File: boolean.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (267 lines) | stat: -rw-r--r-- 8,924 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A  boolean.xml                 GAP documentation            Martin Schönert -->
<!-- %A                                                           Alexander Hulpke -->
<!-- %% -->
<!-- %% -->
<!-- %Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y  Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Booleans">
<Heading>Booleans</Heading>

<Index Subkey="boolean">type</Index>
<Index>logical</Index>

The two main <E>boolean</E> values are <K>true</K> and <K>false</K>.
They stand for the <E>logical</E> values of the same name.
They appear as values of the conditions in <K>if</K>-statements
and <K>while</K>-loops.
Booleans are also important as return values of <E>filters</E>
(see&nbsp;<Ref Sect="Filters"/>)
such as <Ref Prop="IsFinite"/> and <Ref Filt="IsBool"/>.
Note that it is a convention that the name of a function that
returns <K>true</K> or <K>false</K> according to the outcome,
starts with <C>Is</C>.
<P/>
For technical reasons, also the value <K>fail</K>
(see&nbsp;<Ref Sect="Fail"/>) is regarded as a boolean.


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:IsBool">
<Heading>IsBool (Filter)</Heading>

<#Include Label="IsBool">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Fail">
<Heading>Fail (Variable)</Heading>

<ManSection>
<Var Name="fail"/>

<Description>
The value <K>fail</K> is used to indicate situations when an operation could
not be performed for the given arguments, either because of shortcomings of
the arguments or because of restrictions in the implementation or
computability.
So for example <Ref Oper="Position"/> will return <K>fail</K>
if the point searched for is not in the list.
<P/>
<K>fail</K> is simply an object that is different from every other object
than itself.
<P/>
For technical reasons, <K>fail</K> is a boolean value.
But note that <K>fail</K> cannot be used to form boolean expressions with
<K>and</K>, <K>or</K>, and <K>not</K>
(see&nbsp;<Ref Sect="Operations for Booleans"/> below),
and <K>fail</K> cannot appear in boolean lists
(see Chapter&nbsp;<Ref Chap="Boolean Lists"/>).
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Comparisons of Booleans">
<Heading>Comparisons of Booleans</Heading>
<Index Subkey="of booleans">comparisons</Index>
<Subsection Label="Equality and inequality of Booleans">
<Heading>Equality and inequality of Booleans</Heading>
<Index Subkey="of booleans">equality</Index>
<Index Subkey="of booleans">inequality</Index>
<C><A>bool1</A> = <A>bool2</A></C>
<P/>
<Alt Only="LaTeX">\noindent</Alt>
<C><A>bool1</A> &lt;> <A>bool2</A></C>
<P/>
The equality operator <C>=</C> evaluates to <K>true</K>
if the two boolean values <A>bool1</A> and <A>bool2</A> are equal,
i.e., both are <K>true</K> or both are <K>false</K> or both <K>fail</K>,
and <K>false</K> otherwise.
The inequality operator <C>&lt;></C> evaluates to <K>true</K>
if the two boolean values <A>bool1</A>, <A>bool2</A> are different,
and <K>false</K> otherwise.
This operation is also called the <E>exclusive or</E>,
because its value is <K>true</K> if exactly one of <A>bool1</A> or
<A>bool2</A> is <K>true</K>.
<P/>
You can compare boolean values with objects of other types.
Of course they are never equal.
<P/>
<Example><![CDATA[
gap> true = false;
false
gap> false = (true = fail);
true
gap> true <> 17;
true
]]></Example>
</Subsection>

<Subsection Label="Ordering of Booleans">
<Heading>Ordering of Booleans</Heading>
<Index Subkey="booleans">ordering</Index>
<A>bool1</A> <C>&lt;</C> <A>bool2</A>
<P/>
The ordering of boolean values is defined by
<K>true</K> <C>&lt;</C> <K>false</K> <C>&lt;</C> <K>fail</K>.
For the comparison of booleans with other &GAP; objects,
see Section&nbsp;<Ref Sect="Comparisons"/>.
<P/>
<Example><![CDATA[
gap> true < false;  fail >= false;
true
true
]]></Example>
</Subsection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Operations for Booleans">
<Heading>Operations for Booleans</Heading>

<Index Subkey="for booleans">operations</Index>
<Index>logical operations</Index>

The following boolean operations are only applicable to <K>true</K> and
<K>false</K>.
<P/>

