File: chap53_mj.html

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1382 lines) | stat: -rw-r--r-- 127,068 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (ref) - Chapter 53: Transformations</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap53"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chap17_mj.html">17</a>  <a href="chap18_mj.html">18</a>  <a href="chap19_mj.html">19</a>  <a href="chap20_mj.html">20</a>  <a href="chap21_mj.html">21</a>  <a href="chap22_mj.html">22</a>  <a href="chap23_mj.html">23</a>  <a href="chap24_mj.html">24</a>  <a href="chap25_mj.html">25</a>  <a href="chap26_mj.html">26</a>  <a href="chap27_mj.html">27</a>  <a href="chap28_mj.html">28</a>  <a href="chap29_mj.html">29</a>  <a href="chap30_mj.html">30</a>  <a href="chap31_mj.html">31</a>  <a href="chap32_mj.html">32</a>  <a href="chap33_mj.html">33</a>  <a href="chap34_mj.html">34</a>  <a href="chap35_mj.html">35</a>  <a href="chap36_mj.html">36</a>  <a href="chap37_mj.html">37</a>  <a href="chap38_mj.html">38</a>  <a href="chap39_mj.html">39</a>  <a href="chap40_mj.html">40</a>  <a href="chap41_mj.html">41</a>  <a href="chap42_mj.html">42</a>  <a href="chap43_mj.html">43</a>  <a href="chap44_mj.html">44</a>  <a href="chap45_mj.html">45</a>  <a href="chap46_mj.html">46</a>  <a href="chap47_mj.html">47</a>  <a href="chap48_mj.html">48</a>  <a href="chap49_mj.html">49</a>  <a href="chap50_mj.html">50</a>  <a href="chap51_mj.html">51</a>  <a href="chap52_mj.html">52</a>  <a href="chap53_mj.html">53</a>  <a href="chap54_mj.html">54</a>  <a href="chap55_mj.html">55</a>  <a href="chap56_mj.html">56</a>  <a href="chap57_mj.html">57</a>  <a href="chap58_mj.html">58</a>  <a href="chap59_mj.html">59</a>  <a href="chap60_mj.html">60</a>  <a href="chap61_mj.html">61</a>  <a href="chap62_mj.html">62</a>  <a href="chap63_mj.html">63</a>  <a href="chap64_mj.html">64</a>  <a href="chap65_mj.html">65</a>  <a href="chap66_mj.html">66</a>  <a href="chap67_mj.html">67</a>  <a href="chap68_mj.html">68</a>  <a href="chap69_mj.html">69</a>  <a href="chap70_mj.html">70</a>  <a href="chap71_mj.html">71</a>  <a href="chap72_mj.html">72</a>  <a href="chap73_mj.html">73</a>  <a href="chap74_mj.html">74</a>  <a href="chap75_mj.html">75</a>  <a href="chap76_mj.html">76</a>  <a href="chap77_mj.html">77</a>  <a href="chap78_mj.html">78</a>  <a href="chap79_mj.html">79</a>  <a href="chap80_mj.html">80</a>  <a href="chap81_mj.html">81</a>  <a href="chap82_mj.html">82</a>  <a href="chap83_mj.html">83</a>  <a href="chap84_mj.html">84</a>  <a href="chap85_mj.html">85</a>  <a href="chap86_mj.html">86</a>  <a href="chap87_mj.html">87</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap52_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap54_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap53.html">[MathJax off]</a></p>
<p><a id="X860026B880BCB2A5" name="X860026B880BCB2A5"></a></p>
<div class="ChapSects"><a href="chap53_mj.html#X860026B880BCB2A5">53 <span class="Heading">Transformations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53_mj.html#X7CF9291C7CC42340">53.1 <span class="Heading">The family and categories of transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7B6259467974FB70">53.1-1 IsTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7A6747CE85F2E6EA">53.1-2 IsTransformationCollection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7E58AFA1832FF064">53.1-3 TransformationFamily</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53_mj.html#X80F3086F87E93DF8">53.2 <span class="Heading">Creating transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X86ADBDE57A20E323">53.2-1 Transformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8040642687531E7F">53.2-2 Transformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7E82EBD68455EE4A">53.2-3 TransformationByImageAndKernel</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X85D1071484CE004C">53.2-4 Idempotent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7C2A3FC9782F2099">53.2-5 TransformationOp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7D6FCC417DE86CD1">53.2-6 TransformationNumber</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8475448F87E8CB8A">53.2-7 <span class="Heading">RandomTransformation</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8268A58685BEFD6F">53.2-8 IdentityTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7F1E4B5184210D2B">53.2-9 ConstantTransformation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53_mj.html#X7F81A18B813C9DF0">53.3 <span class="Heading">Changing