroup(nu))," : ",Size(nu),"\n");
      until

        # der Index ist nicht so klein, da"s wir keine Chance haben
        ((not bigperm or
        Length(Orbit(nu,MovedPoints(G)[1]))<NrMovedPoints(G)) and
        (IndexNC(G,nu)>50 or Factorial(IndexNC(G,nu))>=IndexNC(G,N)) and
        not IsNormal(G,nu)) or IsSubset(u,nu) or interrupt;

      Info(InfoFactor,4,"Index ",IndexNC(G,nu));
      u:=nu;

    until totalcnt>300 or
      # und die Gruppe ist nicht zuviel schlechter als der
      # beste bekannte Index. Daf"ur brauchen wir aber wom"oglich mehrfache
      # Erweiterungen.
      interrupt or (((Length(arg)=2 or IndexNC(G,u)<knowi)));

    if IndexNC(G,u)<knowi then

      #Print("Index:",IndexNC(G,u),"\n");

      if simple and u<>G then
        cor:=TrivialSubgroup(G);
      else
        cor:=Core(G,u);
      fi;
      if Size(cor)>Size(N) and IsSubset(cor,N) and not cor in badcores then
        Add(badcores,cor);
      fi;
      # store known information(we do't act, just store the subgroup).
      # Thus this is fairly cheap
      pool.dotriv:=true;
      zzz:=AddNaturalHomomorphismsPool(G,cor,u,IndexNC(G,u));

      if IsPerm(zzz) and zzz<>() then
        CloseNaturalHomomorphismsPool(G,N);
      fi;
      pool.dotriv:=false;

      zzz:=DegreeNaturalHomomorphismsPool(G,N);

      Info(InfoFactor,3,"  ext ",cnt,": ",IndexNC(G,u)," best degree:",zzz);

      if cnt<10 and Size(cor)>Size(N) and IndexNC(G,u)*2<knowi and
        ValueOption("inmax")=fail then
        if IsSubset(SolvableRadical(u),N) and Size(N)<Size(SolvableRadical(u)) then
          # only affine ones are needed, rest will have wrong kernel
          max:=DoMaxesTF(u,["1"]:inmax,cheap);
        else
          max:=TryMaximalSubgroupClassReps(u:inmax,cheap);
        fi;
        max:=Filtered(max,x->IndexNC(G,x)<knowi and IsSubset(x,N));
        for i in max do
          cor:=Core(G,i);
          AddNaturalHomomorphismsPool(G,cor,i,IndexNC(G,i));
        od;
        zzz:=DegreeNaturalHomomorphismsPool(G,N);
        Info(InfoFactor,3,"  Maxes: ",Length(max)," best degree:",zzz);
      fi;
    else
      zzz:=DegreeNaturalHomomorphismsPool(G,N);
    fi;
    if IsInt(zzz) then
      knowi:=zzz;
    fi;

    cnt:=cnt-1;

    if cnt=0 and zzz>badi then
      badi:=Int(badi*12/10);
      Info(InfoWarning+InfoFactor,2,
        "index unreasonably large, iterating ",badi);
      cnt:=20;
      totalcnt:=0;
      interrupt:=false;
      v:=N; # all new
    fi;
  until interrupt or cnt<=0 or zzz<=goodi;
  Info(InfoFactor,1,zzz," vs ",badi);

  return GetNaturalHomomorphismsPool(G,N);

end );

#############################################################################
##
#F  SmallerDegreePermutationRepresentation( <G> )
##
InstallGlobalFunction(SmallerDegreePermutationRepresentation,function(G)
local o, s, k, gut, erg, H, hom, b, ihom, improve, map, loop,bl,
  i,cheap,k2,change;

  change:=false;
  Info(InfoFactor,1,"Smaller degree for order ",Size(G),", deg: ",NrMovedPoints(G));
  cheap:=ValueOption("cheap");
  if cheap="skip" then
    return IdentityMapping(G);
  fi;

  cheap:=cheap=true;

  if Length(GeneratorsOfGroup(G))>7 then
    s:=SmallGeneratingSet(G);
    if Length(s)=0 then s:=[One(G)];fi;
    if Length(s)<Length(GeneratorsOfGroup(G))-1 then
      Info(InfoFactor,1,"reduced to ",Length(s)," generators");
      H:=Group(s);
      change:=true;
      SetSize(H,Size(G));
      return SmallerDegreePermutationRepresentation(H);
    fi;
  fi;


  # deal with large abelian components first (which could be direct)
  if cheap<>true then
    hom:=MaximalAbelianQuotient(G);
    i:=IndependentGeneratorsOfAbelianGroup(Image(hom));
    o:=List(i,Order);
    if ValueOption("norecurse")<>true and
      Product(o)>20 and Sum(o)*4<NrMovedPoints(G) then
      Info(InfoFactor,2,"append abelian rep");
      s:=AbelianGroup(IsPermGroup,o);
      ihom:=GroupHomomorphismByImagesNC(Image(hom),s,i,GeneratorsOfGroup(s));
      erg:=SubdirectDiagonalPerms(
            List(GeneratorsOfGroup(G),x->Image(ihom,Image(hom,x))),
            GeneratorsOfGroup(G));
      k:=Group(erg);SetSize(k,Size(G));
      hom:=GroupHomomorphismByImagesNC(G,k,GeneratorsOfGroup(G),erg);
      return hom*SmallerDegreePermutationRepresentation(k:norecurse);
    fi;
  fi;

