1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
|
/****************************************************************************
**
** This file is part of GAP, a system for computational discrete algebra.
**
** Copyright of GAP belongs to its developers, whose names are too numerous
** to list here. Please refer to the COPYRIGHT file for details.
**
** SPDX-License-Identifier: GPL-2.0-or-later
**
** This file contains the functions of the expressions package.
**
** The expressions package is the part of the interpreter that evaluates
** expressions to their values and prints expressions.
*/
#include "exprs.h"
#include "ariths.h"
#include "bool.h"
#include "calls.h"
#include "code.h"
#include "error.h"
#include "gapstate.h"
#include "gvars.h"
#include "hookintrprtr.h"
#include "integer.h"
#include "io.h"
#include "lists.h"
#include "modules.h"
#include "opers.h"
#include "permutat.h"
#include "plist.h"
#include "precord.h"
#include "range.h"
#include "records.h"
#include "stringobj.h"
#include "vars.h"
#ifdef HPCGAP
#include "hpc/aobjects.h"
#endif
/****************************************************************************
**
*V EvalExprFuncs[<type>] . . . . . evaluator for expressions of type <type>
**
** 'EvalExprFuncs' is the dispatch table that contains for every type of
** expressions a pointer to the evaluator for expressions of this type,
** i.e., the function that should be called to evaluate expressions of this
** type.
*/
EvalExprFunc EvalExprFuncs[256];
/****************************************************************************
**
*V EvalBoolFuncs[<type>] . . boolean evaluator for expression of type <type>
**
** 'EvalBoolFuncs' is the dispatch table that contains for every type of
** expression a pointer to a boolean evaluator for expressions of this type,
** i.e., a pointer to a function which is guaranteed to return a boolean
** value that should be called to evaluate expressions of this type.
*/
EvalBoolFunc EvalBoolFuncs[256];
/****************************************************************************
**
*F EvalUnknownExpr(<expr>) . . . . . . . evaluate expression of unknown type
**
** 'EvalUnknownExpr' is the evaluator that is called if an attempt is made
** to evaluate an expression <expr> of an unknown type. It signals an
** error. If this is ever called, then GAP is in serious trouble, such as
** an overwritten type field of an expression.
*/
static Obj EvalUnknownExpr(Expr expr)
{
Pr("Panic: tried to evaluate an expression of unknown type '%d'\n",
(Int)TNUM_EXPR(expr), 0);
return 0;
}
/****************************************************************************
**
*F EvalUnknownBool(<expr>) . . . . boolean evaluator for general expressions
**
** 'EvalUnknownBool' evaluates the expression <expr> (using 'EVAL_EXPR'),
** and checks that the value is either 'true' or 'false'. If the expression
** does not evaluate to 'true' or 'false', then an error is signalled.
**
** This is the default function in 'EvalBoolFuncs' used for expressions that
** are not a priori known to evaluate to a boolean value (such as
** function calls).
*/
static Obj EvalUnknownBool(Expr expr)
{
Obj val; // value, result
// evaluate the expression
val = EVAL_EXPR( expr );
// check that the value is either 'true' or 'false'
if (val != True && val != False) {
RequireArgumentEx(0, val, "<expr>", "must be 'true' or 'false'");
}
// return the value
return val;
}
/****************************************************************************
**
*F EvalOr(<expr>) . . . . . . . . . . . . . evaluate a boolean or operation
**
** 'EvalOr' evaluates the or-expression <expr> and returns its value, i.e.,
** 'true' if either of the operands is 'true', and 'false' otherwise.
** 'EvalOr' is called from 'EVAL_EXPR' to evaluate expressions of type
** 'EXPR_OR'.
**
** If '<expr>.left' is already 'true' 'EvalOr' returns 'true' without
** evaluating '<expr>.right'. This allows constructs like
**
** if (index > max) or (list[index] = 0) then ... fi;
*/
static Obj EvalOr(Expr expr)
{
Obj opL; // evaluated left operand
Expr tmp; // temporary expression
// evaluate and test the left operand
tmp = READ_EXPR(expr, 0);
opL = EVAL_BOOL_EXPR( tmp );
if ( opL != False ) {
return True;
}
// evaluate and test the right operand
tmp = READ_EXPR(expr, 1);
return EVAL_BOOL_EXPR( tmp );
}
/****************************************************************************
**
*F EvalAnd(<expr>) . . . . . . . . . . . . evaluate a boolean and operation
**
** 'EvalAnd' evaluates the and-expression <expr> and returns its value,
** i.e., 'true' if both operands are 'true', and 'false' otherwise.
** 'EvalAnd' is called from 'EVAL_EXPR' to evaluate expressions of type
** 'EXPR_AND'.
**
** If '<expr>.left' is already 'false' 'EvalAnd' returns 'false' without
** evaluating '<expr>.right'. This allows constructs like
**
** if (index <= max) and (list[index] = 0) then ... fi;
*/
static Obj EvalAnd(Expr expr)
{
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// if the left operand is 'false', this is the result
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
if ( opL == False ) {
return opL;
}
// if the left operand is 'true', the result is the right operand
else if ( opL == True ) {
tmp = READ_EXPR(expr, 1);
return EVAL_BOOL_EXPR( tmp );
}
// handle the 'and' of two filters
else if (IS_FILTER(opL)) {
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
return NewAndFilter(opL, opR);
}
// signal an error
else {
RequireArgumentEx(0, opL, "<expr>",
"must be 'true' or 'false' or a filter");
}
// please 'lint'
return 0;
}
/****************************************************************************
**
*F EvalNot(<expr>) . . . . . . . . . . . . . . . . . negate a boolean value
**
** 'EvalNot' evaluates the not-expression <expr> and returns its value,
** i.e., 'true' if the operand is 'false', and 'false' otherwise. 'EvalNot'
** is called from 'EVAL_EXPR' to evaluate expressions of type 'EXPR_NOT'.
*/
static Obj EvalNot(Expr expr)
{
Obj val; // value, result
Obj op; // evaluated operand
Expr tmp; // temporary expression
// evaluate the operand to a boolean
tmp = READ_EXPR(expr, 0);
op = EVAL_BOOL_EXPR( tmp );
// compute the negation
val = (op == False ? True : False);
// return the negated value
return val;
