File: algebra.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (267 lines) | stat: -rw-r--r-- 9,083 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A  algebra.xml                  GAP documentation            Willem de Graaf -->
<!-- %% -->
<!-- %% -->
<!-- %Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y  Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Algebras">
<Heading>Algebras</Heading>

<#Include Label="[1]{algebra}">

<!-- %%  The algebra functionality was designed and implemented by Thomas Breuer and -->
<!-- %%  Willem de Graaf. -->


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:InfoAlgebra">
<Heading>InfoAlgebra (Info Class)</Heading>

<#Include Label="InfoAlgebra">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Constructing Algebras by Generators">
<Heading>Constructing Algebras by Generators</Heading>

<!-- % AlgebraByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->

<#Include Label="Algebra">
<!-- %  AlgebraWithOneByGenerators( <A>F</A>, <A>gens</A>, <A>zero</A> ) Left out... -->
<#Include Label="AlgebraWithOne">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Constructing Algebras as Free Algebras">
<Heading>Constructing Algebras as Free Algebras</Heading>

<#Include Label="FreeAlgebra">
<#Include Label="FreeAlgebraWithOne">
<#Include Label="FreeAssociativeAlgebra">
<#Include Label="FreeAssociativeAlgebraWithOne">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Constructing Algebras by Structure Constants">
<Heading>Constructing Algebras by Structure Constants</Heading>

<#Include Label="[2]{algebra}">
<#Include Label="AlgebraByStructureConstants">
<#Include Label="AlgebraWithOneByStructureConstants">
<#Include Label="StructureConstantsTable">
<#Include Label="EmptySCTable">
<#Include Label="SetEntrySCTable">
<#Include Label="GapInputSCTable">
<#Include Label="TestJacobi">
<#Include Label="IdentityFromSCTable">
<#Include Label="QuotientFromSCTable">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Some Special Algebras">
<Heading>Some Special Algebras</Heading>

<#Include Label="QuaternionAlgebra">
<#Include Label="ComplexificationQuat">
<#Include Label="OctaveAlgebra">
<#Include Label="FullMatrixAlgebra">
<#Include Label="NullAlgebra">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subalgebras">
<Heading>Subalgebras</Heading>

<#Include Label="Subalgebra">
<#Include Label="SubalgebraNC">
<#Include Label="SubalgebraWithOne">
<#Include Label="SubalgebraWithOneNC">
<#Include Label="TrivialSubalgebra">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Ideals of Algebras">
<Heading>Ideals of Algebras</Heading>

For constructing and working with ideals in algebras the same functions
are available as for ideals in rings. So for the precise description of
these functions we refer to Chapter <Ref Chap="Rings"/>. Here we give examples
demonstrating the use of ideals in algebras.
For an introduction into the construction of quotient algebras
we refer to Chapter <Ref Sect="Algebras" BookName="tut"/>
of the user's tutorial.
<P/>
<Example><![CDATA[
gap> m:= [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0] ];;
gap> A:= AlgebraWithOne( Rationals, [ m ] );;
gap> I:= Ideal( A, [ m ] );  # the two-sided ideal of `A' generated by `m'
<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,
  (1 generator)>
gap> Dimension( I );
2
gap> GeneratorsOfIdeal( I );
[ [ [ 0, 2, 3 ], [ 0, 0, 4 ], [ 0, 0, 0 ] ] ]
gap> BasisVectors( Basis( I ) );
[ [ [ 0, 1, 3/2 ], [ 0, 0, 2 ], [ 0, 0, 0 ] ],
  [ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
gap> A:= FullMatrixAlgebra( Rationals, 4 );;
gap> m:= NullMat( 4, 4 );; m[1][4]:=1;;
gap> I:= LeftIdeal( A, [ m ] );
<left ideal in ( Rationals^[ 4, 4 ] ), (1 generator)>
gap> Dimension( I );
4
gap> GeneratorsOfLeftIdeal( I );
[ [ [ 0, 0, 0, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ] ]
gap> mats:= [ [[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]] ];;
gap> A:= Algebra( Rationals, mats );;
gap> # Form the two-sided ideal for which `mats[2]' is known to be
gap> # the unique basis element.
gap> I:= Ideal( A, [ mats[2] ], "basis" );
<two-sided ideal in <algebra of dimension 3 over Rationals>,
  (dimension 1)>
]]></Example>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Categories and Properties of Algebras">
<Heading>Categories and Properties of Algebras</Heading>

<#Include Label="IsFLMLOR">
<#Include Label="IsFLMLORWithOne">
<#Include Label="IsAlgebra">
<#Include Label="IsAlgebraWithOne">
<#Include Label="IsLieAlgebra">
<#Include Label="IsSimpleAlgebra">
<!-- % IsMatrixFLMLOR left out... -->