  # known simple?
  if HasIsSimpleGroup(G) and IsSimpleGroup(G)
      and NrMovedPoints(G)>=SufficientlySmallDegreeSimpleGroupOrder(Size(G))
        then return IdentityMapping(G);
  fi;

  if not IsTransitive(G,MovedPoints(G)) then
    o:=ShallowCopy(OrbitsDomain(G,MovedPoints(G)));
    SortBy(o, Length);

    for loop in [1..2] do
      s:=[];
      # Try subdirect product
      k:=G;
      gut:=[];
      for i in [1..Length(o)] do
        s:=Stabilizer(k,o[i],OnTuples);
        if Size(s)<Size(k) then
          k:=s;
          Add(gut,i);
        fi;
      od;
      # reduce each orbit separately
      o:=o{gut};
      # second run: now take the big orbits first
      Sort(o,function(a,b)return Length(a)>Length(b);end);
    od;

    SortBy(o, Length);

    erg:=List(GeneratorsOfGroup(G),i->());
    k:=G;
    for i in [1..Length(o)] do
      Info(InfoFactor,1,"Try to shorten orbit ",i," Length ",Length(o[i]));
      s:=ActionHomomorphism(G,o[i],OnPoints,"surjective");
      k2:=Image(s,k);
      k:=Stabilizer(k,o[i],OnTuples);
      H:=Range(s);

      # is there an action that is good enough for improving the overall
      # kernel, even if it is not faithful? If so use the best of them.
      b:=DoActionBlocksForKernel(H,k2);
      if b<>fail then
        Info(InfoFactor,2,"Blocks for kernel reduce to ",Length(b));
        b:=ActionHomomorphism(H,b,OnSets,"surjective");
        s:=s*b;
      fi;

      s:=s*SmallerDegreePermutationRepresentation(Image(s));
      Info(InfoFactor,1,"Shortened to ",NrMovedPoints(Range(s)));
      erg:=SubdirectDiagonalPerms(erg,List(GeneratorsOfGroup(G),i->Image(s,i)));
    od;
    if NrMovedPoints(erg)<NrMovedPoints(G) then
      s:=Group(erg,());  # `erg' arose from `SubdirectDiagonalPerms'
      SetSize(s,Size(G));
      s:=GroupHomomorphismByImagesNC(G,s,GeneratorsOfGroup(G),erg);
      SetIsBijective(s,true);
      return s;
    fi;
    return IdentityMapping(G);
  fi; # intransitive treatment



  # if the original group has no stabchain we probably do not want to keep
  # it (or a homomorphisms pool) there -- make a copy for working
  # intermediately with it.
  if not HasStabChainMutable(G) then
    H:= GroupWithGenerators( GeneratorsOfGroup( G ),One(G) );
    change:=true;
    if HasSize(G) then
      SetSize(H,Size(G));
    fi;
    if HasBaseOfGroup(G) then
      SetBaseOfGroup(H,BaseOfGroup(G));
    fi;
  else
    H:=G;
  fi;
  hom:=IdentityMapping(H);
  b:=NaturalHomomorphismsPool(H);
  b.dotriv:=true;
  AddNaturalHomomorphismsPool(H,TrivialSubgroup(H),hom,NrMovedPoints(H));
  b.dotriv:=false;

  # cheap initial block reduction?
  if IsTransitive(H,MovedPoints(H)) then
    improve:=true;
    while improve and (cheap or NrMovedPoints(H)*5>Size(H)) do
      improve:=false;
      bl:=Blocks(H,MovedPoints(H));
      map:=ActionHomomorphism(G,bl,OnSets,"surjective");
      ImagesSource(map:onlyimage); #`onlyimage' forces same generators
      bl:=KernelOfMultiplicativeGeneralMapping(map);
      AddNaturalHomomorphismsPool(G,bl,map);
      if Size(bl)=1 then
        hom:=hom*map;
        H:=Image(map);
        change:=true;
        Info(InfoFactor,2," quickblocks improved to degree ",NrMovedPoints(H));
      fi;
    od;
  fi;

  b:=NaturalHomomorphismsPool(H);
  b.dotriv:=true;
  if change then
    DoCheapActionImages(H:onlykernel:=TrivialSubgroup(H));
  else
    DoCheapActionImages(H);
  fi;
  CloseNaturalHomomorphismsPool(H,TrivialSubgroup(H));
  b.dotriv:=false;
  map:=GetNaturalHomomorphismsPool(H,TrivialSubgroup(H));
  if map<>fail and Image(map)<>H then
    Info(InfoFactor,2,"cheap actions improved to degree ",NrMovedPoints(H));
    hom:=hom*map;
    H:=Image(map);
  fi;

  o:=DegreeNaturalHomomorphismsPool(H,TrivialSubgroup(H));
  if cheap<>true and (IsBool(o) or o*2>=NrMovedPoints(H)) then
    s:=GenericFindActionKernel(H,TrivialSubgroup(H),NrMovedPoints(H));
    if s<>fail then
      hom:=hom*s;
    fi;
  fi;

  return hom;
end);

