File: exprs.c

package info (click to toggle)
gap 4.14.0-3
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 109,836 kB
  • sloc: ansic: 97,167; xml: 48,195; cpp: 13,955; sh: 4,438; perl: 1,652; javascript: 255; makefile: 252; ruby: 9
file content (1830 lines) | stat: -rw-r--r-- 59,154 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
/****************************************************************************
**
**  This file is part of GAP, a system for computational discrete algebra.
**
**  Copyright of GAP belongs to its developers, whose names are too numerous
**  to list here. Please refer to the COPYRIGHT file for details.
**
**  SPDX-License-Identifier: GPL-2.0-or-later
**
**  This file contains the functions of the expressions package.
**
**  The expressions  package is the  part  of the interpreter  that evaluates
**  expressions to their values and prints expressions.
*/

#include "exprs.h"

#include "ariths.h"
#include "bool.h"
#include "calls.h"
#include "code.h"
#include "error.h"
#include "gapstate.h"
#include "gvars.h"
#include "hookintrprtr.h"
#include "integer.h"
#include "io.h"
#include "lists.h"
#include "modules.h"
#include "opers.h"
#include "permutat.h"
#include "plist.h"
#include "precord.h"
#include "range.h"
#include "records.h"
#include "stringobj.h"
#include "vars.h"

#ifdef HPCGAP
#include "hpc/aobjects.h"
#endif

/****************************************************************************
**
*V  EvalExprFuncs[<type>]  . . . . . evaluator for expressions of type <type>
**
**  'EvalExprFuncs'  is the dispatch table   that contains for  every type of
**  expressions a pointer  to the  evaluator  for expressions of this   type,
**  i.e., the function that should be  called to evaluate expressions of this
**  type.
*/
EvalExprFunc EvalExprFuncs[256];


/****************************************************************************
**
*V  EvalBoolFuncs[<type>] . . boolean evaluator for expression of type <type>
**
**  'EvalBoolFuncs'  is  the dispatch table that  contains  for every type of
**  expression a pointer to a boolean evaluator for expressions of this type,
**  i.e., a pointer to  a function which  is  guaranteed to return a  boolean
**  value that should be called to evaluate expressions of this type.
*/
EvalBoolFunc EvalBoolFuncs[256];


/****************************************************************************
**
*F  EvalUnknownExpr(<expr>) . . . . . . . evaluate expression of unknown type
**
**  'EvalUnknownExpr' is the evaluator that  is called if  an attempt is made
**  to  evaluate an  expression  <expr> of  an  unknown type.   It signals an
**  error.  If this is ever called, then  GAP is in  serious trouble, such as
**  an overwritten type field of an expression.
*/
static Obj EvalUnknownExpr(Expr expr)
{
    Pr("Panic: tried to evaluate an expression of unknown type '%d'\n",
       (Int)TNUM_EXPR(expr), 0);
    return 0;
}


/****************************************************************************
**
*F  EvalUnknownBool(<expr>) . . . . boolean evaluator for general expressions
**
**  'EvalUnknownBool' evaluates   the expression <expr>  (using 'EVAL_EXPR'),
**  and checks that the value is either 'true' or 'false'.  If the expression
**  does not evaluate to 'true' or 'false', then an error is signalled.
**
**  This is the default function in 'EvalBoolFuncs' used for expressions that
**  are   not a priori    known  to evaluate  to a    boolean value  (such as
**  function calls).
*/
static Obj EvalUnknownBool(Expr expr)
{
    Obj                 val;            // value, result

    // evaluate the expression
    val = EVAL_EXPR( expr );

    // check that the value is either 'true' or 'false'
    if (val != True && val != False) {
        RequireArgumentEx(0, val, "<expr>", "must be 'true' or 'false'");
    }

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalOr(<expr>)  . . . . . . . . . . . . . evaluate a boolean or operation
**
**  'EvalOr' evaluates the or-expression <expr> and  returns its value, i.e.,
**  'true'  if  either of  the operands  is  'true',  and 'false'  otherwise.
**  'EvalOr'  is   called from  'EVAL_EXPR' to  evaluate  expressions of type
**  'EXPR_OR'.
**
**  If '<expr>.left'  is   already  'true' 'EvalOr'  returns  'true'  without
**  evaluating '<expr>.right'.  This allows constructs like
**
**      if (index > max) or (list[index] = 0)  then ... fi;
*/
static Obj EvalOr(Expr expr)
{
    Obj                 opL;            // evaluated left operand
    Expr                tmp;            // temporary expression

    // evaluate and test the left operand
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_BOOL_EXPR( tmp );
    if ( opL != False ) {
        return True;
    }

    // evaluate and test the right operand
    tmp = READ_EXPR(expr, 1);
    return EVAL_BOOL_EXPR( tmp );
}


/****************************************************************************
**
*F  EvalAnd(<expr>) . . . . . . . . . . . .  evaluate a boolean and operation
**
**  'EvalAnd'  evaluates  the and-expression <expr>   and  returns its value,
**  i.e.,   'true'  if both  operands  are   'true',  and  'false' otherwise.
**  'EvalAnd' is called from   'EVAL_EXPR' to  evaluate expressions  of  type
**  'EXPR_AND'.
**
**  If '<expr>.left' is  already  'false' 'EvalAnd' returns 'false'   without
**  evaluating '<expr>.right'.  This allows constructs like
**
**      if (index <= max) and (list[index] = 0)  then ... fi;
*/
static Obj EvalAnd(Expr expr)
{
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // if the left operand is 'false', this is the result
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    if      ( opL == False ) {
        return opL;
    }

    // if the left operand is 'true', the result is the right operand
    else if ( opL == True  ) {
        tmp = READ_EXPR(expr, 1);
        return EVAL_BOOL_EXPR( tmp );
    }

    // handle the 'and' of two filters
    else if (IS_FILTER(opL)) {
        tmp = READ_EXPR(expr, 1);
        opR = EVAL_EXPR( tmp );
        return NewAndFilter(opL, opR);
    }

    // signal an error
    else {
        RequireArgumentEx(0, opL, "<expr>",
                          "must be 'true' or 'false' or a filter");
    }

    // please 'lint'
    return 0;
}


/****************************************************************************
**
*F  EvalNot(<expr>) . . . . . . . . . . . . . . . . .  negate a boolean value
**
**  'EvalNot'  evaluates the  not-expression  <expr>  and returns its  value,
**  i.e., 'true' if the operand is 'false', and 'false' otherwise.  'EvalNot'
**  is called from 'EVAL_EXPR' to evaluate expressions of type 'EXPR_NOT'.
*/
static Obj EvalNot(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 op;             // evaluated operand
    Expr                tmp;            // temporary expression

    // evaluate the operand to a boolean
    tmp = READ_EXPR(expr, 0);
    op = EVAL_BOOL_EXPR( tmp );

    // compute the negation
    val = (op == False ? True : False);