}
/****************************************************************************
**
*F EvalEq(<expr>) . . . . . . . . . . . . . . . . . . evaluate a comparison
**
** 'EvalEq' evaluates the equality-expression <expr> and returns its value,
** i.e., 'true' if the operand '<expr>.left' is equal to the operand
** '<expr>.right' and 'false' otherwise. 'EvalEq' is called from
** 'EVAL_EXPR' to evaluate expressions of type 'EXPR_EQ'.
**
** 'EvalEq' evaluates the operands and then calls the 'EQ' macro.
*/
static Obj EvalEq(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// compare the operands
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = (EQ( opL, opR ) ? True : False);
// return the value
return val;
}
/****************************************************************************
**
*F EvalNe(<expr>) . . . . . . . . . . . . . . . . . . evaluate a comparison
**
** 'EvalNe' evaluates the comparison-expression <expr> and returns its
** value, i.e., 'true' if the operand '<expr>.left' is not equal to the
** operand '<expr>.right' and 'false' otherwise. 'EvalNe' is called from
** 'EVAL_EXPR' to evaluate expressions of type 'EXPR_LT'.
**
** 'EvalNe' is simply implemented as 'not <objL> = <objR>'.
*/
static Obj EvalNe(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// compare the operands
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = (EQ( opL, opR ) ? False : True);
// return the value
return val;
}
/****************************************************************************
**
*F EvalLt(<expr>) . . . . . . . . . . . . . . . . . . evaluate a comparison
**
** 'EvalLt' evaluates the comparison-expression <expr> and returns its
** value, i.e., 'true' if the operand '<expr>.left' is less than the operand
** '<expr>.right' and 'false' otherwise. 'EvalLt' is called from
** 'EVAL_EXPR' to evaluate expressions of type 'EXPR_LT'.
**
** 'EvalLt' evaluates the operands and then calls the 'LT' macro.
*/
static Obj EvalLt(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// compare the operands
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = (LT( opL, opR ) ? True : False);
// return the value
return val;
}
/****************************************************************************
**
*F EvalGe(<expr>) . . . . . . . . . . . . . . . . . . evaluate a comparison
**
** 'EvalGe' evaluates the comparison-expression <expr> and returns its
** value, i.e., 'true' if the operand '<expr>.left' is greater than or equal
** to the operand '<expr>.right' and 'false' otherwise. 'EvalGe' is called
** from 'EVAL_EXPR' to evaluate expressions of type 'EXPR_GE'.
**
** 'EvalGe' is simply implemented as 'not <objL> < <objR>'.
*/
static Obj EvalGe(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// compare the operands
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = (LT( opL, opR ) ? False : True);
// return the value
return val;
}
/****************************************************************************
**
*F EvalGt(<expr>) . . . . . . . . . . . . . . . . . . evaluate a comparison
**
** 'EvalGt' evaluates the comparison-expression <expr> and returns its
** value, i.e., 'true' if the operand '<expr>.left' is greater than the
** operand '<expr>.right' and 'false' otherwise. 'EvalGt' is called from
** 'EVAL_EXPR' to evaluate expressions of type 'EXPR_GT'.
**
** 'EvalGt' is simply implemented as '<objR> < <objL>'.
*/
static Obj EvalGt(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// compare the operands
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = (LT( opR, opL ) ? True : False);
// return the value
return val;
}
/****************************************************************************
**
*F EvalLe(<expr>) . . . . . . . . . . . . . . . . . . evaluate a comparison
**
** 'EvalLe' evaluates the comparison-expression <expr> and returns its
** value, i.e., 'true' if the operand '<expr>.left' is less or equal to the
** operand '<expr>.right' and 'false' otherwise. 'EvalLe' is called from
** 'EVAL_EXPR' to evaluate expressions of type 'EXPR_LE'.
**
** 'EvalLe' is simply implemented as 'not <objR> < <objR>'.
*/
static Obj EvalLe(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// compare the operands
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = (LT( opR, opL ) ? False : True);
// return the value
return val;
}
/****************************************************************************
**
*F EvalIn(<in>) . . . . . . . . . . . . . . . test for membership in a list
**
** 'EvalIn' evaluates the in-expression <expr> and returns its value, i.e.,
** 'true' if the operand '<expr>.left' is a member of '<expr>.right' and
** 'false' otherwise. 'EvalIn' is called from 'EVAL_EXPR' to evaluate
** expressions of type 'EXPR_IN'.
*/
static Obj EvalIn(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// evaluate <opL>
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
// evaluate <opR>
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// perform the test
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = (IN( opL, opR ) ? True : False);
// return the value
return val;
}
/****************************************************************************
**
*F EvalSum(<expr>) . . . . . . . . . . . . . . . . . . . . . evaluate a sum
**
** 'EvalSum' evaluates the sum-expression <expr> and returns its value,
** i.e., the sum of the two operands '<expr>.left' and '<expr>.right'.
** 'EvalSum' is called from 'EVAL_EXPR' to evaluate expressions of type
** 'EXPR_SUM'.
**
** 'EvalSum' evaluates the operands and then calls the 'SUM' macro.
*/
static Obj EvalSum(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// first try to treat the operands as small integers with small result
if ( ! ARE_INTOBJS( opL, opR ) || ! SUM_INTOBJS( val, opL, opR ) ) {
// if that doesn't work, dispatch to the addition function
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = SUM( opL, opR );
}
// return the value
return val;
}
/****************************************************************************
**
*F EvalAInv(<expr>) . . . . . . . . . . . . . evaluate an additive inverse
**
** 'EvalAInv' evaluates the additive inverse-expression and returns its
** value, i.e., the additive inverse of the operand. 'EvalAInv' is called
** from 'EVAL_EXPR' to evaluate expressions of type 'EXPR_AINV'.
**
** 'EvalAInv' evaluates the operand and then calls the 'AINV_SAMEMUT' macro.
*/
static Obj EvalAInv(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
// compute the additive inverse
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = AINV_SAMEMUT(opL);
// return the value
return val;
}
/****************************************************************************
**
*F EvalDiff(<expr>) . . . . . . . . . . . . . . . . . evaluate a difference
**
** 'EvalDiff' evaluates the difference-expression <expr> and returns its
** value, i.e., the difference of the two operands '<expr>.left' and
** '<expr>.right'. 'EvalDiff' is called from 'EVAL_EXPR' to evaluate
** expressions of type 'EXPR_DIFF'.
**
** 'EvalDiff' evaluates the operands and then calls the 'DIFF' macro.
*/
static Obj EvalDiff(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// first try to treat the operands as small integers with small result
if ( ! ARE_INTOBJS( opL, opR ) || ! DIFF_INTOBJS( val, opL, opR ) ) {
// if that doesn't work, dispatch to the subtraction function
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = DIFF( opL, opR );
}
// return the value
return val;