the representation of a transformation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7C5360B2799943F3">53.3-1 AsTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X846A6F6B7B715188">53.3-2 RestrictedTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8708AE247F5B129B">53.3-3 PermutationOfImage</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53_mj.html#X812CEC008609A8A2">53.4 <span class="Heading">Operators for transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X853031E37F214D10"><code>53.4-1 \^</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X824A8E247DE7E53E"><code>53.4-2 \^</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7F6573E67D27D822"><code>53.4-3 \*</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X828CA7137F97C124"><code>53.4-4 \/</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7856D91E8709EF5B">53.4-5 LeftQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X84B8E294826A9377"><code>53.4-6 \&lt;</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7D454AAD851AE07E"><code>53.4-7 \=</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X83DBA2A18719EFA8">53.4-8 PermLeftQuoTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8275DFAA8270BB59">53.4-9 IsInjectiveListTrans</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X834A313B7DAF06D5">53.4-10 ComponentTransformationInt</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X82F5DEEC837B60A3">53.4-11 PreImagesOfTransformation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53_mj.html#X86DE4F7A7C535820">53.5 <span class="Heading">Attributes for transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X78A209C87CF0E32B">53.5-1 DegreeOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7AEC9E6687B3505A">53.5-2 ImageListOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X839A6D6082A21D1F">53.5-3 ImageSetOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X818EBB167C7EA37B">53.5-4 RankOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X844F00F982D5BD3C">53.5-5 MovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7FA6A4B57FDA003D">53.5-6 NrMovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X86C0DDDC7881273A">53.5-7 SmallestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8383A7727AC97724">53.5-8 LargestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7CCFE27E83676572">53.5-9 SmallestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7E7172567C3A3E63">53.5-10 LargestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8083794579274E87">53.5-11 FlatKernelOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X80FCB5048789CF75">53.5-12 KernelOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X860306EB7FAAD2D4">53.5-13 InverseOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7BB9DB6E8558356D">53.5-14 Inverse</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X863216CB7AF88BED">53.5-15 IndexPeriodOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X85FE9F20810BCC70">53.5-16 SmallestIdempotentPower</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X858E944481F6B591">53.5-17 ComponentsOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X8640AE1C79201470">53.5-18 NrComponentsOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X784650B583CEAF7D">53.5-19 ComponentRepsOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7EAA15557D55D93B">53.5-20 CyclesOfTransformation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X786EB02A829260DB">53.5-21 CycleTransformationInt</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X845869E0815A6AA6">53.5-22 LeftOne</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7F19C9C77F9F8981">53.5-23 TrimTransformation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53_mj.html#X810D23017A5527B7">53.6 <span class="Heading">Displaying transformations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap53_mj.html#X7B51CE257B814B09">53.7 <span class="Heading">Semigroups of transformations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7EAF835D7FE4026F">53.7-1 IsTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7EA699C687952544">53.7-2 DegreeOfTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X7D2B0685815B4053">53.7-3 FullTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X85C58E1E818C838C">53.7-4 IsFullTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X78F29C817CF6827F">53.7-5 IsomorphismTransformationSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap53_mj.html#X820ECE00846E480F">53.7-6 AntiIsomorphismTransformationSemigroup</a></span>
</div></div>
</div>