    // return the negated value
    return val;
}


/****************************************************************************
**
*F  EvalEq(<expr>)  . . . . . . . . . . . . . . . . . . evaluate a comparison
**
**  'EvalEq' evaluates the  equality-expression <expr> and returns its value,
**  i.e.,  'true' if  the  operand '<expr>.left'   is equal  to  the  operand
**  '<expr>.right'   and   'false'  otherwise.   'EvalEq'  is   called   from
**  'EVAL_EXPR' to evaluate expressions of type 'EXPR_EQ'.
**
**  'EvalEq' evaluates the operands and then calls the 'EQ' macro.
*/
static Obj EvalEq(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // compare the operands
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = (EQ( opL, opR ) ? True : False);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalNe(<expr>)  . . . . . . . . . . . . . . . . . . evaluate a comparison
**
**  'EvalNe'   evaluates the  comparison-expression  <expr>  and  returns its
**  value, i.e.,  'true'  if the operand   '<expr>.left' is not equal  to the
**  operand  '<expr>.right' and  'false' otherwise.  'EvalNe'  is called from
**  'EVAL_EXPR' to evaluate expressions of type 'EXPR_LT'.
**
**  'EvalNe' is simply implemented as 'not <objL> = <objR>'.
*/
static Obj EvalNe(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // compare the operands
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = (EQ( opL, opR ) ? False : True);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalLt(<expr>)  . . . . . . . . . . . . . . . . . . evaluate a comparison
**
**  'EvalLt' evaluates  the  comparison-expression   <expr> and  returns  its
**  value, i.e., 'true' if the operand '<expr>.left' is less than the operand
**  '<expr>.right'  and  'false'   otherwise.    'EvalLt'  is   called   from
**  'EVAL_EXPR' to evaluate expressions of type 'EXPR_LT'.
**
**  'EvalLt' evaluates the operands and then calls the 'LT' macro.
*/
static Obj EvalLt(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // compare the operands
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = (LT( opL, opR ) ? True : False);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalGe(<expr>)  . . . . . . . . . . . . . . . . . . evaluate a comparison
**
**  'EvalGe'  evaluates  the comparison-expression   <expr>  and returns  its
**  value, i.e., 'true' if the operand '<expr>.left' is greater than or equal
**  to the operand '<expr>.right' and 'false'  otherwise.  'EvalGe' is called
**  from 'EVAL_EXPR' to evaluate expressions of type 'EXPR_GE'.
**
**  'EvalGe' is simply implemented as 'not <objL> < <objR>'.
*/
static Obj EvalGe(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // compare the operands
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = (LT( opL, opR ) ? False : True);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalGt(<expr>)  . . . . . . . . . . . . . . . . . . evaluate a comparison
**
**  'EvalGt'  evaluates  the  comparison-expression <expr>   and  returns its
**  value, i.e.,  'true' if the  operand  '<expr>.left' is  greater than  the
**  operand '<expr>.right' and 'false' otherwise.    'EvalGt' is called  from
**  'EVAL_EXPR' to evaluate expressions of type 'EXPR_GT'.
**
**  'EvalGt' is simply implemented as '<objR> < <objL>'.
*/
static Obj EvalGt(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // compare the operands
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = (LT( opR, opL ) ? True : False);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalLe(<expr>)  . . . . . . . . . . . . . . . . . . evaluate a comparison
**
**  'EvalLe' evaluates   the comparison-expression   <expr> and  returns  its
**  value, i.e., 'true' if the operand '<expr>.left' is  less or equal to the
**  operand '<expr>.right' and 'false'   otherwise.  'EvalLe' is  called from
**  'EVAL_EXPR' to evaluate expressions of type 'EXPR_LE'.
**
**  'EvalLe' is simply implemented as 'not <objR> < <objR>'.
*/
static Obj EvalLe(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // compare the operands
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = (LT( opR, opL ) ? False : True);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalIn(<in>)  . . . . . . . . . . . . . . . test for membership in a list
**
**  'EvalIn' evaluates the in-expression <expr>  and returns its value, i.e.,
**  'true' if  the  operand '<expr>.left'  is a  member of '<expr>.right' and
**  'false' otherwise.    'EvalIn' is  called  from  'EVAL_EXPR'  to evaluate
**  expressions of type 'EXPR_IN'.
*/
static Obj EvalIn(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // evaluate <opL>
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );

    // evaluate <opR>
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // perform the test
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = (IN( opL, opR ) ? True : False);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalSum(<expr>) . . . . . . . . . . . . . . . . . . . . .  evaluate a sum
**
**  'EvalSum'  evaluates the  sum-expression  <expr> and  returns its  value,
**  i.e., the sum of   the  two operands '<expr>.left'   and  '<expr>.right'.
**  'EvalSum'   is called from 'EVAL_EXPR'   to  evaluate expressions of type
**  'EXPR_SUM'.
**
**  'EvalSum' evaluates the operands and then calls the 'SUM' macro.
*/
static Obj EvalSum(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // first try to treat the operands as small integers with small result
    if ( ! ARE_INTOBJS( opL, opR ) || ! SUM_INTOBJS( val, opL, opR ) ) {

        // if that doesn't work, dispatch to the addition function
        SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
        val = SUM( opL, opR );

    }

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalAInv(<expr>)  . . . . . . . . . . . . .  evaluate an additive inverse
**
**  'EvalAInv' evaluates  the additive  inverse-expression  and  returns  its
**  value, i.e., the  additive inverse of  the operand.  'EvalAInv' is called
**  from 'EVAL_EXPR' to evaluate expressions of type 'EXPR_AINV'.
**
**  'EvalAInv' evaluates the operand and then calls the 'AINV_SAMEMUT' macro.
*/
static Obj EvalAInv(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );

    // compute the additive inverse
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = AINV_SAMEMUT(opL);

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalDiff(<expr>)  . . . . . . . . . . . . . . . . . evaluate a difference
**
**  'EvalDiff'  evaluates  the difference-expression <expr>   and returns its
**  value, i.e.,   the   difference of  the two  operands   '<expr>.left' and
**  '<expr>.right'.  'EvalDiff'    is  called from   'EVAL_EXPR'  to evaluate
**  expressions of type 'EXPR_DIFF'.
**
**  'EvalDiff' evaluates the operands and then calls the 'DIFF' macro.
*/
static Obj EvalDiff(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // first try to treat the operands as small integers with small result
    if ( ! ARE_INTOBJS( opL, opR ) || ! DIFF_INTOBJS( val, opL, opR ) ) {

        // if that doesn't work, dispatch to the subtraction function
        SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
        val = DIFF( opL, opR );

    }

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalProd(<expr>)  . . . . . . . . . . . . . . . . . .  evaluate a product
**
**  'EvalProd' evaluates the product-expression <expr>  and returns it value,
**  i.e., the product of  the two operands '<expr>.left'  and '<expr>.right'.
**  'EvalProd'  is called from   'EVAL_EXPR' to evaluate  expressions of type
**  'EXPR_PROD'.
**
**  'EvalProd' evaluates the operands and then calls the 'PROD' macro.
*/
static Obj EvalProd(Expr expr)
{
    Obj                 val;            // result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // first try to treat the operands as small integers with small result
    if ( ! ARE_INTOBJS( opL, opR ) || ! PROD_INTOBJS( val, opL, opR ) ) {