}
/****************************************************************************
**
*F EvalProd(<expr>) . . . . . . . . . . . . . . . . . . evaluate a product
**
** 'EvalProd' evaluates the product-expression <expr> and returns it value,
** i.e., the product of the two operands '<expr>.left' and '<expr>.right'.
** 'EvalProd' is called from 'EVAL_EXPR' to evaluate expressions of type
** 'EXPR_PROD'.
**
** 'EvalProd' evaluates the operands and then calls the 'PROD' macro.
*/
static Obj EvalProd(Expr expr)
{
Obj val; // result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// first try to treat the operands as small integers with small result
if ( ! ARE_INTOBJS( opL, opR ) || ! PROD_INTOBJS( val, opL, opR ) ) {
// if that doesn't work, dispatch to the multiplication function
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = PROD( opL, opR );
}
// return the value
return val;
}
/****************************************************************************
**
*F EvalQuo(<expr>) . . . . . . . . . . . . . . . . . . . evaluate a quotient
**
** 'EvalQuo' evaluates the quotient-expression <expr> and returns its value,
** i.e., the quotient of the two operands '<expr>.left' and '<expr>.right'.
** 'EvalQuo' is called from 'EVAL_EXPR' to evaluate expressions of type
** 'EXPR_QUO'.
**
** 'EvalQuo' evaluates the operands and then calls the 'QUO' macro.
*/
static Obj EvalQuo(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// dispatch to the division function
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = QUO( opL, opR );
// return the value
return val;
}
/****************************************************************************
**
*F EvalMod(<expr>) . . . . . . . . . . . . . . . . . . evaluate a remainder
**
** 'EvalMod' evaluates the remainder-expression <expr> and returns its
** value, i.e., the remainder of the two operands '<expr>.left' and
** '<expr>.right'. 'EvalMod' is called from 'EVAL_EXPR' to evaluate
** expressions of type 'EXPR_MOD'.
**
** 'EvalMod' evaluates the operands and then calls the 'MOD' macro.
*/
static Obj EvalMod(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// dispatch to the remainder function
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = MOD( opL, opR );
// return the value
return val;
}
/****************************************************************************
**
*F EvalPow(<expr>) . . . . . . . . . . . . . . . . . . . . evaluate a power
**
** 'EvalPow' evaluates the power-expression <expr> and returns its value,
** i.e., the power of the two operands '<expr>.left' and '<expr>.right'.
** 'EvalPow' is called from 'EVAL_EXPR' to evaluate expressions of type
** 'EXPR_POW'.
**
** 'EvalPow' evaluates the operands and then calls the 'POW' macro.
*/
static Obj EvalPow(Expr expr)
{
Obj val; // value, result
Obj opL; // evaluated left operand
Obj opR; // evaluated right operand
Expr tmp; // temporary expression
// get the operands
tmp = READ_EXPR(expr, 0);
opL = EVAL_EXPR( tmp );
tmp = READ_EXPR(expr, 1);
opR = EVAL_EXPR( tmp );
// dispatch to the powering function
SET_BRK_CALL_TO(expr); // Note possible call for FuncWhere
val = POW( opL, opR );
// return the value
return val;
}
/****************************************************************************
**
*F EvalIntExpr(<expr>) . . . . . . . . . evaluate literal integer expression
**
** 'EvalIntExpr' evaluates the literal integer expression <expr> and returns
** its value.
*/
static Obj EvalIntExpr(Expr expr)
{
UInt ix = READ_EXPR(expr, 0);
return GET_VALUE_FROM_CURRENT_BODY(ix);
}
/****************************************************************************
**
*F EvalTildeExpr(<expr>) . . . . . . . . . evaluate tilde expression
**
** 'EvalTildeExpr' evaluates the tilde expression and returns its value.
*/
static Obj EvalTildeExpr(Expr expr)
{
if( ! (STATE(Tilde)) ) {
ErrorQuit("'~' does not have a value here", 0, 0);
}
return STATE(Tilde);
}
/****************************************************************************
**
*F EvalTrueExpr(<expr>) . . . . . . . . . evaluate literal true expression
**
** 'EvalTrueExpr' evaluates the literal true expression <expr> and returns
** its value (True).
*/
static Obj EvalTrueExpr(Expr expr)
{
return True;
}
/****************************************************************************
**
*F EvalFalseExpr(<expr>) . . . . . . . . . evaluate literal false expression
**
** 'EvalFalseExpr' evaluates the literal false expression <expr> and returns
** its value (False).
*/
static Obj EvalFalseExpr(Expr expr)
{
return False;
}
/****************************************************************************
**
*F EvalCharExpr(<expr>) . . . . . . evaluate a literal character expression
**
** 'EvalCharExpr' evaluates the literal character expression <expr> and
** returns its value.
*/
static Obj EvalCharExpr(Expr expr)
{
return ObjsChar[ READ_EXPR(expr, 0) ];
}
/****************************************************************************
**
*F EvalPermExpr(<expr>) . . . . . . . . . evaluate a permutation expression
**
** 'EvalPermExpr' evaluates the permutation expression <expr>.
*/
static Obj GetFromExpr(Obj cycle, Int j)
{
return EVAL_EXPR(READ_EXPR((Expr)cycle, j - 1));
}
static Obj EvalPermExpr(Expr expr)
{
Obj perm; // permutation, result
UInt m; // maximal entry in permutation
Expr cycle; // one cycle of permutation
UInt i; // loop variable
// special case for identity permutation
if ( SIZE_EXPR(expr) == 0 ) {
return IdentityPerm;
}
// allocate the new permutation
m = 0;
perm = NEW_PERM4( 0 );
// loop over the cycles
for ( i = 1; i <= SIZE_EXPR(expr)/sizeof(Expr); i++ ) {
cycle = READ_EXPR(expr, i - 1);
// Need to inform profiling this cycle expression is executed, as
// we never call EVAL_EXPR on it.
VisitStatIfHooked(cycle);
m = ScanPermCycle(perm, m, (Obj)cycle,
SIZE_EXPR(cycle) / sizeof(Expr), GetFromExpr);
}
// if possible represent the permutation with short entries
TrimPerm(perm, m);
// return the permutation
return perm;