#############################################################################
##
#F  ImproveActionDegreeByBlocks( <G>, <N> , hom )
##  extension of <U> in <G> such that   \bigcap U^g=N remains valid
##
InstallGlobalFunction(ImproveActionDegreeByBlocks,function(G,N,oh)
local gimg,img,dom,b,improve,bp,bb,i,k,bestdeg,subo,op,bc,bestblock,bdom,
      bestop,sto,subomax;
  Info(InfoFactor,1,"try to find block systems");

  # remember that we computed the blocks
  b:=NaturalHomomorphismsPool(G);

  # special case to use it for improving a permutation representation
  if Size(N)=1 then
    Info(InfoFactor,1,"special case for trivial subgroup");
    b.ker:=[N];
    b.ops:=[oh];
    b.cost:=[Length(MovedPoints(Range(oh)))];
    b.lock:=[false];
    b.blocksdone:=[false];
    subomax:=20;
  else
    subomax:=500;
  fi;

  i:=PositionSet(b.ker,N);
  if b.blocksdone[i] then
    return DegreeNaturalHomomorphismsPool(G,N); # we have done it already
  fi;
  b.blocksdone[i]:=true;

  if not IsPermGroup(Range(oh)) then
    return 1;
  fi;

  gimg:=Image(oh,G);
  img:=gimg;
  dom:=MovedPoints(img);
  bdom:=fail;

  if IsTransitive(img,dom) then
    # one orbit: Blocks
    repeat
      b:=Blocks(img,dom);
      improve:=false;
      if Length(b)>1 then
        if Length(dom)<40000 then
          subo:=ApproximateSuborbitsStabilizerPermGroup(img,dom[1]);
          subo:=Difference(List(subo,i->i[1]),dom{[1]});
        else
          subo:=fail;
        fi;
        bc:=First(b,i->dom[1] in i);
        if subo<>fail and (Length(subo)<=subomax) then
          Info(InfoFactor,2,"try all seeds");
          # if the degree is not too big or if we are desperate then go for
          # all blocks
          # greedy approach: take always locally best one (otherwise there
          # might be too much work to do)
          bestdeg:=Length(dom);
          bp:=[]; #Blocks pool
          i:=1;
          while i<=Length(subo) do
            if subo[i] in bc then
              bb:=b;
            else
              bb:=Blocks(img,dom,[dom[1],subo[i]]);
            fi;
            if Length(bb)>1 and not (bb[1] in bp or Length(bb)>bestdeg) then
              Info(InfoFactor,3,"found block system ",Length(bb));
              # new nontriv. system found
              AddSet(bp,bb[1]);
              # store action
              op:=1;# remove old homomorphism to free memory
              if bdom<>fail then
                bb:=Set(bb,i->Immutable(Union(bdom{i})));
              fi;

              op:=ActionHomomorphism(gimg,bb,OnSets,"surjective");
              if HasSize(gimg) and not HasStabChainMutable(gimg) then
                sto:=StabChainOptions(Range(op));
                sto.limit:=Size(gimg);
                # try only with random (will exclude some chances, but is
                # quicker. If the size is OK we have a proof anyhow).
                sto.random:=100;
#                if gimgbas<>false then
#                  SetBaseOfGroup(Range(op),
#                    List(gimgbas,i->PositionProperty(bb,j->i in j)));
#                fi;
                if Size(Range(op))=Size(gimg) then
                  sto.random:=1000;
                  k:=TrivialSubgroup(gimg);
                  op:=oh*op;
                  SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
                  AddNaturalHomomorphismsPool(G,
                      KernelOfMultiplicativeGeneralMapping(op),
                                              op,Length(bb));
                else
                  k:=[]; # do not trigger improvement
                fi;
              else
                k:=KernelOfMultiplicativeGeneralMapping(op);
                SetSize(Range(op),IndexNC(gimg,k));
                op:=oh*op;
                SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
                AddNaturalHomomorphismsPool(G,
                    KernelOfMultiplicativeGeneralMapping(op),
                                            op,Length(bb));