        // if that doesn't work, dispatch to the multiplication function
        SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
        val = PROD( opL, opR );

    }

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalQuo(<expr>) . . . . . . . . . . . . . . . . . . . evaluate a quotient
**
**  'EvalQuo' evaluates the quotient-expression <expr> and returns its value,
**  i.e., the quotient of the  two operands '<expr>.left' and '<expr>.right'.
**  'EvalQuo' is  called  from 'EVAL_EXPR' to   evaluate expressions  of type
**  'EXPR_QUO'.
**
**  'EvalQuo' evaluates the operands and then calls the 'QUO' macro.
*/
static Obj EvalQuo(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // dispatch to the division function
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = QUO( opL, opR );

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalMod(<expr>) . . . . . . . . . . . . . . . . . .  evaluate a remainder
**
**  'EvalMod' evaluates the  remainder-expression   <expr> and returns    its
**  value, i.e.,  the  remainder  of   the two  operands   '<expr>.left'  and
**  '<expr>.right'.  'EvalMod'  is   called   from  'EVAL_EXPR'  to  evaluate
**  expressions of type 'EXPR_MOD'.
**
**  'EvalMod' evaluates the operands and then calls the 'MOD' macro.
*/
static Obj EvalMod(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // dispatch to the remainder function
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = MOD( opL, opR );

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalPow(<expr>) . . . . . . . . . . . . . . . . . . . .  evaluate a power
**
**  'EvalPow'  evaluates the power-expression  <expr>  and returns its value,
**  i.e.,   the power of the  two  operands '<expr>.left' and '<expr>.right'.
**  'EvalPow' is called  from  'EVAL_EXPR'  to evaluate expressions  of  type
**  'EXPR_POW'.
**
**  'EvalPow' evaluates the operands and then calls the 'POW' macro.
*/
static Obj EvalPow(Expr expr)
{
    Obj                 val;            // value, result
    Obj                 opL;            // evaluated left  operand
    Obj                 opR;            // evaluated right operand
    Expr                tmp;            // temporary expression

    // get the operands
    tmp = READ_EXPR(expr, 0);
    opL = EVAL_EXPR( tmp );
    tmp = READ_EXPR(expr, 1);
    opR = EVAL_EXPR( tmp );

    // dispatch to the powering function
    SET_BRK_CALL_TO(expr);     // Note possible call for FuncWhere
    val = POW( opL, opR );

    // return the value
    return val;
}


/****************************************************************************
**
*F  EvalIntExpr(<expr>) . . . . . . . . . evaluate literal integer expression
**
**  'EvalIntExpr' evaluates the literal integer expression <expr> and returns
**  its value.
*/
static Obj EvalIntExpr(Expr expr)
{
    UInt ix = READ_EXPR(expr, 0);
    return  GET_VALUE_FROM_CURRENT_BODY(ix);
}

/****************************************************************************
**
*F  EvalTildeExpr(<expr>)  . . . . . . . . .  evaluate tilde expression
**
**  'EvalTildeExpr' evaluates the tilde expression and returns its value.
*/
static Obj EvalTildeExpr(Expr expr)
{
    if( ! (STATE(Tilde)) ) {
        ErrorQuit("'~' does not have a value here", 0, 0);
    }
    return STATE(Tilde);
}

/****************************************************************************
**
*F  EvalTrueExpr(<expr>)  . . . . . . . . .  evaluate literal true expression
**
**  'EvalTrueExpr' evaluates the  literal true expression <expr> and  returns
**  its value (True).
*/
static Obj EvalTrueExpr(Expr expr)
{
    return True;
}


/****************************************************************************
**
*F  EvalFalseExpr(<expr>) . . . . . . . . . evaluate literal false expression
**
**  'EvalFalseExpr' evaluates the literal false expression <expr> and returns
**  its value (False).
*/
static Obj EvalFalseExpr(Expr expr)
{
    return False;
}


/****************************************************************************
**
*F  EvalCharExpr(<expr>)  . . . . . . evaluate a literal character expression
**
**  'EvalCharExpr' evaluates  the   literal character expression <expr>   and
**  returns its value.
*/
static Obj EvalCharExpr(Expr expr)
{
    return ObjsChar[ READ_EXPR(expr, 0) ];
}


/****************************************************************************
**
*F  EvalPermExpr(<expr>)  . . . . . . . . . evaluate a permutation expression
**
**  'EvalPermExpr' evaluates the permutation expression <expr>.
*/
static Obj GetFromExpr(Obj cycle, Int j)
{
    return EVAL_EXPR(READ_EXPR((Expr)cycle, j - 1));
}

static Obj EvalPermExpr(Expr expr)
{
    Obj                 perm;           // permutation, result
    UInt                m;              // maximal entry in permutation
    Expr                cycle;          // one cycle of permutation
    UInt                i;              // loop variable

    // special case for identity permutation
    if ( SIZE_EXPR(expr) == 0 ) {
        return IdentityPerm;
    }

    // allocate the new permutation
    m = 0;
    perm = NEW_PERM4( 0 );

    // loop over the cycles
    for ( i = 1; i <= SIZE_EXPR(expr)/sizeof(Expr); i++ ) {
        cycle = READ_EXPR(expr, i - 1);

        // Need to inform profiling this cycle expression is executed, as
        // we never call EVAL_EXPR on it.
        VisitStatIfHooked(cycle);

        m = ScanPermCycle(perm, m, (Obj)cycle,
                          SIZE_EXPR(cycle) / sizeof(Expr), GetFromExpr);
    }

    // if possible represent the permutation with short entries
    TrimPerm(perm, m);

    // return the permutation
    return perm;
}


/****************************************************************************
**
*F  EvalListExpr(<expr>)  . . . . .  evaluate list expression to a list value
**
**  'EvalListExpr'  evaluates the list   expression, i.e., not  yet evaluated
**  list, <expr> to a list value.
*/
static Obj EvalListExpr(Expr expr)
{
    Obj                 list;           // list value, result
    Obj                 sub;            // value of a subexpression
    Int                 len;            // logical length of the list
    Int                 i;              // loop variable
    Int                 dense;          // track whether list is dense

    // get the length of the list
    len = SIZE_EXPR(expr) / sizeof(Expr);

    // handle empty list
    if (len == 0) {
        return NewEmptyPlist();
    }

    // allocate the list value
    list = NEW_PLIST(T_PLIST, len);

    // set the final list length
    SET_LEN_PLIST(list, len);

    // initially assume list is dense
    dense = 1;

    // handle the subexpressions
    for (i = 1; i <= len; i++) {
        Expr subExpr = READ_EXPR(expr, i - 1);

        // skip holes
        if (subExpr == 0) {
            // there is a hole, hence the list is not dense (note that list
            // expressions never contain holes at the end, so we do not have
            // to check if any bound entries follow)
            dense = 0;
            continue;
        }

        sub = EVAL_EXPR(subExpr);
        SET_ELM_PLIST(list, i, sub);
        CHANGED_BAG(list);
    }