<h3>53 <span class="Heading">Transformations</span></h3>

<p>This chapter describes the functions in <strong class="pkg">GAP</strong> for transformations.</p>

<p>A <em>transformation</em> in <strong class="pkg">GAP</strong> is simply a function from the positive integers to the positive integers. Transformations are to semigroup theory what permutations are to group theory, in the sense that every semigroup can be realised as a semigroup of transformations. In <strong class="pkg">GAP</strong> transformation semigroups are always finite, and so only finite semigroups can be realised in this way.</p>

<p>A transformation in <strong class="pkg">GAP</strong> acts on the positive integers (up to some architecture dependent limit) on the right. The image of a point <code class="code">i</code> under a transformation <code class="code">f</code> is expressed as <code class="code">i ^ f</code> in <strong class="pkg">GAP</strong>. This action is also implemented by the function <code class="func">OnPoints</code> (<a href="chap41_mj.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>). If <code class="code">i ^ f</code> is different from <code class="code">i</code>, then <code class="code">i</code> is <em>moved</em> by <em>f</em> and otherwise it is <em>fixed</em> by <code class="code">f</code>. Transformations in <strong class="pkg">GAP</strong> are created using the operations described in Section <a href="chap53_mj.html#X80F3086F87E93DF8"><span class="RefLink">53.2</span></a>.</p>

<p>The <em>degree</em> of a transformation <code class="code">f</code> is usually defined as the largest positive integer where <code class="code">f</code> is defined. In previous versions of <strong class="pkg">GAP</strong>, transformations were only defined on positive integers less than their degree, it was only possible to multiply transformations of equal degree, and a transformation did not act on any point exceeding its degree. Starting with version 4.7 of <strong class="pkg">GAP</strong>, transformations behave more like permutations, in that they fix unspecified points and it is possible to multiply arbitrary transformations; see Chapter <a href="chap42_mj.html#X80F808307A2D5AB8"><span class="RefLink">42</span></a>. The definition of the degree of a transformation <code class="code">f</code> in the current version of <strong class="pkg">GAP</strong> is the largest value <code class="code">n</code> such that <code class="code">n ^ f &lt;&gt; n</code> or <code class="code">i ^ f = n</code> for some <code class="code">i &lt;&gt; n</code>. Equivalently, the degree of a transformation is the least value <code class="code">n</code> such that <code class="code">[ n + 1, n + 2, ... ]</code> is fixed pointwise by <code class="code">f</code>.</p>

<p>The transformations of a given degree belong to the full transformation semigroup of that degree; see <code class="func">FullTransformationSemigroup</code> (<a href="chap53_mj.html#X7D2B0685815B4053"><span class="RefLink">53.7-3</span></a>). Transformation semigroups are hence subsemigroups of the full transformation semigroup.</p>

<p>It is possible to use transformations in <strong class="pkg">GAP</strong> without reference to the degree, much as it is possible to use permutations in this way. However, for backwards compatibility, and because it is sometimes useful, it is possible to access the degree of a transformation using <code class="func">DegreeOfTransformation</code> (<a href="chap53_mj.html#X78A209C87CF0E32B"><span class="RefLink">53.5-1</span></a>). Certain attributes of transformations are also calculated with respect to the degree, such as the rank, image set, or kernel (these values can also be calculated with respect to any positive integer). So, it is possible to ignore the degree of a transformation if you prefer to think of transformations as acting on the positive integers in a similar way to permutations. For example, this approach is used in the <strong class="pkg">FR</strong> package. It is also possible to think of transformations as only acting on the positive integers not exceeding their degree. For example, this was the approach formerly used in <strong class="pkg">GAP</strong> and it is also useful in the <strong class="pkg">Semigroups</strong> package.</p>