<ManSection>
<Meth Name="IsFiniteDimensional" Arg='matalg' Label="for matrix algebras"/>

<Description>
returns <K>true</K> (always) for a matrix algebra <A>matalg</A>, since
matrix algebras are always finite dimensional.
<P/>
<Example><![CDATA[
gap> A:= MatAlgebra( Rationals, 3 );;
gap> IsFiniteDimensional( A );
true
]]></Example>
</Description>
</ManSection>

<#Include Label="IsQuaternion">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Attributes and Operations for Algebras">
<Heading>Attributes and Operations for Algebras</Heading>

<!-- % GeneratorsOfLeftOperatorRing left out.... -->
<!-- % GeneratorsOfLeftOperatorRingWithOne left out.... -->
<#Include Label="GeneratorsOfAlgebra">
<#Include Label="GeneratorsOfAlgebraWithOne">
<#Include Label="ProductSpace">
<#Include Label="PowerSubalgebraSeries">
<#Include Label="AdjointBasis">
<#Include Label="IndicesOfAdjointBasis">
<#Include Label="AsAlgebra">
<#Include Label="AsAlgebraWithOne">
<#Include Label="AsSubalgebra">
<#Include Label="AsSubalgebraWithOne">
<#Include Label="MutableBasisOfClosureUnderAction">
<#Include Label="MutableBasisOfNonassociativeAlgebra">
<#Include Label="MutableBasisOfIdealInNonassociativeAlgebra">
<#Include Label="DirectSumOfAlgebras">
<#Include Label="FullMatrixAlgebraCentralizer">
<#Include Label="RadicalOfAlgebra">
<#Include Label="CentralIdempotentsOfAlgebra">
<#Include Label="DirectSumDecomposition">
<#Include Label="LeviMalcevDecomposition">
<#Include Label="Grading">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Homomorphisms of Algebras">
<Heading>Homomorphisms of Algebras</Heading>

<#Include Label="[1]{alghom}">
<#Include Label="AlgebraGeneralMappingByImages">
<#Include Label="AlgebraHomomorphismByImages">
<#Include Label="AlgebraHomomorphismByImagesNC">
<#Include Label="AlgebraWithOneGeneralMappingByImages">
<#Include Label="AlgebraWithOneHomomorphismByImages">
<#Include Label="AlgebraWithOneHomomorphismByImagesNC">
<#Include Label="AlgebraHomomorphismbyFunction">
<#Include Label="NaturalHomomorphismByIdeal_algebras">
<#Include Label="OperationAlgebraHomomorphism">
<#Include Label="NiceAlgebraMonomorphism">
<#Include Label="IsomorphismFpAlgebra">
<#Include Label="IsomorphismMatrixAlgebra">
<#Include Label="IsomorphismSCAlgebra">
<#Include Label="RepresentativeLinearOperation">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Representations of Algebras">
<Heading>Representations of Algebras</Heading>

<#Include Label="[1]{algrep}">
<#Include Label="LeftAlgebraModuleByGenerators">
<#Include Label="RightAlgebraModuleByGenerators">
<#Include Label="BiAlgebraModuleByGenerators">
<#Include Label="LeftAlgebraModule">
<#Include Label="RightAlgebraModule">
<#Include Label="BiAlgebraModule">
<#Include Label="GeneratorsOfAlgebraModule">
<#Include Label="IsAlgebraModuleElement">
<#Include Label="IsLeftAlgebraModuleElement">
<#Include Label="IsRightAlgebraModuleElement">
<#Include Label="LeftActingAlgebra">
<#Include Label="RightActingAlgebra">
<#Include Label="ActingAlgebra">
<#Include Label="IsBasisOfAlgebraModuleElementSpace">
<#Include Label="MatrixOfAction">
<#Include Label="SubAlgebraModule">
<#Include Label="LeftModuleByHomomorphismToMatAlg">
<#Include Label="RightModuleByHomomorphismToMatAlg">
<#Include Label="AdjointModule">
<!-- % One would be tempted to call <C>W</C> a left ideal in <C>V</C>, -->
<!-- % but in the current implementation, neither <C>V</C> nor <C>W</C> are themselves -->
<!-- % algebras; note that the element <C>v</C>, although looking like a matrix, -->
<!-- % cannot be multiplied with itself. -->
<#Include Label="FaithfulModule">
<#Include Label="ModuleByRestriction">
<#Include Label="NaturalHomomorphismBySubAlgebraModule">
<#Include Label="DirectSumOfAlgebraModules">
<#Include Label="TranslatorSubalgebra">

</Section>
</Chapter>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->