}
/****************************************************************************
**
*F EvalListExpr(<expr>) . . . . . evaluate list expression to a list value
**
** 'EvalListExpr' evaluates the list expression, i.e., not yet evaluated
** list, <expr> to a list value.
*/
static Obj EvalListExpr(Expr expr)
{
Obj list; // list value, result
Obj sub; // value of a subexpression
Int len; // logical length of the list
Int i; // loop variable
Int dense; // track whether list is dense
// get the length of the list
len = SIZE_EXPR(expr) / sizeof(Expr);
// handle empty list
if (len == 0) {
return NewEmptyPlist();
}
// allocate the list value
list = NEW_PLIST(T_PLIST, len);
// set the final list length
SET_LEN_PLIST(list, len);
// initially assume list is dense
dense = 1;
// handle the subexpressions
for (i = 1; i <= len; i++) {
Expr subExpr = READ_EXPR(expr, i - 1);
// skip holes
if (subExpr == 0) {
// there is a hole, hence the list is not dense (note that list
// expressions never contain holes at the end, so we do not have
// to check if any bound entries follow)
dense = 0;
continue;
}
sub = EVAL_EXPR(subExpr);
SET_ELM_PLIST(list, i, sub);
CHANGED_BAG(list);
}
SET_FILT_LIST(list, dense ? FN_IS_DENSE : FN_IS_NDENSE);
return list;
}
/****************************************************************************
**
*F EvalListTildeExpr(<expr>) . . . . evaluate a list expression with a tilde
**
** 'EvalListTildeExpr' evaluates the list expression, i.e., not yet
** evaluated list, <expr> to a list value. The difference to 'EvalListExpr'
** is that in <expr> there are occurrences of '~' referring to this list
** value.
**
** Note that we do not track here whether the list is dense, as this can be
** changed by code involving a tilde expression, as in this example:
** x := [1,,3,function(x) x[2]:=2; return 4; end(~)];
**
** For similar reasons, we must deal with the possibility that the list we
** are creating changes its representation, and thus must use ASS_LIST
** instead of SET_ELM_PLIST.
*/
static Obj EvalListTildeExpr(Expr expr)
{
Obj list; // list value, result
Obj tilde; // old value of tilde
Obj sub; // value of a subexpression
Int len; // logical length of the list
Int i; // loop variable
// get the length of the list
len = SIZE_EXPR(expr) / sizeof(Expr);
// list expressions with tilde cannot be empty
GAP_ASSERT(len > 0);
// allocate the list value
list = NEW_PLIST(T_PLIST, len);
// remember the old value of '~'
tilde = STATE(Tilde);
// assign the list to '~'
STATE(Tilde) = list;
// handle the subexpressions
for (i = 1; i <= len; i++) {
Expr subExpr = READ_EXPR(expr, i - 1);
// skip holes
if (subExpr == 0)
continue;
sub = EVAL_EXPR(subExpr);
ASS_LIST(list, i, sub);
}
// restore old value of '~'
STATE(Tilde) = tilde;
return list;
}
/****************************************************************************
**
*F EvalRangeExpr(<expr>) . . . . . eval a range expression to a range value
**
** 'EvalRangeExpr' evaluates the range expression <expr> to a range value.
*/
static Obj EvalRangeExpr(Expr expr)
{
Obj range; // range, result
Obj val; // subvalue of range
Int low; // low (as C integer)
Int inc; // increment (as C integer)
Int high; // high (as C integer)
// evaluate the low value
val = EVAL_EXPR(READ_EXPR(expr, 0));
low = GetSmallIntEx("Range", val, "<first>");
// evaluate the second value (if present)
if ( SIZE_EXPR(expr) == 3*sizeof(Expr) ) {
val = EVAL_EXPR(READ_EXPR(expr, 1));
Int ival = GetSmallIntEx("Range", val, "<second>");
if (ival == low) {
ErrorMayQuit("Range: <second> must not be equal to <first> (%d)",
(Int)low, 0);
}
inc = ival - low;
}
else {
inc = 1;
}
// evaluate and check the high value
val = EVAL_EXPR(READ_EXPR(expr, SIZE_EXPR(expr) / sizeof(Expr) - 1));
high = GetSmallIntEx("Range", val, "<last>");
if ((high - low) % inc != 0) {
ErrorMayQuit(
"Range: <last>-<first> (%d) must be divisible by <inc> (%d)",
(Int)(high - low), (Int)inc);
}
// if <low> is larger than <high> the range is empty
if ( (0 < inc && high < low) || (inc < 0 && low < high) ) {
range = NewEmptyPlist();
}
// if <low> is equal to <high> the range is a singleton list
else if ( low == high ) {
range = NEW_PLIST( T_PLIST_CYC_SSORT, 1 );
SET_LEN_PLIST( range, 1 );
SET_ELM_PLIST( range, 1, INTOBJ_INT(low) );
}
// else make the range
else {
// the length must be a small integer as well
if ((high-low) / inc + 1 > INT_INTOBJ_MAX) {
ErrorQuit("Range: the length of a range must be a small integer",
0, 0);
}
range = NEW_RANGE((high - low) / inc + 1, low, inc);
}
// return the range
return range;
}
/****************************************************************************
**
*F EvalStringExpr(<expr>) . . . . eval string expressions to a string value
**
** 'EvalStringExpr' evaluates the string expression <expr> to a string
** value.
*/
static Obj EvalStringExpr(Expr expr)
{
UInt ix = READ_EXPR(expr, 0);
Obj string = GET_VALUE_FROM_CURRENT_BODY(ix);
return SHALLOW_COPY_OBJ(string);
}
/****************************************************************************
**
*F EvalFloatExprLazy(<expr>) . . . . eval float expressions to a float value
**
** 'EvalFloatExpr' evaluates the float expression <expr> to a float
** value.
*/
static Obj CONVERT_FLOAT_LITERAL;
static Obj FLOAT_LITERAL_CACHE;
static Obj MAX_FLOAT_LITERAL_CACHE_SIZE;
static Obj EvalFloatExprLazy(Expr expr)
{
Obj string; // string value
UInt ix;
Obj cache= 0;
Obj fl;
/* This code is safe for threads trying to create or update the
* cache concurrently in that it won't crash, but may occasionally
* result in evaluating a floating point literal twice.
*/
ix = READ_EXPR(expr, 0);
if (ix && (!MAX_FLOAT_LITERAL_CACHE_SIZE ||
MAX_FLOAT_LITERAL_CACHE_SIZE == INTOBJ_INT(0) ||
ix <= INT_INTOBJ(MAX_FLOAT_LITERAL_CACHE_SIZE))) {
cache = FLOAT_LITERAL_CACHE;
assert(cache);
fl = ELM0_LIST(cache, ix);
if (fl)
return fl;
}
string = GET_VALUE_FROM_CURRENT_BODY(READ_EXPR(expr, 1));
fl = CALL_1ARGS(CONVERT_FLOAT_LITERAL, string);
if (cache) {
ASS_LIST(cache, ix, fl);
}
return fl;
}
/****************************************************************************
**
*F EvalFloatExprEager(<expr>) . . . . eval float expressions to a float value
**
** 'EvalFloatExpr' evaluates the float expression <expr> to a float
** value.
*/
static Obj EvalFloatExprEager(Expr expr)
{
UInt ix = READ_EXPR(expr, 0);
return GET_VALUE_FROM_CURRENT_BODY(ix);