    SET_FILT_LIST(list, dense ? FN_IS_DENSE : FN_IS_NDENSE);

    return list;
}


/****************************************************************************
**
*F  EvalListTildeExpr(<expr>) . . . . evaluate a list expression with a tilde
**
**  'EvalListTildeExpr' evaluates the     list  expression, i.e., not     yet
**  evaluated list, <expr> to a list value.  The difference to 'EvalListExpr'
**  is that  in <expr> there are  occurrences of '~'  referring to  this list
**  value.
**
**  Note that we do not track here whether the list is dense, as this can be
**  changed by code involving a tilde expression, as in this example:
**      x := [1,,3,function(x) x[2]:=2; return 4; end(~)];
**
**  For similar reasons, we must deal with the possibility that the list we
**  are creating changes its representation, and thus must use ASS_LIST
**  instead of SET_ELM_PLIST.
*/
static Obj EvalListTildeExpr(Expr expr)
{
    Obj                 list;           // list value, result
    Obj                 tilde;          // old value of tilde
    Obj                 sub;            // value of a subexpression
    Int                 len;            // logical length of the list
    Int                 i;              // loop variable

    // get the length of the list
    len = SIZE_EXPR(expr) / sizeof(Expr);

    // list expressions with tilde cannot be empty
    GAP_ASSERT(len > 0);

    // allocate the list value
    list = NEW_PLIST(T_PLIST, len);

    // remember the old value of '~'
    tilde = STATE(Tilde);

    // assign the list to '~'
    STATE(Tilde) = list;

    // handle the subexpressions
    for (i = 1; i <= len; i++) {
        Expr subExpr = READ_EXPR(expr, i - 1);

        // skip holes
        if (subExpr == 0)
            continue;

        sub = EVAL_EXPR(subExpr);
        ASS_LIST(list, i, sub);
    }

    // restore old value of '~'
    STATE(Tilde) = tilde;

    return list;
}


/****************************************************************************
**
*F  EvalRangeExpr(<expr>) . . . . .  eval a range expression to a range value
**
**  'EvalRangeExpr' evaluates the range expression <expr> to a range value.
*/
static Obj EvalRangeExpr(Expr expr)
{
    Obj                 range;          // range, result
    Obj                 val;            // subvalue of range
    Int                 low;            // low (as C integer)
    Int                 inc;            // increment (as C integer)
    Int                 high;           // high (as C integer)

    // evaluate the low value
    val = EVAL_EXPR(READ_EXPR(expr, 0));
    low = GetSmallIntEx("Range", val, "<first>");

    // evaluate the second value (if present)
    if ( SIZE_EXPR(expr) == 3*sizeof(Expr) ) {
        val = EVAL_EXPR(READ_EXPR(expr, 1));
        Int ival = GetSmallIntEx("Range", val, "<second>");
        if (ival == low) {
            ErrorMayQuit("Range: <second> must not be equal to <first> (%d)",
                         (Int)low, 0);
        }
        inc = ival - low;
    }
    else {
        inc = 1;
    }

    // evaluate and check the high value
    val = EVAL_EXPR(READ_EXPR(expr, SIZE_EXPR(expr) / sizeof(Expr) - 1));
    high = GetSmallIntEx("Range", val, "<last>");
    if ((high - low) % inc != 0) {
        ErrorMayQuit(
            "Range: <last>-<first> (%d) must be divisible by <inc> (%d)",
            (Int)(high - low), (Int)inc);
    }

    // if <low> is larger than <high> the range is empty
    if ( (0 < inc && high < low) || (inc < 0 && low < high) ) {
        range = NewEmptyPlist();
    }

    // if <low> is equal to <high> the range is a singleton list
    else if ( low == high ) {
        range = NEW_PLIST( T_PLIST_CYC_SSORT, 1 );
        SET_LEN_PLIST( range, 1 );
        SET_ELM_PLIST( range, 1, INTOBJ_INT(low) );
    }

    // else make the range
    else {
        // the length must be a small integer as well
        if ((high-low) / inc + 1 > INT_INTOBJ_MAX) {
             ErrorQuit("Range: the length of a range must be a small integer",
                        0, 0);
        }
        range = NEW_RANGE((high - low) / inc + 1, low, inc);
    }

    // return the range
    return range;
}


/****************************************************************************
**
*F  EvalStringExpr(<expr>)  . . . . eval string expressions to a string value
**
**  'EvalStringExpr'   evaluates the  string  expression  <expr>  to a string
**  value.
*/
static Obj EvalStringExpr(Expr expr)
{
    UInt ix = READ_EXPR(expr, 0);
    Obj string = GET_VALUE_FROM_CURRENT_BODY(ix);
    return SHALLOW_COPY_OBJ(string);
}

/****************************************************************************
**
*F  EvalFloatExprLazy(<expr>)  . . . . eval float expressions to a float value
**
**  'EvalFloatExpr'   evaluates the  float  expression  <expr>  to a float
**  value.
*/
static Obj CONVERT_FLOAT_LITERAL;
static Obj FLOAT_LITERAL_CACHE;
static Obj MAX_FLOAT_LITERAL_CACHE_SIZE;

static Obj EvalFloatExprLazy(Expr expr)
{
    Obj                 string;         // string value
    UInt                 ix;
    Obj cache= 0;
    Obj fl;

    /* This code is safe for threads trying to create or update the
     * cache concurrently in that it won't crash, but may occasionally
     * result in evaluating a floating point literal twice.
     */
    ix = READ_EXPR(expr, 0);
    if (ix && (!MAX_FLOAT_LITERAL_CACHE_SIZE ||
               MAX_FLOAT_LITERAL_CACHE_SIZE == INTOBJ_INT(0) ||
               ix <= INT_INTOBJ(MAX_FLOAT_LITERAL_CACHE_SIZE))) {
      cache = FLOAT_LITERAL_CACHE;
      assert(cache);
      fl = ELM0_LIST(cache, ix);
      if (fl)
        return fl;
    }
    string = GET_VALUE_FROM_CURRENT_BODY(READ_EXPR(expr, 1));
    fl = CALL_1ARGS(CONVERT_FLOAT_LITERAL, string);
    if (cache) {
      ASS_LIST(cache, ix, fl);
    }

    return fl;
}

/****************************************************************************
**
*F  EvalFloatExprEager(<expr>)  . . . . eval float expressions to a float value
**
**  'EvalFloatExpr'   evaluates the  float  expression  <expr>  to a float
**  value.
*/
static Obj EvalFloatExprEager(Expr expr)
{
    UInt ix = READ_EXPR(expr, 0);
    return GET_VALUE_FROM_CURRENT_BODY(ix);
}


/****************************************************************************
**
*F  EvalRecExpr(<expr>) . . . . . .  eval record expression to a record value
**
**  'EvalRecExpr' evaluates the record expression,   i.e., not yet  evaluated
**  record, <expr> to a record value.
**
**  'EvalRecExpr' just calls 'RecExpr1' and 'RecExpr2' to evaluate the record
**  expression.
*/
static Obj  RecExpr1(Expr expr);
static void RecExpr2(Obj rec, Expr expr);

static Obj EvalRecExpr(Expr expr)
{
    Obj                 rec;            // record value, result

