1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A algebra.xml GAP documentation Willem de Graaf -->
<!-- %% -->
<!-- %% -->
<!-- %Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Algebras">
<Heading>Algebras</Heading>
<#Include Label="[1]{algebra}">
<!-- %% The algebra functionality was designed and implemented by Thomas Breuer and -->
<!-- %% Willem de Graaf. -->
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:InfoAlgebra">
<Heading>InfoAlgebra (Info Class)</Heading>
<#Include Label="InfoAlgebra">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Constructing Algebras by Generators">
<Heading>Constructing Algebras by Generators</Heading>
<!-- % AlgebraByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->
<#Include Label="Algebra">
<!-- % AlgebraWithOneByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->
<#Include Label="AlgebraWithOne">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Constructing Algebras as Free Algebras">
<Heading>Constructing Algebras as Free Algebras</Heading>
<#Include Label="FreeAlgebra">
<#Include Label="FreeAlgebraWithOne">
<#Include Label="FreeAssociativeAlgebra">
<#Include Label="FreeAssociativeAlgebraWithOne">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Constructing Algebras by Structure Constants">
<Heading>Constructing Algebras by Structure Constants</Heading>
<#Include Label="[2]{algebra}">
<#Include Label="AlgebraByStructureConstants">
<#Include Label="AlgebraWithOneByStructureConstants">
<#Include Label="StructureConstantsTable">
<#Include Label="EmptySCTable">
<#Include Label="SetEntrySCTable">
<#Include Label="GapInputSCTable">
<#Include Label="TestJacobi">
<#Include Label="IdentityFromSCTable">
<#Include Label="QuotientFromSCTable">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Some Special Algebras">
<Heading>Some Special Algebras</Heading>
<#Include Label="QuaternionAlgebra">
<#Include Label="ComplexificationQuat">
<#Include Label="OctaveAlgebra">
<#Include Label="FullMatrixAlgebra">
<#Include Label="NullAlgebra">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subalgebras">
<Heading>Subalgebras</Heading>
<#Include Label="Subalgebra">
<#Include Label="SubalgebraNC">
<#Include Label="SubalgebraWithOne">
<#Include Label="SubalgebraWithOneNC">
<#Include Label="TrivialSubalgebra">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Ideals of Algebras">
<Heading>Ideals of Algebras</Heading>
For constructing and working with ideals in algebras the same functions
are available as for ideals in rings. So for the precise description of
these functions we refer to Chapter <Ref Chap="Rings"/>. Here we give examples
demonstrating the use of ideals in algebras.
For an introduction into the construction of quotient algebras
we refer to Chapter <Ref Sect="Algebras" BookName="tut"/>
of the user's tutorial.
<P/>
<Example><![CDATA[
gap> m:= [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0] ];;
gap> A:= AlgebraWithOne( Rationals, [ m ] );;
gap> I:= Ideal( A, [ m ] ); # the two-sided ideal of `A' generated by `m'
<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,
(1 generator)>
gap> Dimension( I );
2
gap> GeneratorsOfIdeal( I );
[ [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0 ] ] ]
gap> BasisVectors( Basis( I ) );
[ [ [ 0, 1, 3/2 ], [ 0, 0, 2 ], [ 0, 0, 0 ] ],
[ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
gap> A:= FullMatrixAlgebra( Rationals, 4 );;
gap> m:= NullMat( 4, 4 );; m[1][4]:=1;;
gap> I:= LeftIdeal( A, [ m ] );
<left ideal in ( Rationals^[ 4, 4 ] ), (1 generator)>
gap> Dimension( I );
4
gap> GeneratorsOfLeftIdeal( I );
[ [ [ 0, 0, 0, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ] ]
gap> mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
gap> A:= Algebra( Rationals, mats );;
gap> # Form the two-sided ideal for which `mats[2]' is known to be
gap> # the unique basis element.
gap> I:= Ideal( A, [ mats[2] ], "basis" );
<two-sided ideal in <algebra of dimension 3 over Rationals>,
(dimension 1)>
]]></Example>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Categories and Properties of Algebras">
<Heading>Categories and Properties of Algebras</Heading>
<#Include Label="IsFLMLOR">
<#Include Label="IsFLMLORWithOne">
<#Include Label="IsAlgebra">
<#Include Label="IsAlgebraWithOne">
<#Include Label="IsLieAlgebra">
<#Include Label="IsSimpleAlgebra">
<!-- % IsMatrixFLMLOR left out... -->
<ManSection>
<Meth Name="IsFiniteDimensional" Arg='matalg' Label="for matrix algebras"/>
<Description>
returns <K>true</K> (always) for a matrix algebra <A>matalg</A>, since
matrix algebras are always finite dimensional.