<Subsection Label="Logical disjunction">
<Heading>Logical disjunction</Heading>
<Index>Logical disjunction</Index>
<Index Key="or"><K>or</K></Index>
<A>bool1</A> <K>or</K> <A>bool2</A>
<P/>
The logical operator <K>or</K> evaluates to <K>true</K>
if at least one of the two boolean operands <A>bool1</A> and <A>bool2</A>
is <K>true</K>, and to <K>false</K> otherwise.
<P/>
<K>or</K> first evaluates <A>bool1</A>.
If the value is neither <K>true</K> nor <K>false</K> an error is signalled.
If the value is <K>true</K>, then <K>or</K> returns <K>true</K>
<E>without</E> evaluating <A>bool2</A>.
If the value is <K>false</K>, then <K>or</K> evaluates <A>bool2</A>.
Again, if the value is neither <K>true</K> nor <K>false</K>
an error is signalled.
Otherwise <K>or</K> returns the value of <A>bool2</A>.
This <E>short-circuited</E> evaluation is important if the value of
<A>bool1</A> is <K>true</K>
and evaluation of <A>bool2</A> would take much time or cause an error.
<P/>
<K>or</K> is associative, i.e., it is allowed to write
<A>b1</A> <K>or</K> <A>b2</A> <K>or</K> <A>b3</A>,
which is interpreted as (<A>b1</A> <K>or</K> <A>b2</A>) <K>or</K> <A>b3</A>.
<K>or</K> has the lowest precedence of the logical operators.
All logical operators have lower precedence than the comparison operators
<C>=</C>, <C>&lt;</C>, <K>in</K>, etc.
<P/>
<Example><![CDATA[
gap> true or false;
true
gap> false or false;
false
gap> i := -1;; l := [1,2,3];;
gap> if i <= 0 or l[i] = false then     # this does not cause an error,
>    Print("aha\n"); fi;                # because `l[i]' is not evaluated
aha
]]></Example>
</Subsection>

<Subsection Label="Logical conjunction">
<Heading>Logical conjunction</Heading>
<Index>Logical conjunction</Index>
<Index Key="and"><K>and</K></Index>
<A>bool1</A> <K>and</K> <A>bool2</A>
<P/>
<Index Key="and" Subkey="for filters"><K>and</K></Index>
<Alt Only="LaTeX">\noindent</Alt>
<A>fil1</A> <K>and</K> <A>fil2</A>
<P/>
The logical operator <K>and</K> evaluates to <K>true</K>
if both boolean operands <A>bool1</A>, <A>bool2</A> are <K>true</K>,
and to <K>false</K> otherwise.
<P/>
<K>and</K> first evaluates <A>bool1</A>.
If the value is neither <K>true</K> nor <K>false</K> an error is signalled.
If the value is <K>false</K>, then <K>and</K> returns <K>false</K>
<E>without</E> evaluating <A>bool2</A>.
If the value is <K>true</K>, then <K>and</K> evaluates <A>bool2</A>.
Again, if the value is neither <K>true</K> nor <K>false</K>
an error is signalled.
Otherwise <K>and</K> returns the value of <A>bool2</A>.
This <E>short-circuited</E> evaluation is important if the value of
<A>bool1</A> is <K>false</K> and evaluation of <A>bool2</A> would take much
time or cause an error.
<P/>
<K>and</K> is associative, i.e., it is allowed to write
<A>b1</A> <K>and</K> <A>b2</A> <K>and</K> <A>b3</A>,
which is interpreted as (<A>b1</A> <K>and</K> <A>b2</A>) <K>and</K> <A>b3</A>.
<K>and</K> has higher precedence than the logical <K>or</K> operator,
but lower than the unary logical <K>not</K> operator.
All logical operators have lower precedence than the comparison operators
<C>=</C>, <C>&lt;</C>, <K>in</K>, etc.
<P/>
<Example><![CDATA[
gap> true and false;
false
gap> true and true;
true
gap> false and 17;  # does not cause error, because 17 is never looked at
false
]]></Example>
<P/>
<K>and</K> can also be applied to filters.
It returns a filter that when applied to some argument <A>x</A>,
tests <A>fil1</A><M>(x)</M> <K>and</K> <A>fil2</A><M>(x)</M>.
<P/>
<Example><![CDATA[
gap> andfilt:= IsPosRat and IsInt;;
gap> andfilt( 17 );  andfilt( 1/2 );
true
false
]]></Example>
</Subsection>

<Subsection Label="Logical negation">
<Heading>Logical negation</Heading>
<Index>Logical negation</Index>
<Index Key="not"><K>not</K></Index>
<K>not</K> <A>bool</A>
<P/>
The logical operator <K>not</K> returns <K>true</K>
if the boolean value <A>bool</A> is <K>false</K>, and <K>true</K> otherwise.
An error is signalled if <A>bool</A> does not evaluate to <K>true</K> or
<K>false</K>.
<P/>
<K>not</K> has higher precedence than the other logical operators,
<K>or</K> and <K>and</K>.
All logical operators have lower precedence than the comparison operators
<C>=</C>, <C>&lt;</C>, <K>in</K>, etc.
<P/>
<Example><![CDATA[
gap> true and false;
false
gap> not true;
false
gap> not false;
true
]]></Example>
</Subsection>

</Section>
</Chapter>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->