<p>Transformations are displayed, by default, using the list <code class="code">[ 1 ^ f .. n ^ f ]</code> where <code class="code">n</code> is the degree of <code class="code">f</code>. This behaviour differs from that of versions of <strong class="pkg">GAP</strong> earlier than 4.7. See Section <a href="chap53_mj.html#X810D23017A5527B7"><span class="RefLink">53.6</span></a> for more information.</p>

<p>The <em>rank</em> of a transformation on the positive integers up to <code class="code">n</code> is the number of distinct points in <code class="code">[ 1 ^ f .. n ^ f ]</code>. The <em>kernel</em> of a transformation <code class="code">f</code> on <code class="code">[ 1 .. n ]</code> is the equivalence relation on <code class="code">[ 1 .. n ]</code> consisting of those pairs <code class="code">(i, j)</code> of positive integers such that <code class="code">i ^ f = j ^ f</code>. The kernel of a transformation is represented in two ways: as a partition of <code class="code">[ 1 .. n ]</code> or as the image list of a transformation <code class="code">g</code> such that the kernel of <code class="code">g</code> on <code class="code">[ 1 .. n ]</code> equals the kernel of <code class="code">f</code> and <code class="code">j ^ g = i</code> for all <code class="code">j</code> in <code class="code">i</code>th class. The latter is referred to as the <em>flat kernel</em> of <code class="code">f</code>. For any given transformation <code class="code">f</code> and value <code class="code">n</code>, there is a unique transformation <code class="code">g</code> with this property.</p>

<p>A <em>functional digraph</em> is a directed graph where every vertex has out-degree <span class="SimpleMath">\(1\)</span>. A transformation <var class="Arg">f</var> can be thought of as a functional digraph with vertices the positive integers and edges from <code class="code">i</code> to <code class="code">i ^ f</code> for every <code class="code">i</code>. A <em>component</em> of a transformation is defined as a component of the corresponding functional digraph. More specifically, <code class="code">i</code> and <code class="code">j</code> are in the same component if and only if there are <span class="SimpleMath">\(i = v_0, v_1, \ldots, v_n = j\)</span> such that either <span class="SimpleMath">\(v_{k+1}=v_{k}^f\)</span> or <span class="SimpleMath">\(v_{k}=v_{k+1}^f\)</span> for all <span class="SimpleMath">\(k\)</span>. A <em>cycle</em> of a transformation is defined as a cycle (or strongly connected component) of the corresponding functional digraph. More specifically, <code class="code">i</code> belongs to a cycle of <var class="Arg">f</var> if there are <span class="SimpleMath">\(i=v_0, v_1, \ldots, v_n=i\)</span> such that either <span class="SimpleMath">\(v_{k+1}=v_{k}^f\)</span> or <span class="SimpleMath">\(v_{k}=v_{k+1}^f\)</span> for all <span class="SimpleMath">\(k\)</span>.</p>

<p>Internally, <strong class="pkg">GAP</strong> stores a transformation <code class="code">f</code> as a list consisting of the images <code class="code">i ^ f</code> for all values of <code class="code">i</code> less than a value which is at least the degree of <code class="code">f</code> and which is determined at the time of the creation of <code class="code">f</code>. When the degree of a transformation <code class="code">f</code> is at most 65536, the images of points under <code class="code">f</code> are stored as 16-bit integers, the kernel and image set are subobjects of <code class="code">f</code> which are plain lists of <strong class="pkg">GAP</strong> integers. When the degree of <code class="code">f</code> is greater than 65536, the images of points under <code class="code">f</code> are stored as 32-bit integers; the kernel and image set are stored in the same way as before. A transformation belongs to <code class="code">IsTrans2Rep</code> if it is stored using 16-bit integers and to <code class="code">IsTrans4Rep</code> if it is stored using 32-bit integers.</p>

<p><a id="X7CF9291C7CC42340" name="X7CF9291C7CC42340"></a></p>

<h4>53.1 <span class="Heading">The family and categories of transformations</span></h4>