<P/>
<Example><![CDATA[
gap> A:= MatAlgebra( Rationals, 3 );;
gap> IsFiniteDimensional( A );
true
]]></Example>
</Description>
</ManSection>
<#Include Label="IsQuaternion">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Attributes and Operations for Algebras">
<Heading>Attributes and Operations for Algebras</Heading>
<!-- % GeneratorsOfLeftOperatorRing left out.... -->
<!-- % GeneratorsOfLeftOperatorRingWithOne left out.... -->
<#Include Label="GeneratorsOfAlgebra">
<#Include Label="GeneratorsOfAlgebraWithOne">
<#Include Label="ProductSpace">
<#Include Label="PowerSubalgebraSeries">
<#Include Label="AdjointBasis">
<#Include Label="IndicesOfAdjointBasis">
<#Include Label="AsAlgebra">
<#Include Label="AsAlgebraWithOne">
<#Include Label="AsSubalgebra">
<#Include Label="AsSubalgebraWithOne">
<#Include Label="MutableBasisOfClosureUnderAction">
<#Include Label="MutableBasisOfNonassociativeAlgebra">
<#Include Label="MutableBasisOfIdealInNonassociativeAlgebra">
<#Include Label="DirectSumOfAlgebras">
<#Include Label="FullMatrixAlgebraCentralizer">
<#Include Label="RadicalOfAlgebra">
<#Include Label="CentralIdempotentsOfAlgebra">
<#Include Label="DirectSumDecomposition">
<#Include Label="LeviMalcevDecomposition">
<#Include Label="Grading">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Homomorphisms of Algebras">
<Heading>Homomorphisms of Algebras</Heading>
<#Include Label="[1]{alghom}">
<#Include Label="AlgebraGeneralMappingByImages">
<#Include Label="AlgebraHomomorphismByImages">
<#Include Label="AlgebraHomomorphismByImagesNC">
<#Include Label="AlgebraWithOneGeneralMappingByImages">
<#Include Label="AlgebraWithOneHomomorphismByImages">
<#Include Label="AlgebraWithOneHomomorphismByImagesNC">
<#Include Label="AlgebraHomomorphismbyFunction">
<#Include Label="NaturalHomomorphismByIdeal_algebras">
<#Include Label="OperationAlgebraHomomorphism">
<#Include Label="NiceAlgebraMonomorphism">
<#Include Label="IsomorphismFpAlgebra">
<#Include Label="IsomorphismMatrixAlgebra">
<#Include Label="IsomorphismSCAlgebra">
<#Include Label="RepresentativeLinearOperation">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Representations of Algebras">
<Heading>Representations of Algebras</Heading>
<#Include Label="[1]{algrep}">
<#Include Label="LeftAlgebraModuleByGenerators">
<#Include Label="RightAlgebraModuleByGenerators">
<#Include Label="BiAlgebraModuleByGenerators">
<#Include Label="LeftAlgebraModule">
<#Include Label="RightAlgebraModule">
<#Include Label="BiAlgebraModule">
<#Include Label="GeneratorsOfAlgebraModule">
<#Include Label="IsAlgebraModuleElement">
<#Include Label="IsLeftAlgebraModuleElement">
<#Include Label="IsRightAlgebraModuleElement">
<#Include Label="LeftActingAlgebra">
<#Include Label="RightActingAlgebra">
<#Include Label="ActingAlgebra">
<#Include Label="IsBasisOfAlgebraModuleElementSpace">
<#Include Label="MatrixOfAction">
<#Include Label="SubAlgebraModule">
<#Include Label="LeftModuleByHomomorphismToMatAlg">
<#Include Label="RightModuleByHomomorphismToMatAlg">
<#Include Label="AdjointModule">
<!-- % One would be tempted to call <C>W</C> a left ideal in <C>V</C>, -->
<!-- % but in the current implementation, neither <C>V</C> nor <C>W</C> are themselves -->
<!-- % algebras; note that the element <C>v</C>, although looking like a matrix, -->
<!-- % cannot be multiplied with itself. -->
<#Include Label="FaithfulModule">
<#Include Label="ModuleByRestriction">
<#Include Label="NaturalHomomorphismBySubAlgebraModule">
<#Include Label="DirectSumOfAlgebraModules">
<#Include Label="TranslatorSubalgebra">
</Section>
</Chapter>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->
|