}
/****************************************************************************
**
*F EvalRecExpr(<expr>) . . . . . . eval record expression to a record value
**
** 'EvalRecExpr' evaluates the record expression, i.e., not yet evaluated
** record, <expr> to a record value.
**
** 'EvalRecExpr' just calls 'RecExpr1' and 'RecExpr2' to evaluate the record
** expression.
*/
static Obj RecExpr1(Expr expr);
static void RecExpr2(Obj rec, Expr expr);
static Obj EvalRecExpr(Expr expr)
{
Obj rec; // record value, result
// evaluate the record expression
rec = RecExpr1( expr );
RecExpr2( rec, expr );
return rec;
}
/****************************************************************************
**
*F EvalRecTildeExpr(<expr>) . . . evaluate a record expression with a tilde
**
** 'EvalRecTildeExpr' evaluates the record expression, i.e., not yet
** evaluated record, <expr> to a record value. The difference to
** 'EvalRecExpr' is that in <expr> there are occurrences of '~' referring to
** this record value.
**
** 'EvalRecTildeExpr' just calls 'RecExpr1' to create the record, assigns
** the record to the variable '~', and finally calls 'RecExpr2' to evaluate
** the subexpressions into the record. Thus subexpressions in the record
** expression can refer to this variable and its subobjects to create
** objects that are not trees.
*/
static Obj EvalRecTildeExpr(Expr expr)
{
Obj rec; // record value, result
Obj tilde; // old value of tilde
// remember the old value of '~'
tilde = STATE(Tilde);
// create the record value
rec = RecExpr1( expr );
// assign the record value to the variable '~'
STATE(Tilde) = rec;
// evaluate the subexpressions into the record value
RecExpr2( rec, expr );
// restore the old value of '~'
STATE(Tilde) = tilde;
// return the record value
return rec;
}
/****************************************************************************
**
*F RecExpr1(<expr>) . . . . . . . . . make a record for a record expression
*F RecExpr2(<rec>,<expr>) . . enter the subobjects for a record expression
**
** 'RecExpr1' and 'RecExpr2' together evaluate the record expression <expr>
** into the record <rec>.
**
** 'RecExpr1' allocates a new record of the same size as the record
** expression <expr> and returns this record.
**
** 'RecExpr2' evaluates the subexpressions of <expr> and puts the values
** into the record <rec> (which should be a record of the same size as the
** record expression <expr>, e.g., the one allocated by 'RecExpr1').
**
** This two step allocation is necessary, because record expressions such as
** 'rec( a := 1, ~.a )' requires that the value of one subexpression is
** entered into the record value before the next subexpression is evaluated.
*/
static Obj RecExpr1(Expr expr)
{
Obj rec; // record value, result
Int len; // number of components
// get the number of components
len = SIZE_EXPR( expr ) / (2*sizeof(Expr));
// allocate the record value
rec = NEW_PREC( len );
// return the record
return rec;
}
static void RecExpr2(Obj rec, Expr expr)
{
UInt rnam; // name of component
Obj sub; // value of subexpression
Int len; // number of components
Expr tmp; // temporary variable
Int i; // loop variable
// get the number of components
len = SIZE_EXPR( expr ) / (2*sizeof(Expr));
// handle the subexpressions
for ( i = 1; i <= len; i++ ) {
// handle the name
tmp = READ_EXPR(expr, 2 * i - 2);
if ( IS_INTEXPR(tmp) ) {
rnam = (UInt)INT_INTEXPR(tmp);
}
else {
rnam = RNamObj( EVAL_EXPR(tmp) );
}
// if the subexpression is empty (cannot happen for records)
tmp = READ_EXPR(expr, 2 * i - 1);
if ( tmp == 0 ) {
continue;
}
sub = EVAL_EXPR( tmp );
AssPRec(rec,rnam,sub);
}
SortPRecRNam(rec,0);
}
/****************************************************************************
**
*V PrintExprFuncs[<type>] . . printing function for objects of type <type>
**
** 'PrintExprFuncs' is the dispatching table that contains for every type of
** expressions a pointer to the printer for expressions of this type, i.e.,
** the function that should be called to print expressions of this type.
*/
static PrintExprFunc PrintExprFuncs[256];
/****************************************************************************
**
*F InstallPrintExprFunc(<pos>,<f>)
*/
void InstallPrintExprFunc(unsigned int pos, PrintExprFunc f)
{
GAP_ASSERT(pos < ARRAY_SIZE(PrintExprFuncs));
PrintExprFuncs[pos] = f;
}
/****************************************************************************
**
*F PrintExpr(<expr>) . . . . . . . . . . . . . . . . . . print an expression
**
** 'PrintExpr' prints the expression <expr>.
**
** 'PrintExpr' simply dispatches through the table 'PrintExprFuncs' to the
** appropriate printer.
*/
void PrintExpr(Expr expr)
{
(*PrintExprFuncs[TNUM_EXPR(expr)])(expr);
}
/****************************************************************************
**
*F PrintUnknownExpr(<expr>) . . . . . . . print expression of unknown type
**
** 'PrintUnknownExpr' is the printer that is called if an attempt is made to
** print an expression <expr> of an unknown type. It signals an error. If
** this is ever called, then GAP is in serious trouble, such as an
** overwritten type field of an expression.
*/
static void PrintUnknownExpr(Expr expr)
{
Pr("Panic: tried to print an expression of unknown type '%d'\n",
(Int)TNUM_EXPR(expr), 0);
}
struct ExprsState {
/****************************************************************************
**
*V PrintPrecedence . . . . . . . . . . . . . . . . current precedence level
**
** 'PrintPrecedence' contains the current precedence level, i.e., an integer
** indicating the binding power of the currently printed operator. If one of
** the operands is an operation that has lower binding power it is printed
** in parenthesis. If the right operand has the same binding power it is put
** in parenthesis, since all the operations are left associative.
** Precedence: 14: ^; 12: mod,/,*; 10: -,+; 8: in,=; 6: not; 4: and; 2: or.
** This sometimes puts in superfluous parenthesis: 2 * f( (3 + 4) ), since it
** doesn't know that a function call adds automatically parenthesis.
*/
UInt PrintPrecedence;
};
static ModuleStateOffset ExprsStateOffset = -1;
extern inline struct ExprsState * ExprsState(void)
{
return (struct ExprsState *)StateSlotsAtOffset(ExprsStateOffset);