              fi;
              # and note whether we got better
              #improve:=improve or (Size(k)=1);
              if Size(k)=1 and Length(bb)<bestdeg then
                improve:=true;
                bestdeg:=Length(bb);
                bestblock:=bb;
                bestop:=op;
              fi;
            fi;
            # break the test loop if we found a fairly small block system
            # (iterate greedily immediately)
            if improve and bestdeg<i then
              i:=Length(dom);
            fi;
            i:=i+1;
          od;
        else
          Info(InfoFactor,2,"try only one system");
          op:=1;# remove old homomorphism to free memory
          if bdom<>fail then
            b:=Set(b,i->Immutable(Union(bdom{i})));
          fi;
          op:=ActionHomomorphism(gimg,b,OnSets,"surjective");
          if HasSize(gimg) and not HasStabChainMutable(gimg) then
            sto:=StabChainOptions(Range(op));
            sto.limit:=Size(gimg);
            # try only with random (will exclude some chances, but is
            # quicker. If the size is OK we have a proof anyhow).
            sto.random:=100;
#            if gimgbas<>false then
#              SetBaseOfGroup(Range(op),
#                 List(gimgbas,i->PositionProperty(b,j->i in j)));
#            fi;
            if Size(Range(op))=Size(gimg) then
              sto.random:=1000;
              k:=TrivialSubgroup(gimg);
              op:=oh*op;
              SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
              AddNaturalHomomorphismsPool(G,
                  KernelOfMultiplicativeGeneralMapping(op),
                                          op,Length(b));
            else
              k:=[]; # do not trigger improvement
            fi;
          else
            k:=KernelOfMultiplicativeGeneralMapping(op);
            SetSize(Range(op),IndexNC(gimg,k));
            # keep action knowledge
            op:=oh*op;
            SetKernelOfMultiplicativeGeneralMapping(op,PreImage(oh,k));
            AddNaturalHomomorphismsPool(G,
                KernelOfMultiplicativeGeneralMapping(op),
                                        op,Length(b));
          fi;

          if Size(k)=1 then
            improve:=true;
            bestblock:=b;
            bestop:=op;
          fi;
        fi;
        if improve then
          # update mapping
          bdom:=bestblock;
          img:=Image(bestop,G);
          dom:=MovedPoints(img);
        fi;
      fi;
    until improve=false;
  fi;
  Info(InfoFactor,1,"end of blocks search");
  return DegreeNaturalHomomorphismsPool(G,N);
end);

#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"generic for finite groups",IsIdenticalObj,
  [IsGroup and IsFinite,IsGroup],0,GenericFindActionKernel);

RedispatchOnCondition(FindActionKernel,IsIdenticalObj,[IsGroup,IsGroup],
  [IsGroup and IsFinite,IsGroup],0);

InstallMethod(FindActionKernel,"general case: can't do",IsIdenticalObj,
  [IsGroup,IsGroup],0,ReturnFail);

BindGlobal("FactPermRepMaxDesc",function(g,n,maxlev)
local lim,deg,all,c,recurse,use,start;
  if ValueOption("infactorpermrep")=true then return false;fi;
  deg:=DegreeNaturalHomomorphismsPool(g,n);
  if deg=fail then deg:=infinity;fi;
  all:=[];
  start:=ClosureGroup(DerivedSubgroup(g),n);
  lim:=RootInt(IndexNC(g,n),3)*Maximum(1,LogInt(IndexNC(g,start),2));
  c:=start;
  Info(InfoFactor,1,"Try maximals for limit ",lim," from ",deg);

  recurse:=function(a,lev)
  local m,ma,nm,i,j,co,wait,use;
    Info(InfoFactor,3,"pop in ",lev);
    m:=[a];
    while Length(m)>0 do
      wait:=[];
      ma:=[];
      for i in m do
        if ForAll(all,y->RepresentativeAction(g,i,y)=fail) then
          Add(all,i);
          Info(InfoFactor,2,"Maximals of index ",IndexNC(g,i));
          nm:=TryMaximalSubgroupClassReps(i:inmax,infactorpermrep,cheap);
          nm:=Filtered(nm,x->IndexNC(g,x)<=lim and IsSubset(x,n) and not
          IsNormal(g,x));
          for j in nm do
            if IsSubset(j,c) then
              use:=ClosureGroup(n,DerivedSubgroup(j));
              if not IsSubset(use,c) then
                j:=use;
                use:=true;
              else
                Add(wait,j);
                use:=false;
              fi;
            else
              use:=true;
            fi;
            if use then
              co:=Core(g,j);
              AddNaturalHomomorphismsPool(g,co,j,IndexNC(g,j));
              c:=Intersection(co,c);
              Add(ma,j);
            fi;
          od;
        else
          Info(InfoFactor,2,"discard conjugate");
        fi;
      od;
      if Length(ma)>0 then
        CloseNaturalHomomorphismsPool(g,n);
        i:=DegreeNaturalHomomorphismsPool(g,n);
        if i<deg then
          deg:=i;
          Info(InfoFactor,1,"Itmax improves to degree ",deg);
          if lev>1 or deg<lim then return true;fi;
        fi;
        m:=ma;
        SortBy(m,x->-Size(x));
      elif lev<maxlev then
        # no improvement. Go down
        wait:=Filtered(wait,x->IndexNC(g,x)*10<=lim);
        for i in wait do
          if recurse(i,lev+1) then return true;fi;
        od;
        m:=[];
      else
        m:=[];
      fi;
    od;
    if Size(c)>Size(n) then
      Info(InfoFactor,3,"pop up failure ",Size(c));
    else
      Info(InfoFactor,3,"pop up found ",Size(c));
    fi;
    return false;
  end;

  return recurse(start,1);

end);