    // evaluate the record expression
    rec = RecExpr1( expr );
    RecExpr2( rec, expr );

    return rec;
}


/****************************************************************************
**
*F  EvalRecTildeExpr(<expr>)  . . . evaluate a record expression with a tilde
**
**  'EvalRecTildeExpr'  evaluates  the    record expression,  i.e.,   not yet
**  evaluated   record, <expr>  to  a   record   value.  The   difference  to
**  'EvalRecExpr' is that in <expr> there are  occurrences of '~' referring to
**  this record value.
**
**  'EvalRecTildeExpr' just  calls 'RecExpr1'  to create the  record, assigns
**  the record to the variable '~',  and finally calls 'RecExpr2' to evaluate
**  the subexpressions  into the record.  Thus  subexpressions  in the record
**  expression    can refer to this variable    and its  subobjects to create
**  objects that are not trees.
*/
static Obj EvalRecTildeExpr(Expr expr)
{
    Obj                 rec;            // record value, result
    Obj                 tilde;          // old value of tilde

    // remember the old value of '~'
    tilde = STATE(Tilde);

    // create the record value
    rec = RecExpr1( expr );

    // assign the record value to the variable '~'
    STATE(Tilde) = rec;

    // evaluate the subexpressions into the record value
    RecExpr2( rec, expr );

    // restore the old value of '~'
    STATE(Tilde) = tilde;

    // return the record value
    return rec;
}


/****************************************************************************
**
*F  RecExpr1(<expr>)  . . . . . . . . . make a record for a record expression
*F  RecExpr2(<rec>,<expr>)  . .  enter the subobjects for a record expression
**
**  'RecExpr1' and 'RecExpr2' together  evaluate the record expression <expr>
**  into the record <rec>.
**
**  'RecExpr1' allocates   a new record  of the    same size as   the  record
**  expression <expr> and returns this record.
**
**  'RecExpr2' evaluates the subexpressions   of <expr> and puts the   values
**  into the record <rec>  (which should be a record  of the same size as the
**  record expression <expr>, e.g., the one allocated by 'RecExpr1').
**
**  This two step allocation is necessary, because record expressions such as
**  'rec(  a := 1,  ~.a  )' requires that the   value of one subexpression is
**  entered into the record value before the next subexpression is evaluated.
*/
static Obj RecExpr1(Expr expr)
{
    Obj                 rec;            // record value, result
    Int                 len;            // number of components

    // get the number of components
    len = SIZE_EXPR( expr ) / (2*sizeof(Expr));

    // allocate the record value
    rec = NEW_PREC( len );

    // return the record
    return rec;
}

static void RecExpr2(Obj rec, Expr expr)
{
    UInt                rnam;           // name of component
    Obj                 sub;            // value of subexpression
    Int                 len;            // number of components
    Expr                tmp;            // temporary variable
    Int                 i;              // loop variable

    // get the number of components
    len = SIZE_EXPR( expr ) / (2*sizeof(Expr));

    // handle the subexpressions
    for ( i = 1; i <= len; i++ ) {

        // handle the name
        tmp = READ_EXPR(expr, 2 * i - 2);
        if ( IS_INTEXPR(tmp) ) {
            rnam = (UInt)INT_INTEXPR(tmp);
        }
        else {
            rnam = RNamObj( EVAL_EXPR(tmp) );
        }

        // if the subexpression is empty (cannot happen for records)
        tmp = READ_EXPR(expr, 2 * i - 1);
        if ( tmp == 0 ) {
            continue;
        }
        sub = EVAL_EXPR( tmp );
        AssPRec(rec,rnam,sub);
    }
    SortPRecRNam(rec,0);

}


/****************************************************************************
**
*V  PrintExprFuncs[<type>]  . .  printing function for objects of type <type>
**
**  'PrintExprFuncs' is the dispatching table that contains for every type of
**  expressions a pointer to the printer for expressions  of this type, i.e.,
**  the function that should be called to print expressions of this type.
*/
static PrintExprFunc PrintExprFuncs[256];


/****************************************************************************
**
*F  InstallPrintExprFunc(<pos>,<f>)
*/
void InstallPrintExprFunc(unsigned int pos, PrintExprFunc f)
{
    GAP_ASSERT(pos < ARRAY_SIZE(PrintExprFuncs));
    PrintExprFuncs[pos] = f;
}


/****************************************************************************
**
*F  PrintExpr(<expr>) . . . . . . . . . . . . . . . . . . print an expression
**
**  'PrintExpr' prints the expression <expr>.
**
**  'PrintExpr' simply dispatches  through  the table 'PrintExprFuncs' to the
**  appropriate printer.
*/
void PrintExpr(Expr expr)
{
    (*PrintExprFuncs[TNUM_EXPR(expr)])(expr);
}


/****************************************************************************
**
*F  PrintUnknownExpr(<expr>)  . . . . . . .  print expression of unknown type
**
**  'PrintUnknownExpr' is the printer that is called if an attempt is made to
**  print an expression <expr> of an unknown type.  It signals  an error.  If
**  this  is ever called,   then  GAP is  in  serious   trouble, such as   an
**  overwritten type field of an expression.
*/
static void PrintUnknownExpr(Expr expr)
{
    Pr("Panic: tried to print an expression of unknown type '%d'\n",
       (Int)TNUM_EXPR(expr), 0);
}


struct ExprsState {

/****************************************************************************
**
*V  PrintPrecedence  . . . . . . . . . . . . . . . . current precedence level
**
**  'PrintPrecedence' contains the current precedence level, i.e., an integer
**  indicating the binding power of the currently printed operator. If one of
**  the operands is an operation that has lower binding power it is printed
**  in parenthesis. If the right operand has the same binding power it is put
**  in parenthesis, since all the operations are left associative.
**  Precedence: 14: ^; 12: mod,/,*; 10: -,+; 8: in,=; 6: not; 4: and; 2: or.
**  This sometimes puts in superfluous parenthesis: 2 * f( (3 + 4) ), since it
**  doesn't know that a function call adds automatically parenthesis.
*/
UInt PrintPrecedence;

};

static ModuleStateOffset ExprsStateOffset = -1;

extern inline struct ExprsState * ExprsState(void)
{
    return (struct ExprsState *)StateSlotsAtOffset(ExprsStateOffset);
}

#define PrintPrecedence ExprsState()->PrintPrecedence

/****************************************************************************
**
*F  PrintNot(<expr>)  . . . . . . . . . . . . .  print a boolean not operator
**
**  'PrintNot' print a not operation in the following form: 'not <expr>'.
*/
static void PrintNot(Expr expr)
{
    UInt                oldPrec;

    oldPrec = PrintPrecedence;
    PrintPrecedence = 6;

    // if necessary print the opening parenthesis
    if ( oldPrec >= PrintPrecedence ) Pr("%>(%>", 0, 0);
    else Pr("%2>", 0, 0);

    Pr("not%> ", 0, 0);
    PrintExpr(READ_EXPR(expr, 0));
    Pr("%<", 0, 0);