}
#define PrintPrecedence ExprsState()->PrintPrecedence
/****************************************************************************
**
*F PrintNot(<expr>) . . . . . . . . . . . . . print a boolean not operator
**
** 'PrintNot' print a not operation in the following form: 'not <expr>'.
*/
static void PrintNot(Expr expr)
{
UInt oldPrec;
oldPrec = PrintPrecedence;
PrintPrecedence = 6;
// if necessary print the opening parenthesis
if ( oldPrec >= PrintPrecedence ) Pr("%>(%>", 0, 0);
else Pr("%2>", 0, 0);
Pr("not%> ", 0, 0);
PrintExpr(READ_EXPR(expr, 0));
Pr("%<", 0, 0);
// if necessary print the closing parenthesis
if ( oldPrec >= PrintPrecedence ) Pr("%2<)", 0, 0);
else Pr("%2<", 0, 0);
PrintPrecedence = oldPrec;
}
/****************************************************************************
**
*F PrintBinop(<expr>) . . . . . . . . . . . . . . prints a binary operator
**
** 'PrintBinop' prints the binary operator expression <expr>, using
** 'PrintPrecedence' for parenthesising.
*/
static void PrintAInv(Expr expr)
{
UInt oldPrec;
oldPrec = PrintPrecedence;
PrintPrecedence = 11;
// if necessary print the opening parenthesis
if ( oldPrec >= PrintPrecedence ) Pr("%>(%>", 0, 0);
else Pr("%2>", 0, 0);
Pr("-%> ", 0, 0);
PrintExpr(READ_EXPR(expr, 0));
Pr("%<", 0, 0);
// if necessary print the closing parenthesis
if ( oldPrec >= PrintPrecedence ) Pr("%2<)", 0, 0);
else Pr("%2<", 0, 0);
PrintPrecedence = oldPrec;
}
static void PrintBinop(Expr expr)
{
UInt oldPrec; // old precedence level
const Char * op; // operand
BOOL printEqPrec = FALSE; // Print() at equal precedence
// remember the current precedence level
oldPrec = PrintPrecedence;
// select the new precedence level
switch ( TNUM_EXPR(expr) ) {
case EXPR_OR: op = "or"; PrintPrecedence = 2; break;
case EXPR_AND: op = "and"; PrintPrecedence = 4; break;
case EXPR_EQ: op = "="; PrintPrecedence = 8; break;
case EXPR_LT: op = "<"; PrintPrecedence = 8; break;
case EXPR_GT: op = ">"; PrintPrecedence = 8; break;
case EXPR_NE: op = "<>"; PrintPrecedence = 8; break;
case EXPR_LE: op = "<="; PrintPrecedence = 8; break;
case EXPR_GE: op = ">="; PrintPrecedence = 8; break;
case EXPR_IN: op = "in"; PrintPrecedence = 8; break;
case EXPR_SUM: op = "+"; PrintPrecedence = 10; break;
case EXPR_DIFF: op = "-"; PrintPrecedence = 10; break;
case EXPR_PROD: op = "*"; PrintPrecedence = 12; break;
case EXPR_QUO: op = "/"; PrintPrecedence = 12; break;
case EXPR_MOD: op = "mod"; PrintPrecedence = 12; break;
case EXPR_POW: op = "^"; PrintPrecedence = 16; break;
default: op = "<bogus-operator>"; break;
}
// The logical operators (=|<>|<|>|<=|>=|in) need brackets at
// equal precedence level
if (PrintPrecedence == 8) {
printEqPrec = TRUE;
}
// if necessary print the opening parenthesis
if (oldPrec > PrintPrecedence ||
(oldPrec == PrintPrecedence && printEqPrec))
Pr("%>(%>", 0, 0);
else Pr("%2>", 0, 0);
// print the left operand
if ( TNUM_EXPR(expr) == EXPR_POW
&& (( (IS_INTEXPR(READ_EXPR(expr, 0))
&& INT_INTEXPR(READ_EXPR(expr, 0)) < 0)
|| TNUM_EXPR(READ_EXPR(expr, 0)) == T_INTNEG)
|| TNUM_EXPR(READ_EXPR(expr, 0)) == EXPR_POW) ) {
Pr( "(", 0, 0);
PrintExpr(READ_EXPR(expr, 0));
Pr(")", 0, 0);
}
else {
PrintExpr(READ_EXPR(expr, 0));
}
// print the operator
Pr("%2< %2>%s%> %<",(Int)op, 0);
// print the right operand
PrintPrecedence++;
PrintExpr(READ_EXPR(expr, 1));
PrintPrecedence--;
// if necessary print the closing parenthesis
if (oldPrec > PrintPrecedence ||
(oldPrec == PrintPrecedence && printEqPrec))
Pr("%2<)", 0, 0);
else Pr("%2<", 0, 0);
// restore the old precedence level
PrintPrecedence = oldPrec;
}
/****************************************************************************
**
*F PrintIntExpr(<expr>) . . . . . . . . . . . . print an integer expression
**
** 'PrintIntExpr' prints the literal integer expression <expr>.
*/
static void PrintIntExpr(Expr expr)
{
if ( IS_INTEXPR(expr) ) {
Pr("%d", INT_INTEXPR(expr), 0);
}
else {
PrintInt(EvalIntExpr(expr));
}
}
/****************************************************************************
**
*F PrintTildeExpr(<expr>) . . . . . . . . . . . print tilde expression
*/
static void PrintTildeExpr(Expr expr)
{
Pr("~", 0, 0);
}
/****************************************************************************
**
*F PrintTrueExpr(<expr>) . . . . . . . . . . . print literal true expression
*/
static void PrintTrueExpr(Expr expr)
{
Pr("true", 0, 0);
}
/****************************************************************************
**
*F PrintFalseExpr(<expr>) . . . . . . . . . print literal false expression
*/
static void PrintFalseExpr(Expr expr)
{
Pr("false", 0, 0);
}
/****************************************************************************
**
*F PrintCharExpr(<expr>) . . . . . . . . print literal character expression
*/
static void PrintCharExpr(Expr expr)
{
UChar chr;
chr = READ_EXPR(expr, 0);
if ( chr == '\n' ) Pr("'\\n'", 0, 0);
else if ( chr == '\t' ) Pr("'\\t'", 0, 0);
else if ( chr == '\r' ) Pr("'\\r'", 0, 0);
else if ( chr == '\b' ) Pr("'\\b'", 0, 0);
else if ( chr == '\03' ) Pr("'\\c'", 0, 0);
else if ( chr == '\'' ) Pr("'\\''", 0, 0);
else if ( chr == '\\' ) Pr("'\\\\'", 0, 0);
else Pr("'%c'",(Int)chr, 0);
}
/****************************************************************************
**
*F PrintPermExpr(<expr>) . . . . . . . . . . print a permutation expression
**
** 'PrintPermExpr' prints the permutation expression <expr>.
*/
static void PrintPermExpr(Expr expr)
{
Expr cycle; // one cycle of permutation expr.