#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . permgrp
##
InstallMethod(FindActionKernel,"perm",IsIdenticalObj,
  [IsPermGroup,IsPermGroup],0,
function(G,N)
local pool, dom, bestdeg, blocksdone, o, s, badnormals, cnt, v, u, oo, m,
      badcomb, idx, i, comb,act,k,j;

  if IndexNC(G,N)<50 then
    # small index, anything is OK
    return GenericFindActionKernel(G,N);
  else
    # get the known ones, including blocks &c. which might be of use
    DoCheapActionImages(G);

    # find smallish layer actions
    oo:=ClosureGroup(SolvableRadical(G),N);
    dom:=ChiefSeriesThrough(G,[oo,N]);
    dom:=Filtered(dom,x->IsSubset(oo,x) and IsSubset(x,N));

    i:=2;
    while i<=Length(dom) do
      j:=i;
      while j<Length(dom)
        #and HasElementaryAbelianFactorGroup(dom[i-1],dom[j+1])
        and IndexNC(dom[i-1],dom[j+1])<=2000 do
        j:=j+1;
      od;
      if IndexNC(dom[i-1],dom[j])<=2000 then
        v:=RightTransversal(dom[i-1],dom[j]);
        oo:=OrbitsDomain(G,v,function(rep,g)
          return v[PositionCanonical(v,rep^g)];
          end);
        for k in oo do
          if Length(k)>1 then
            u:=Stabilizer(G,k[1],function(x,g)
              return v[PositionCanonical(v,x^g)];
            end);
            repeat
              if not IsNormal(G,u) then
                AddNaturalHomomorphismsPool(G,Core(G,u),u,IndexNC(G,u));
              fi;
              m:=u;
              u:=ClosureGroup(N,DerivedSubgroup(u));
            until m=u;
          fi;
        od;
      fi;
      i:=j+1;
    od;

    pool:=NaturalHomomorphismsPool(G);
    dom:=MovedPoints(G);

    # store regular to have one anyway
    bestdeg:=IndexNC(G,N);
    AddNaturalHomomorphismsPool(G,N,N,bestdeg);

    # check if there are multiple orbits
    o:=Orbits(G,MovedPoints(G));
    s:=List(o,i->Stabilizer(G,i,OnTuples));
    if not ForAny(s,i->IsSubset(N,i)) then
      Info(InfoFactor,2,"Try reduction to orbits");
      s:=List(s,i->ClosureGroup(i,N));
      if Intersection(s)=N then
        Info(InfoFactor,1,"Reduction to orbits will do");
        List(s,i->NaturalHomomorphismByNormalSubgroup(G,i));
      fi;
    fi;

    CloseNaturalHomomorphismsPool(G,N);

    # action in orbit image -- sometimes helps
    if Length(o)>1 then
      for i in o do

        act:=ActionHomomorphism(G,i,OnPoints,"surjective");
        k:=KernelOfMultiplicativeGeneralMapping(act);
        k:=ClosureGroup(k,N); # pre-image of (image of normal subgroup under act)
        u:=Image(act,N);
        v:=NaturalHomomorphismByNormalSubgroupNC(Image(act),u);

        o:=DegreeNaturalHomomorphismsPool(Image(act),u);
        if IsInt(o) then # otherwise its solvable factor we do differently
          AddNaturalHomomorphismsPool(G,k,act*v,o);
        fi;
      od;
      CloseNaturalHomomorphismsPool(G,N);
    fi;

    bestdeg:=DegreeNaturalHomomorphismsPool(G,N);

    Info(InfoFactor,1,"Orbits and known, best Index ",bestdeg);

    blocksdone:=false;
    # use subgroup that fixes a base of N
    # get orbits of a suitable stabilizer.
    o:=BaseOfGroup(N);
    s:=Stabilizer(G,o,OnTuples);
    badnormals:=Filtered(pool.ker,i->IsSubset(i,N) and Size(i)>Size(N));
    if Size(s)>1 and IndexNC(G,s)/Size(N)<2000 and bestdeg>IndexNC(G,s) then
      cnt:=Filtered(OrbitsDomain(s,dom),i->Length(i)>1);
      for i in cnt do
        v:=ClosureGroup(N,Stabilizer(s,i[1]));
        if Size(v)>Size(N) and IndexNC(G,v)<2000
          and not ForAny(badnormals,j->IsSubset(v,j)) then
          u:=Core(G,v);
          if Size(u)>Size(N) and IsSubset(u,N) and not u in badnormals then
            Add(badnormals,u);
          fi;
          AddNaturalHomomorphismsPool(G,u,v,IndexNC(G,v));
        fi;
      od;