    // if necessary print the closing parenthesis
    if ( oldPrec >= PrintPrecedence ) Pr("%2<)", 0, 0);
    else Pr("%2<", 0, 0);

    PrintPrecedence = oldPrec;
}


/****************************************************************************
**
*F  PrintBinop(<expr>)  . . . . . . . . . . . . . .  prints a binary operator
**
**  'PrintBinop'  prints  the   binary operator    expression <expr>,   using
**  'PrintPrecedence' for parenthesising.
*/
static void PrintAInv(Expr expr)
{
    UInt                oldPrec;

    oldPrec = PrintPrecedence;
    PrintPrecedence = 11;

    // if necessary print the opening parenthesis
    if ( oldPrec >= PrintPrecedence ) Pr("%>(%>", 0, 0);
    else Pr("%2>", 0, 0);

    Pr("-%> ", 0, 0);
    PrintExpr(READ_EXPR(expr, 0));
    Pr("%<", 0, 0);

    // if necessary print the closing parenthesis
    if ( oldPrec >= PrintPrecedence ) Pr("%2<)", 0, 0);
    else Pr("%2<", 0, 0);

    PrintPrecedence = oldPrec;
}

static void PrintBinop(Expr expr)
{
    UInt                oldPrec;        // old precedence level
    const Char *        op;             // operand
    BOOL                printEqPrec = FALSE; // Print() at equal precedence
    // remember the current precedence level
    oldPrec = PrintPrecedence;

    // select the new precedence level
    switch ( TNUM_EXPR(expr) ) {
    case EXPR_OR:     op = "or";   PrintPrecedence =  2;  break;
    case EXPR_AND:    op = "and";  PrintPrecedence =  4;  break;
    case EXPR_EQ:     op = "=";    PrintPrecedence =  8;  break;
    case EXPR_LT:     op = "<";    PrintPrecedence =  8;  break;
    case EXPR_GT:     op = ">";    PrintPrecedence =  8;  break;
    case EXPR_NE:     op = "<>";   PrintPrecedence =  8;  break;
    case EXPR_LE:     op = "<=";   PrintPrecedence =  8;  break;
    case EXPR_GE:     op = ">=";   PrintPrecedence =  8;  break;
    case EXPR_IN:     op = "in";   PrintPrecedence =  8;  break;
    case EXPR_SUM:    op = "+";    PrintPrecedence = 10;  break;
    case EXPR_DIFF:   op = "-";    PrintPrecedence = 10;  break;
    case EXPR_PROD:   op = "*";    PrintPrecedence = 12;  break;
    case EXPR_QUO:    op = "/";    PrintPrecedence = 12;  break;
    case EXPR_MOD:    op = "mod";  PrintPrecedence = 12;  break;
    case EXPR_POW:    op = "^";    PrintPrecedence = 16;  break;
    default:       op = "<bogus-operator>";   break;
    }
    // The logical operators (=|<>|<|>|<=|>=|in) need brackets at
    // equal precedence level
    if (PrintPrecedence == 8) {
        printEqPrec = TRUE;
    }

    // if necessary print the opening parenthesis
    if (oldPrec > PrintPrecedence ||
        (oldPrec == PrintPrecedence && printEqPrec))
        Pr("%>(%>", 0, 0);
    else Pr("%2>", 0, 0);

    // print the left operand
    if ( TNUM_EXPR(expr) == EXPR_POW
         && ((  (IS_INTEXPR(READ_EXPR(expr, 0))
                 && INT_INTEXPR(READ_EXPR(expr, 0)) < 0)
                || TNUM_EXPR(READ_EXPR(expr, 0)) == T_INTNEG)
             || TNUM_EXPR(READ_EXPR(expr, 0)) == EXPR_POW) ) {
        Pr( "(", 0, 0);
        PrintExpr(READ_EXPR(expr, 0));
        Pr(")", 0, 0);
    }
    else {
        PrintExpr(READ_EXPR(expr, 0));
    }

    // print the operator
    Pr("%2< %2>%s%> %<",(Int)op, 0);

    // print the right operand
    PrintPrecedence++;
    PrintExpr(READ_EXPR(expr, 1));
    PrintPrecedence--;

    // if necessary print the closing parenthesis
    if (oldPrec > PrintPrecedence ||
        (oldPrec == PrintPrecedence && printEqPrec))
        Pr("%2<)", 0, 0);
    else Pr("%2<", 0, 0);

    // restore the old precedence level
    PrintPrecedence = oldPrec;
}


/****************************************************************************
**
*F  PrintIntExpr(<expr>)  . . . . . . . . . . . . print an integer expression
**
**  'PrintIntExpr' prints the literal integer expression <expr>.
*/
static void PrintIntExpr(Expr expr)
{
    if ( IS_INTEXPR(expr) ) {
        Pr("%d", INT_INTEXPR(expr), 0);
    }
    else {
        PrintInt(EvalIntExpr(expr));
    }
}


/****************************************************************************
**
*F  PrintTildeExpr(<expr>) . . . . . . . . . . . print tilde expression
*/
static void PrintTildeExpr(Expr expr)
{
    Pr("~", 0, 0);
}

/****************************************************************************
**
*F  PrintTrueExpr(<expr>) . . . . . . . . . . . print literal true expression
*/
static void PrintTrueExpr(Expr expr)
{
    Pr("true", 0, 0);
}


/****************************************************************************
**
*F  PrintFalseExpr(<expr>)  . . . . . . . . .  print literal false expression
*/
static void PrintFalseExpr(Expr expr)
{
    Pr("false", 0, 0);
}


/****************************************************************************
**
*F  PrintCharExpr(<expr>) . . . . . . . .  print literal character expression
*/
static void PrintCharExpr(Expr expr)
{
    UChar               chr;

    chr = READ_EXPR(expr, 0);
    if      ( chr == '\n'  )  Pr("'\\n'", 0, 0);
    else if ( chr == '\t'  )  Pr("'\\t'", 0, 0);
    else if ( chr == '\r'  )  Pr("'\\r'", 0, 0);
    else if ( chr == '\b'  )  Pr("'\\b'", 0, 0);
    else if ( chr == '\03' )  Pr("'\\c'", 0, 0);
    else if ( chr == '\''  )  Pr("'\\''", 0, 0);
    else if ( chr == '\\'  )  Pr("'\\\\'", 0, 0);
    else                      Pr("'%c'",(Int)chr, 0);
}


/****************************************************************************
**
*F  PrintPermExpr(<expr>) . . . . . . . . . .  print a permutation expression
**
**  'PrintPermExpr' prints the permutation expression <expr>.
*/
static void PrintPermExpr(Expr expr)
{
    Expr                cycle;          // one cycle of permutation expr.
    UInt                i, j;           // loop variables

    // if there are no cycles, print the identity permutation
    if ( SIZE_EXPR(expr) == 0 ) {
        Pr("()", 0, 0);
    }

    // print all cycles
    for ( i = 1; i <= SIZE_EXPR(expr)/sizeof(Expr); i++ ) {
        cycle = READ_EXPR(expr, i - 1);
        Pr("%>(", 0, 0);