UInt i, j; // loop variables
// if there are no cycles, print the identity permutation
if ( SIZE_EXPR(expr) == 0 ) {
Pr("()", 0, 0);
}
// print all cycles
for ( i = 1; i <= SIZE_EXPR(expr)/sizeof(Expr); i++ ) {
cycle = READ_EXPR(expr, i - 1);
Pr("%>(", 0, 0);
// print all entries of that cycle
for ( j = 1; j <= SIZE_EXPR(cycle)/sizeof(Expr); j++ ) {
Pr("%>", 0, 0);
PrintExpr(READ_EXPR(cycle, j - 1));
Pr("%<", 0, 0);
if ( j < SIZE_EXPR(cycle)/sizeof(Expr) ) Pr(",", 0, 0);
}
Pr("%<)", 0, 0);
}
}
/****************************************************************************
**
*F PrintListExpr(<expr>) . . . . . . . . . . . . . . print a list expression
**
** 'PrintListExpr' prints the list expression <expr>.
*/
static void PrintListExpr(Expr expr)
{
Int len; // logical length of <list>
Expr elm; // one element from <list>
Int i; // loop variable
// get the logical length of the list
len = SIZE_EXPR( expr ) / sizeof(Expr);
// loop over the entries
Pr("%2>[ %2>", 0, 0);
for ( i = 1; i <= len; i++ ) {
elm = READ_EXPR(expr, i - 1);
if ( elm != 0 ) {
if ( 1 < i ) Pr("%<,%< %2>", 0, 0);
PrintExpr( elm );
}
else {
if ( 1 < i ) Pr("%2<,%2>", 0, 0);
}
}
Pr(" %4<]", 0, 0);
}
/****************************************************************************
**
*F PrintRangeExpr(<expr>) . . . . . . . . . . . . . print range expression
**
** 'PrintRangeExpr' prints the record expression <expr>.
*/
static void PrintRangeExpr(Expr expr)
{
if ( SIZE_EXPR( expr ) == 2*sizeof(Expr) ) {
Pr("%2>[ %2>", 0, 0); PrintExpr( READ_EXPR(expr, 0) );
Pr("%2< .. %2>", 0, 0); PrintExpr( READ_EXPR(expr, 1) );
Pr(" %4<]", 0, 0);
}
else {
Pr("%2>[ %2>", 0, 0); PrintExpr( READ_EXPR(expr, 0) );
Pr("%<,%< %2>", 0, 0); PrintExpr( READ_EXPR(expr, 1) );
Pr("%2< .. %2>", 0, 0); PrintExpr( READ_EXPR(expr, 2) );
Pr(" %4<]", 0, 0);
}
}
/****************************************************************************
**
*F PrintStringExpr(<expr>) . . . . . . . . . . . . print a string expression
**
** 'PrintStringExpr' prints the string expression <expr>.
*/
static void PrintStringExpr(Expr expr)
{
UInt ix = READ_EXPR(expr, 0);
Obj string = GET_VALUE_FROM_CURRENT_BODY(ix);
PrintString(string);
}
/****************************************************************************
**
*F PrintFloatExpr(<expr>) . . . . . . . . . . . . print a float expression
**
** 'PrintFloatExpr' prints the float expression <expr>.
*/
static void PrintFloatExprLazy(Expr expr)
{
UInt ix = READ_EXPR(expr, 1);
Pr("%g", (Int)GET_VALUE_FROM_CURRENT_BODY(ix), 0);
}
/****************************************************************************
**
*F PrintFloatExprEager(<expr>) . . . . . . . . . . . . print a float expression
**
** 'PrintFloatExpr' prints the float expression <expr>.
*/
static void PrintFloatExprEager(Expr expr)
{
UInt ix = READ_EXPR(expr, 1);
Char mark = (Char)READ_EXPR(expr, 2);
Pr("%g_", (Int)GET_VALUE_FROM_CURRENT_BODY(ix), 0);
if (mark != '\0') {
Pr("%c", mark, 0);
}
}
/****************************************************************************
**
*F PrintRecExpr(<expr>) . . . . . . . . . . . . . print a record expression
**
** 'PrintRecExpr' the record expression <expr>.
*/
void PrintRecExpr1 (
Expr expr )
{
Expr tmp; // temporary variable
UInt i; // loop variable
for ( i = 1; i <= SIZE_EXPR(expr)/(2*sizeof(Expr)); i++ ) {
// print an ordinary record name
tmp = READ_EXPR(expr, 2 * i - 2);
if ( IS_INTEXPR(tmp) ) {
Pr("%I", (Int)NAME_RNAM(INT_INTEXPR(tmp)), 0);
}
// print an evaluating record name
else {
Pr(" (", 0, 0);
PrintExpr( tmp );
Pr(")", 0, 0);
}
// print the component
tmp = READ_EXPR(expr, 2 * i - 1);
Pr("%< := %>", 0, 0);
PrintExpr( tmp );
if ( i < SIZE_EXPR(expr)/(2*sizeof(Expr)) )
Pr("%2<,\n%2>", 0, 0);
}
}
static void PrintRecExpr(Expr expr)
{
Pr("%2>rec(\n%2>", 0, 0);
PrintRecExpr1(expr);
Pr(" %4<)", 0, 0);
}
static Obj FuncFLUSH_FLOAT_LITERAL_CACHE(Obj self)
{
#ifdef HPCGAP
FLOAT_LITERAL_CACHE = NewAtomicList(T_ALIST, 0);
#else
FLOAT_LITERAL_CACHE = NEW_PLIST(T_PLIST, 0);
#endif
return 0;
}
/****************************************************************************
**
*F * * * * * * * * * * * * * initialize module * * * * * * * * * * * * * * *
*/
/****************************************************************************
**
*V GVarFuncs . . . . . . . . . . . . . . . . . . list of functions to export
*/
static StructGVarFunc GVarFuncs [] = {
GVAR_FUNC_0ARGS(FLUSH_FLOAT_LITERAL_CACHE),
{ 0, 0, 0, 0, 0 }
};
/****************************************************************************
**
*F InitKernel( <module> ) . . . . . . . . initialise kernel data structures
*/
static Int InitKernel (
StructInitInfo * module )
{
UInt type; // loop variable
InitFopyGVar("CONVERT_FLOAT_LITERAL",&CONVERT_FLOAT_LITERAL);
InitCopyGVar("MAX_FLOAT_LITERAL_CACHE_SIZE",&MAX_FLOAT_LITERAL_CACHE_SIZE);
InitGlobalBag( &FLOAT_LITERAL_CACHE, "FLOAT_LITERAL_CACHE" );
InitHdlrFuncsFromTable( GVarFuncs );
// clear the evaluation dispatch table
for ( type = 0; type < 256; type++ ) {