      # try also intersections
      CloseNaturalHomomorphismsPool(G,N);

      bestdeg:=DegreeNaturalHomomorphismsPool(G,N);

      Info(InfoFactor,1,"Base Stabilizer and known, best Index ",bestdeg);

      if bestdeg<500 and bestdeg<IndexNC(G,N) then
        # should be better...
        bestdeg:=ImproveActionDegreeByBlocks(G,N,
          GetNaturalHomomorphismsPool(G,N));
        blocksdone:=true;
        Info(InfoFactor,2,"Blocks improve to ",bestdeg);
      fi;
    fi;

    # then we should look at the orbits of the normal subgroup to see,
    # whether anything stabilizing can be of use
    o:=Filtered(OrbitsDomain(N,dom),i->Length(Orbit(G,i[1]))>Length(i));
    Apply(o,Set);
    oo:=OrbitsDomain(G,o,OnSets);
    s:=G;
    for i in oo do
      s:=StabilizerOfBlockNC(s,i[1]);
    od;
    Info(InfoFactor,2,"stabilizer of index ",IndexNC(G,s));

    if not ForAny(badnormals,j->IsSubset(s,j)) then
      m:=Core(G,s); # the normal subgroup we get this way.
      if Size(m)>Size(N) and IsSubset(m,N) and not m in badnormals then
        Add(badnormals,m);
      fi;
      AddNaturalHomomorphismsPool(G,m,s,IndexNC(G,s));
    else
      m:=G; # guaranteed fail
    fi;

    if Size(m)=Size(N) and IndexNC(G,s)<bestdeg then
      bestdeg:=IndexNC(G,s);
      blocksdone:=false;
      Info(InfoFactor,2,"Orbits Stabilizer improves to index ",bestdeg);
    elif Size(m)>Size(N) then
      # no hard work for trivial cases
      if 2*IndexNC(G,N)>Length(o) then
        # try to find a subgroup, which does not contain any part of m
        # For wreath products (the initial aim), the following method works
        # fairly well
        v:=Subgroup(G,Filtered(GeneratorsOfGroup(G),i->not i in m));
        v:=SmallGeneratingSet(v);

        cnt:=1;
        badcomb:=[];
        repeat
          Info(InfoFactor,3,"Trying",cnt);
          for comb in Combinations([1..Length(v)],cnt) do
    #Print(">",comb,"\n");
            if not ForAny(badcomb,j->IsSubset(comb,j)) then
              u:=SubgroupNC(G,v{comb});
              o:=ClosureGroup(N,u);
              idx:=Size(G)/Size(o);
              if idx<10 and Factorial(idx)*Size(N)<Size(G) then
                # the permimage won't be sufficiently large
                AddSet(badcomb,Immutable(comb));
              fi;
              if idx<bestdeg and Size(G)>Size(o)
              and not ForAny(badnormals,i->IsSubset(o,i)) then
                m:=Core(G,o);
                if Size(m)>Size(N) and IsSubset(m,N) then
                  Info(InfoFactor,3,"Core ",comb," failed");
                  AddSet(badcomb,Immutable(comb));
                  if not m in badnormals then
                    Add(badnormals,m);
                  fi;
                fi;
                if idx<bestdeg and Size(m)=Size(N) then
                  Info(InfoFactor,3,"Core ",comb," succeeded");
                  bestdeg:=idx;
                  AddNaturalHomomorphismsPool(G,N,o,bestdeg);
                  blocksdone:=false;
                  cnt:=0;
                fi;
              fi;
            fi;
          od;
          cnt:=cnt+1;
        until cnt>Length(v);
      fi;
    fi;

    Info(InfoFactor,2,"Orbits Stabilizer, Best Index ",bestdeg);
    # first force blocks
    if (not blocksdone) and bestdeg<200 and bestdeg<IndexNC(G,N) then
      Info(InfoFactor,3,"force blocks");
      bestdeg:=ImproveActionDegreeByBlocks(G,N,
        GetNaturalHomomorphismsPool(G,N));
      blocksdone:=true;
      Info(InfoFactor,2,"Blocks improve to ",bestdeg);
    fi;

    if bestdeg=IndexNC(G,N) or
      (bestdeg>400 and not(bestdeg<=2*NrMovedPoints(G))) then
      if GenericFindActionKernel(G,N,bestdeg,s)<>fail then
        blocksdone:=true;
      fi;
      bestdeg:=DegreeNaturalHomomorphismsPool(G,N);
      Info(InfoFactor,1,"  Random search found ",bestdeg);
    fi;

    if bestdeg>10000 and bestdeg^2>IndexNC(G,N) then
      cnt:=bestdeg;
      FactPermRepMaxDesc(G,N,5);
      bestdeg:=DegreeNaturalHomomorphismsPool(G,N);
      if bestdeg<cnt then blocksdone:=false;fi;
      Info(InfoFactor,1,"Iterated maximals found ",bestdeg);
    fi;

    if not blocksdone then
      ImproveActionDegreeByBlocks(G,N,GetNaturalHomomorphismsPool(G,N));
    fi;