        // print all entries of that cycle
        for ( j = 1; j <= SIZE_EXPR(cycle)/sizeof(Expr); j++ ) {
            Pr("%>", 0, 0);
            PrintExpr(READ_EXPR(cycle, j - 1));
            Pr("%<", 0, 0);
            if ( j < SIZE_EXPR(cycle)/sizeof(Expr) )  Pr(",", 0, 0);
        }

        Pr("%<)", 0, 0);
    }
}


/****************************************************************************
**
*F  PrintListExpr(<expr>) . . . . . . . . . . . . . . print a list expression
**
**  'PrintListExpr' prints the list expression <expr>.
*/
static void PrintListExpr(Expr expr)
{
    Int                 len;            // logical length of <list>
    Expr                elm;            // one element from <list>
    Int                 i;              // loop variable

    // get the logical length of the list
    len = SIZE_EXPR( expr ) / sizeof(Expr);

    // loop over the entries
    Pr("%2>[ %2>", 0, 0);
    for ( i = 1;  i <= len;  i++ ) {
        elm = READ_EXPR(expr, i - 1);
        if ( elm != 0 ) {
            if ( 1 < i )  Pr("%<,%< %2>", 0, 0);
            PrintExpr( elm );
        }
        else {
            if ( 1 < i )  Pr("%2<,%2>", 0, 0);
        }
    }
    Pr(" %4<]", 0, 0);
}


/****************************************************************************
**
*F  PrintRangeExpr(<expr>)  . . . . . . . . . . . . .  print range expression
**
**  'PrintRangeExpr' prints the record expression <expr>.
*/
static void PrintRangeExpr(Expr expr)
{
    if ( SIZE_EXPR( expr ) == 2*sizeof(Expr) ) {
        Pr("%2>[ %2>", 0, 0);    PrintExpr( READ_EXPR(expr, 0) );
        Pr("%2< .. %2>", 0, 0);  PrintExpr( READ_EXPR(expr, 1) );
        Pr(" %4<]", 0, 0);
    }
    else {
        Pr("%2>[ %2>", 0, 0);    PrintExpr( READ_EXPR(expr, 0) );
        Pr("%<,%< %2>", 0, 0);   PrintExpr( READ_EXPR(expr, 1) );
        Pr("%2< .. %2>", 0, 0);  PrintExpr( READ_EXPR(expr, 2) );
        Pr(" %4<]", 0, 0);
    }
}


/****************************************************************************
**
*F  PrintStringExpr(<expr>) . . . . . . . . . . . . print a string expression
**
**  'PrintStringExpr' prints the string expression <expr>.
*/
static void PrintStringExpr(Expr expr)
{
    UInt ix = READ_EXPR(expr, 0);
    Obj string =  GET_VALUE_FROM_CURRENT_BODY(ix);

    PrintString(string);
}

/****************************************************************************
**
*F  PrintFloatExpr(<expr>) . . . . . . . . . . . . print a float expression
**
**  'PrintFloatExpr' prints the float expression <expr>.
*/
static void PrintFloatExprLazy(Expr expr)
{
    UInt ix = READ_EXPR(expr, 1);
    Pr("%g", (Int)GET_VALUE_FROM_CURRENT_BODY(ix), 0);
}

/****************************************************************************
**
*F  PrintFloatExprEager(<expr>) . . . . . . . . . . . . print a float expression
**
**  'PrintFloatExpr' prints the float expression <expr>.
*/
static void PrintFloatExprEager(Expr expr)
{
    UInt ix = READ_EXPR(expr, 1);
    Char mark = (Char)READ_EXPR(expr, 2);
    Pr("%g_", (Int)GET_VALUE_FROM_CURRENT_BODY(ix), 0);
    if (mark != '\0') {
        Pr("%c", mark, 0);
    }
}


/****************************************************************************
**
*F  PrintRecExpr(<expr>)  . . . . . . . . . . . . . print a record expression
**
**  'PrintRecExpr' the record expression <expr>.
*/
void            PrintRecExpr1 (
    Expr                expr )
{
  Expr                tmp;            // temporary variable
  UInt                i;              // loop variable

  for ( i = 1; i <= SIZE_EXPR(expr)/(2*sizeof(Expr)); i++ ) {
        // print an ordinary record name
        tmp = READ_EXPR(expr, 2 * i - 2);
        if ( IS_INTEXPR(tmp) ) {
            Pr("%I", (Int)NAME_RNAM(INT_INTEXPR(tmp)), 0);
        }

        // print an evaluating record name
        else {
            Pr(" (", 0, 0);
            PrintExpr( tmp );
            Pr(")", 0, 0);
        }

        // print the component
        tmp = READ_EXPR(expr, 2 * i - 1);
        Pr("%< := %>", 0, 0);
        PrintExpr( tmp );
        if ( i < SIZE_EXPR(expr)/(2*sizeof(Expr)) )
            Pr("%2<,\n%2>", 0, 0);
    }
}

static void PrintRecExpr(Expr expr)
{
    Pr("%2>rec(\n%2>", 0, 0);
    PrintRecExpr1(expr);
    Pr(" %4<)", 0, 0);
}


static Obj FuncFLUSH_FLOAT_LITERAL_CACHE(Obj self)
{
#ifdef HPCGAP
    FLOAT_LITERAL_CACHE = NewAtomicList(T_ALIST, 0);
#else
    FLOAT_LITERAL_CACHE = NEW_PLIST(T_PLIST, 0);
#endif
    return 0;
}


/****************************************************************************
**
*F * * * * * * * * * * * * * initialize module * * * * * * * * * * * * * * *
*/

/****************************************************************************
**
*V  GVarFuncs . . . . . . . . . . . . . . . . . . list of functions to export
*/
static StructGVarFunc GVarFuncs [] = {

  GVAR_FUNC_0ARGS(FLUSH_FLOAT_LITERAL_CACHE),
  { 0, 0, 0, 0, 0 }

};


/****************************************************************************
**
*F  InitKernel( <module> )  . . . . . . . . initialise kernel data structures
*/
static Int InitKernel (
    StructInitInfo *    module )
{
    UInt                type;           // loop variable

    InitFopyGVar("CONVERT_FLOAT_LITERAL",&CONVERT_FLOAT_LITERAL);
    InitCopyGVar("MAX_FLOAT_LITERAL_CACHE_SIZE",&MAX_FLOAT_LITERAL_CACHE_SIZE);

    InitGlobalBag( &FLOAT_LITERAL_CACHE, "FLOAT_LITERAL_CACHE" );
    InitHdlrFuncsFromTable( GVarFuncs );


    // clear the evaluation dispatch table
    for ( type = 0; type < 256; type++ ) {
        InstallEvalExprFunc( type , EvalUnknownExpr);
        InstallEvalBoolFunc( type , EvalUnknownBool);
    }

    // install the evaluators for logical operations
    InstallEvalExprFunc( EXPR_OR             , EvalOr);
    InstallEvalExprFunc( EXPR_AND            , EvalAnd);
    InstallEvalExprFunc( EXPR_NOT            , EvalNot);