InstallEvalExprFunc( type , EvalUnknownExpr);
InstallEvalBoolFunc( type , EvalUnknownBool);
}
// install the evaluators for logical operations
InstallEvalExprFunc( EXPR_OR , EvalOr);
InstallEvalExprFunc( EXPR_AND , EvalAnd);
InstallEvalExprFunc( EXPR_NOT , EvalNot);
// the logical operations are guaranteed to return booleans
InstallEvalBoolFunc( EXPR_OR , EvalOr);
InstallEvalBoolFunc( EXPR_AND , EvalAnd);
InstallEvalBoolFunc( EXPR_NOT , EvalNot);
// install the evaluators for comparison operations
InstallEvalExprFunc( EXPR_EQ , EvalEq);
InstallEvalExprFunc( EXPR_NE , EvalNe);
InstallEvalExprFunc( EXPR_LT , EvalLt);
InstallEvalExprFunc( EXPR_GE , EvalGe);
InstallEvalExprFunc( EXPR_GT , EvalGt);
InstallEvalExprFunc( EXPR_LE , EvalLe);
InstallEvalExprFunc( EXPR_IN , EvalIn);
// the comparison operations are guaranteed to return booleans
InstallEvalBoolFunc( EXPR_EQ , EvalEq);
InstallEvalBoolFunc( EXPR_NE , EvalNe);
InstallEvalBoolFunc( EXPR_LT , EvalLt);
InstallEvalBoolFunc( EXPR_GE , EvalGe);
InstallEvalBoolFunc( EXPR_GT , EvalGt);
InstallEvalBoolFunc( EXPR_LE , EvalLe);
InstallEvalBoolFunc( EXPR_IN , EvalIn);
// install the evaluators for binary operations
InstallEvalExprFunc( EXPR_SUM , EvalSum);
InstallEvalExprFunc( EXPR_AINV , EvalAInv);
InstallEvalExprFunc( EXPR_DIFF , EvalDiff);
InstallEvalExprFunc( EXPR_PROD , EvalProd);
InstallEvalExprFunc( EXPR_QUO , EvalQuo);
InstallEvalExprFunc( EXPR_MOD , EvalMod);
InstallEvalExprFunc( EXPR_POW , EvalPow);
// install the evaluators for literal expressions
InstallEvalExprFunc( EXPR_INTPOS , EvalIntExpr);
InstallEvalExprFunc( EXPR_TRUE , EvalTrueExpr);
InstallEvalExprFunc( EXPR_FALSE , EvalFalseExpr);
InstallEvalExprFunc( EXPR_TILDE , EvalTildeExpr);
InstallEvalExprFunc( EXPR_CHAR , EvalCharExpr);
InstallEvalExprFunc( EXPR_PERM , EvalPermExpr);
InstallEvalExprFunc( EXPR_FLOAT_LAZY , EvalFloatExprLazy);
InstallEvalExprFunc( EXPR_FLOAT_EAGER , EvalFloatExprEager);
// install the evaluators for list and record expressions
InstallEvalExprFunc( EXPR_LIST , EvalListExpr);
InstallEvalExprFunc( EXPR_LIST_TILDE, EvalListTildeExpr);
InstallEvalExprFunc( EXPR_RANGE , EvalRangeExpr);
InstallEvalExprFunc( EXPR_STRING , EvalStringExpr);
InstallEvalExprFunc( EXPR_REC , EvalRecExpr);
InstallEvalExprFunc( EXPR_REC_TILDE , EvalRecTildeExpr);
// clear the tables for the printing dispatching
for ( type = 0; type < 256; type++ ) {
InstallPrintExprFunc( type , PrintUnknownExpr);
}
// install the printers for logical operations
InstallPrintExprFunc( EXPR_OR , PrintBinop);
InstallPrintExprFunc( EXPR_AND , PrintBinop);
InstallPrintExprFunc( EXPR_NOT , PrintNot);
// install the printers for comparison operations
InstallPrintExprFunc( EXPR_EQ , PrintBinop);
InstallPrintExprFunc( EXPR_LT , PrintBinop);
InstallPrintExprFunc( EXPR_NE , PrintBinop);
InstallPrintExprFunc( EXPR_GE , PrintBinop);
InstallPrintExprFunc( EXPR_GT , PrintBinop);
InstallPrintExprFunc( EXPR_LE , PrintBinop);
InstallPrintExprFunc( EXPR_IN , PrintBinop);
// install the printers for binary operations
InstallPrintExprFunc( EXPR_SUM , PrintBinop);
InstallPrintExprFunc( EXPR_AINV , PrintAInv);
InstallPrintExprFunc( EXPR_DIFF , PrintBinop);
InstallPrintExprFunc( EXPR_PROD , PrintBinop);
InstallPrintExprFunc( EXPR_QUO , PrintBinop);
InstallPrintExprFunc( EXPR_MOD , PrintBinop);
InstallPrintExprFunc( EXPR_POW , PrintBinop);
// install the printers for literal expressions
InstallPrintExprFunc( EXPR_INT , PrintIntExpr);
InstallPrintExprFunc( EXPR_INTPOS , PrintIntExpr);
InstallPrintExprFunc( EXPR_TRUE , PrintTrueExpr);
InstallPrintExprFunc( EXPR_FALSE , PrintFalseExpr);
InstallPrintExprFunc( EXPR_TILDE , PrintTildeExpr);
InstallPrintExprFunc( EXPR_CHAR , PrintCharExpr);
InstallPrintExprFunc( EXPR_PERM , PrintPermExpr);
InstallPrintExprFunc( EXPR_FLOAT_LAZY , PrintFloatExprLazy);
InstallPrintExprFunc( EXPR_FLOAT_EAGER , PrintFloatExprEager);
// install the printers for list and record expressions
InstallPrintExprFunc( EXPR_LIST , PrintListExpr);
InstallPrintExprFunc( EXPR_LIST_TILDE, PrintListExpr);
InstallPrintExprFunc( EXPR_RANGE , PrintRangeExpr);
InstallPrintExprFunc( EXPR_STRING , PrintStringExpr);
InstallPrintExprFunc( EXPR_REC , PrintRecExpr);
InstallPrintExprFunc( EXPR_REC_TILDE , PrintRecExpr);
return 0;
}
static Int InitLibrary(StructInitInfo * module)
{
// init filters and functions
InitGVarFuncsFromTable( GVarFuncs );
FuncFLUSH_FLOAT_LITERAL_CACHE(0);
return 0;
}
/****************************************************************************
**
*F InitInfoExprs() . . . . . . . . . . . . . . . . . table of init functions
*/
static StructInitInfo module = {
// init struct using C99 designated initializers; for a full list of
// fields, please refer to the definition of StructInitInfo
.type = MODULE_BUILTIN,
.name = "exprs",
.initKernel = InitKernel,
.initLibrary = InitLibrary,
.moduleStateSize = sizeof(struct ExprsState),
.moduleStateOffsetPtr = &ExprsStateOffset,
};
StructInitInfo * InitInfoExprs ( void )
{
return &module;
}
|