    Info(InfoFactor,3,"return hom");
    return GetNaturalHomomorphismsPool(G,N);
    return o;
  fi;

end);

#############################################################################
##
#M  FindActionKernel(<G>)  . . . . . . . . . . . . . . . . . . . . generic
##
InstallMethod(FindActionKernel,"Niceo",IsIdenticalObj,
  [IsGroup and IsHandledByNiceMonomorphism,IsGroup],0,
function(G,N)
local hom,hom2;
  hom:=NiceMonomorphism(G);
  hom2:=GenericFindActionKernel(NiceObject(G),Image(hom,N));
  if hom2<>fail then
    return hom*hom2;
  else
    return hom;
  fi;
end);

BindGlobal("FACTGRP_TRIV",Group([],()));

#############################################################################
##
#M  NaturalHomomorphismByNormalSubgroup( <G>, <N> )  . .  mapping G ->> G/N
##                             this function returns an epimorphism from G
##  with kernel N. The range of this mapping is a suitable (isomorphic)
##  permutation group (with which we can compute much easier).
InstallMethod(NaturalHomomorphismByNormalSubgroupOp,
  "search for operation",IsIdenticalObj,[IsGroup,IsGroup],0,
function(G,N)
local proj,h,pool;

  # catch the trivial case N=G
  if CanComputeIndex(G,N) and IndexNC(G,N)=1 then
    h:=FACTGRP_TRIV;  # a new group is created
    h:=GroupHomomorphismByImagesNC( G, h, GeneratorsOfGroup( G ),
           List( GeneratorsOfGroup( G ), i -> () ));  # a new group is created
    SetKernelOfMultiplicativeGeneralMapping( h, G );
    return h;
  fi;

  # catch trivial case N=1 (IsTrivial might not be set)
  if (HasSize(N) and Size(N)=1) or (HasGeneratorsOfGroup(N) and
    ForAll(GeneratorsOfGroup(N),IsOne)) then
    return IdentityMapping(G);
  fi;

  # check, whether we already know a factormap
  pool:=NaturalHomomorphismsPool(G);
  h:=PositionSet(pool.ker,N);
  if h<>fail and IsGeneralMapping(pool.ops[h]) then
    return GetNaturalHomomorphismsPool(G,N);
  fi;

  DoCheapActionImages(G);
  if HasSolvableRadical(G) and N=SolvableRadical(G) then
    h:=GetNaturalHomomorphismsPool(G,N);
  fi;

  if HasDirectProductInfo(G) and DegreeNaturalHomomorphismsPool(G,N)=fail then
    for proj in [1..Length(DirectProductInfo(G).groups)] do
      proj:=Projection(G,proj);
      h:=NaturalHomomorphismByNormalSubgroup(Image(proj,G),Image(proj,N));
      AddNaturalHomomorphismsPool(G,
        ClosureGroup(KernelOfMultiplicativeGeneralMapping(proj),N),proj*h);
    od;
  fi;
  CloseNaturalHomomorphismsPool(G,N);

  h:=DegreeNaturalHomomorphismsPool(G,N);
  if h<>fail and RootInt(h^3,2)<IndexNC(G,N) then
    h:=GetNaturalHomomorphismsPool(G,N);
  else
    h:=fail;
  fi;

  if h=fail then
    # now we try to find a suitable operation

    # redispatch upon finiteness test, as following will fail in infinite case
    if not HasIsFinite(G) and IsFinite(G) then
      return NaturalHomomorphismByNormalSubgroupOp(G,N);
    fi;

    h:=FindActionKernel(G,N);
    if h<>fail then
      Info(InfoFactor,1,"Action of degree ",
        Length(MovedPoints(Range(h)))," found");
    else
      Error("I don't know how to find a natural homomorphism for <N> in <G>");
      # nothing had been found, Desperately one could try again, but that
      # would create a possible infinite loop.
      h:= NaturalHomomorphismByNormalSubgroup( G, N );
    fi;
  fi;
  # return the map
  return h;
end);

RedispatchOnCondition(NaturalHomomorphismByNormalSubgroupNCOrig,IsIdenticalObj,
  [IsGroup,IsGroup],[IsGroup and IsFinite,IsGroup],0);

RedispatchOnCondition(NaturalHomomorphismByNormalSubgroupInParent,true,
  [IsGroup],[IsGroup and IsFinite],0);

RedispatchOnCondition(FactorGroupNC,IsIdenticalObj,
  [IsGroup,IsGroup],[IsGroup and IsFinite,IsGroup],0);