    // the logical operations are guaranteed to return booleans
    InstallEvalBoolFunc( EXPR_OR             , EvalOr);
    InstallEvalBoolFunc( EXPR_AND            , EvalAnd);
    InstallEvalBoolFunc( EXPR_NOT            , EvalNot);

    // install the evaluators for comparison operations
    InstallEvalExprFunc( EXPR_EQ             , EvalEq);
    InstallEvalExprFunc( EXPR_NE             , EvalNe);
    InstallEvalExprFunc( EXPR_LT             , EvalLt);
    InstallEvalExprFunc( EXPR_GE             , EvalGe);
    InstallEvalExprFunc( EXPR_GT             , EvalGt);
    InstallEvalExprFunc( EXPR_LE             , EvalLe);
    InstallEvalExprFunc( EXPR_IN             , EvalIn);

    // the comparison operations are guaranteed to return booleans
    InstallEvalBoolFunc( EXPR_EQ             , EvalEq);
    InstallEvalBoolFunc( EXPR_NE             , EvalNe);
    InstallEvalBoolFunc( EXPR_LT             , EvalLt);
    InstallEvalBoolFunc( EXPR_GE             , EvalGe);
    InstallEvalBoolFunc( EXPR_GT             , EvalGt);
    InstallEvalBoolFunc( EXPR_LE             , EvalLe);
    InstallEvalBoolFunc( EXPR_IN             , EvalIn);

    // install the evaluators for binary operations
    InstallEvalExprFunc( EXPR_SUM            , EvalSum);
    InstallEvalExprFunc( EXPR_AINV           , EvalAInv);
    InstallEvalExprFunc( EXPR_DIFF           , EvalDiff);
    InstallEvalExprFunc( EXPR_PROD           , EvalProd);
    InstallEvalExprFunc( EXPR_QUO            , EvalQuo);
    InstallEvalExprFunc( EXPR_MOD            , EvalMod);
    InstallEvalExprFunc( EXPR_POW            , EvalPow);

    // install the evaluators for literal expressions
    InstallEvalExprFunc( EXPR_INTPOS       , EvalIntExpr);
    InstallEvalExprFunc( EXPR_TRUE      , EvalTrueExpr);
    InstallEvalExprFunc( EXPR_FALSE     , EvalFalseExpr);
    InstallEvalExprFunc( EXPR_TILDE     , EvalTildeExpr);
    InstallEvalExprFunc( EXPR_CHAR      , EvalCharExpr);
    InstallEvalExprFunc( EXPR_PERM      , EvalPermExpr);
    InstallEvalExprFunc( EXPR_FLOAT_LAZY  , EvalFloatExprLazy);
    InstallEvalExprFunc( EXPR_FLOAT_EAGER , EvalFloatExprEager);

    // install the evaluators for list and record expressions
    InstallEvalExprFunc( EXPR_LIST      , EvalListExpr);
    InstallEvalExprFunc( EXPR_LIST_TILDE, EvalListTildeExpr);
    InstallEvalExprFunc( EXPR_RANGE     , EvalRangeExpr);
    InstallEvalExprFunc( EXPR_STRING    , EvalStringExpr);
    InstallEvalExprFunc( EXPR_REC       , EvalRecExpr);
    InstallEvalExprFunc( EXPR_REC_TILDE , EvalRecTildeExpr);

    // clear the tables for the printing dispatching
    for ( type = 0; type < 256; type++ ) {
        InstallPrintExprFunc( type , PrintUnknownExpr);
    }

    // install the printers for logical operations
    InstallPrintExprFunc( EXPR_OR             , PrintBinop);
    InstallPrintExprFunc( EXPR_AND            , PrintBinop);
    InstallPrintExprFunc( EXPR_NOT            , PrintNot);

    // install the printers for comparison operations
    InstallPrintExprFunc( EXPR_EQ             , PrintBinop);
    InstallPrintExprFunc( EXPR_LT             , PrintBinop);
    InstallPrintExprFunc( EXPR_NE             , PrintBinop);
    InstallPrintExprFunc( EXPR_GE             , PrintBinop);
    InstallPrintExprFunc( EXPR_GT             , PrintBinop);
    InstallPrintExprFunc( EXPR_LE             , PrintBinop);
    InstallPrintExprFunc( EXPR_IN             , PrintBinop);

    // install the printers for binary operations
    InstallPrintExprFunc( EXPR_SUM            , PrintBinop);
    InstallPrintExprFunc( EXPR_AINV           , PrintAInv);
    InstallPrintExprFunc( EXPR_DIFF           , PrintBinop);
    InstallPrintExprFunc( EXPR_PROD           , PrintBinop);
    InstallPrintExprFunc( EXPR_QUO            , PrintBinop);
    InstallPrintExprFunc( EXPR_MOD            , PrintBinop);
    InstallPrintExprFunc( EXPR_POW            , PrintBinop);

    // install the printers for literal expressions
    InstallPrintExprFunc( EXPR_INT        , PrintIntExpr);
    InstallPrintExprFunc( EXPR_INTPOS       , PrintIntExpr);
    InstallPrintExprFunc( EXPR_TRUE      , PrintTrueExpr);
    InstallPrintExprFunc( EXPR_FALSE     , PrintFalseExpr);
    InstallPrintExprFunc( EXPR_TILDE     , PrintTildeExpr);
    InstallPrintExprFunc( EXPR_CHAR      , PrintCharExpr);
    InstallPrintExprFunc( EXPR_PERM      , PrintPermExpr);
    InstallPrintExprFunc( EXPR_FLOAT_LAZY  , PrintFloatExprLazy);
    InstallPrintExprFunc( EXPR_FLOAT_EAGER , PrintFloatExprEager);

    // install the printers for list and record expressions
    InstallPrintExprFunc( EXPR_LIST      , PrintListExpr);
    InstallPrintExprFunc( EXPR_LIST_TILDE, PrintListExpr);
    InstallPrintExprFunc( EXPR_RANGE     , PrintRangeExpr);
    InstallPrintExprFunc( EXPR_STRING    , PrintStringExpr);
    InstallPrintExprFunc( EXPR_REC       , PrintRecExpr);
    InstallPrintExprFunc( EXPR_REC_TILDE , PrintRecExpr);

    return 0;
}


static Int InitLibrary(StructInitInfo * module)
{
    // init filters and functions
    InitGVarFuncsFromTable( GVarFuncs );

    FuncFLUSH_FLOAT_LITERAL_CACHE(0);

    return 0;
}

/****************************************************************************
**
*F  InitInfoExprs() . . . . . . . . . . . . . . . . . table of init functions
*/
static StructInitInfo module = {
    // init struct using C99 designated initializers; for a full list of
    // fields, please refer to the definition of StructInitInfo
    .type = MODULE_BUILTIN,
    .name = "exprs",
    .initKernel = InitKernel,
    .initLibrary = InitLibrary,

    .moduleStateSize = sizeof(struct ExprsState),
    .moduleStateOffsetPtr = &ExprsStateOffset,
};

StructInitInfo * InitInfoExprs ( void )
{
    return &module;
}