#############################################################################
##
#M  NaturalHomomorphismByNormalSubgroup( <G>, <N> ) . .  for solvable factors
##
NH_TRYPCGS_LIMIT:=30000;
InstallMethod( NaturalHomomorphismByNormalSubgroupOp,
  "test if known/try solvable factor for permutation groups",
  IsIdenticalObj, [ IsPermGroup, IsPermGroup ], 0,
function( G, N )
local   map,  pcgs, A, filter;

  if KnownNaturalHomomorphismsPool(G,N) then
    A:=DegreeNaturalHomomorphismsPool(G,N);
    if A<50 or (IsInt(A) and A<IndexNC(G,N)/LogInt(IndexNC(G,N),2)^2) then
      map:=GetNaturalHomomorphismsPool(G,N);
      if map<>fail then
        Info(InfoFactor,2,"use stored map");
        return map;
      fi;
    fi;
  fi;

  if IndexNC(G,N)=1 or Size(N)=1
    or Minimum(IndexNC(G,N),NrMovedPoints(G))>NH_TRYPCGS_LIMIT then
    TryNextMethod();
  fi;

  # Make  a pcgs   based on  an  elementary   abelian series (good  for  ag
  # routines).
  pcgs := TryPcgsPermGroup( [ G, N ], false, false, true );
  if not IsModuloPcgs( pcgs )  then
      TryNextMethod();
  fi;

  # Construct or look up the pcp group <A>.
  A:=CreateIsomorphicPcGroup(pcgs,false,false);

  UseFactorRelation( G, N, A );

  # Construct the epimorphism from <G> onto <A>.
  map := rec();
  filter := IsPermGroupGeneralMappingByImages and
            IsToPcGroupGeneralMappingByImages and
            IsGroupGeneralMappingByPcgs and
            IsMapping and IsSurjective and
            HasSource and HasRange and
            HasPreImagesRange and HasImagesSource and
            HasKernelOfMultiplicativeGeneralMapping;

  map.sourcePcgs       := pcgs;
  map.sourcePcgsImages := GeneratorsOfGroup( A );

  ObjectifyWithAttributes( map,
  NewType( GeneralMappingsFamily
          ( ElementsFamily( FamilyObj( G ) ),
            ElementsFamily( FamilyObj( A ) ) ), filter ),
            Source,G,
            Range,A,
            PreImagesRange,G,
            ImagesSource,A,
            KernelOfMultiplicativeGeneralMapping,N
            );

  return map;
end );

#############################################################################
##
#F  PullBackNaturalHomomorphismsPool( <hom> )
##
InstallGlobalFunction(PullBackNaturalHomomorphismsPool,function(hom)
local s,r,nat,k;
  s:=Source(hom);
  r:=Range(hom);
  for k in NaturalHomomorphismsPool(r).ker do
    nat:=hom*NaturalHomomorphismByNormalSubgroup(r,k);
    AddNaturalHomomorphismsPool(s,PreImage(hom,k),nat);
  od;
end);

#############################################################################
##
#F  TryQuotientsFromFactorSubgroups(<hom>,<ker>,<bound>)
##
InstallGlobalFunction(TryQuotientsFromFactorSubgroups,function(hom,ker,bound)
local s,p,k,it,u,v,d,ma,mak,lev,sub,low;
  s:=Source(hom);
  p:=Image(hom);
  k:=KernelOfMultiplicativeGeneralMapping(hom);
  it:=DescSubgroupIterator(p:skip:=4);
  repeat
    u:=NextIterator(it);
    Info(InfoExtReps,2,"Factor subgroup index ",Index(p,u));
    v:=PreImage(hom,u);
    d:=DerivedSubgroup(v);
    if not IsSubset(d,k) then
      d:=ClosureGroup(ker,d);
      if not IsSubset(d,k) then
        ma:=NaturalHomomorphismByNormalSubgroup(v,d);
        mak:=Image(ma,k);
        lev:=0;
        sub:=fail;
        while sub=fail do
          lev:=lev+1;
          low:=ShallowCopy(LowLayerSubgroups(Range(ma),lev));
          SortBy(low,x->-Size(x));
          sub:=First(low,x->not IsSubset(x,mak));
        od;
        sub:=PreImage(ma,sub);
        Info(InfoExtReps,2,"Found factor permrep ",IndexNC(s,sub));
        d:=Core(s,sub);
        AddNaturalHomomorphismsPool(s,d,sub);
        k:=Intersection(k,d);
        if Size(k)=Size(ker) then return;fi;
      fi;
    fi;
  until IndexNC(p,u)>=bound;
end);

#############################################################################
##
#M  UseFactorRelation( <num>, <den>, <fac> )  . . . .  for perm group factors
##
InstallMethod( UseFactorRelation,
   [ IsGroup and HasSize, IsObject, IsPermGroup ],
   function( num, den, fac )
   local limit;
   if not HasSize( fac ) then
     if HasSize(den) then
       SetSize( fac, Size( num ) / Size( den ) );
     else
       limit := Size( num );
       if IsBound( StabChainOptions(fac).limit ) then
         limit := Minimum( limit, StabChainOptions(fac).limit );
       fi;
       StabChainOptions(fac).limit:=limit;
     fi;
   fi;
   TryNextMethod();
   end );