<p><a id="X7B6259467974FB70" name="X7B6259467974FB70"></a></p>

<h5>53.1-1 IsTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformation</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>Every transformation in <strong class="pkg">GAP</strong> belongs to the category <code class="code">IsTransformation</code>. Basic operations for transformations are <code class="func">ImageListOfTransformation</code> (<a href="chap53_mj.html#X7AEC9E6687B3505A"><span class="RefLink">53.5-2</span></a>), <code class="func">ImageSetOfTransformation</code> (<a href="chap53_mj.html#X839A6D6082A21D1F"><span class="RefLink">53.5-3</span></a>), <code class="func">KernelOfTransformation</code> (<a href="chap53_mj.html#X80FCB5048789CF75"><span class="RefLink">53.5-12</span></a>), <code class="func">FlatKernelOfTransformation</code> (<a href="chap53_mj.html#X8083794579274E87"><span class="RefLink">53.5-11</span></a>), <code class="func">RankOfTransformation</code> (<a href="chap53_mj.html#X818EBB167C7EA37B"><span class="RefLink">53.5-4</span></a>), <code class="func">DegreeOfTransformation</code> (<a href="chap53_mj.html#X78A209C87CF0E32B"><span class="RefLink">53.5-1</span></a>), multiplication of two transformations via <code class="keyw">*</code>, and exponentiation with the first argument a positive integer <code class="code">i</code> and second argument a transformation <code class="code">f</code> where the result is the image <code class="code">i ^ f</code> of the point <code class="code">i</code> under <code class="code">f</code>.</p>

<p><a id="X7A6747CE85F2E6EA" name="X7A6747CE85F2E6EA"></a></p>

<h5>53.1-2 IsTransformationCollection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformationCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>Every collection of transformations belongs to the category <code class="code">IsTransformationCollection</code>. For example, transformation semigroups belong to <code class="code">IsTransformationCollection</code>.</p>

<p><a id="X7E58AFA1832FF064" name="X7E58AFA1832FF064"></a></p>

<h5>53.1-3 TransformationFamily</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationFamily</code></td><td class="tdright">(&nbsp;family&nbsp;)</td></tr></table></div>
<p>The family of all transformations is <code class="code">TransformationFamily</code>.</p>

<p><a id="X80F3086F87E93DF8" name="X80F3086F87E93DF8"></a></p>

<h4>53.2 <span class="Heading">Creating transformations</span></h4>

<p>There are several ways of creating transformations in <strong class="pkg">GAP</strong>, which are described in this section.</p>

<p><a id="X86ADBDE57A20E323" name="X86ADBDE57A20E323"></a></p>

<h5>53.2-1 Transformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transformation</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transformation</code>( <var class="Arg">list</var>, <var class="Arg">func</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationList</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">TransformationList</code> returns the transformation <code class="code">f</code> such that <code class="code">i ^ <var class="Arg">f</var> = <var class="Arg">list</var>[i]</code> if <code class="code">i</code> is between <code class="code">1</code> and the length of <var class="Arg">list</var> and <code class="code">i ^ <var class="Arg">f</var> = i</code> if <code class="code">i</code> is larger than the length of <var class="Arg">list</var>. An error will occur in <code class="code">TransformationList</code> if <var class="Arg">list</var> is not dense, if <var class="Arg">list</var> contains an element which is not a positive integer, or if <var class="Arg">list</var> contains an integer not in <code class="code">[ 1 .. Length( <var class="Arg">list</var> ) ]</code>.</p>

<p><code class="code">TransformationList</code> is the analogue in the context of transformations of <code class="func">PermList</code> (<a href="chap42_mj.html#X78D611D17EA6E3BC"><span class="RefLink">42.5-2</span></a>). <code class="code">Transformation</code> is a synonym of <code class="code">TransformationList</code> when the argument is a list.</p>

<p>When the arguments are a list of positive integers <var class="Arg">list</var> and a function <var class="Arg">func</var>, <code class="code">Transformation</code> returns the transformation <code class="code">f</code> such that <code class="code"><var class="Arg">list</var>[i] ^ f = <var class="Arg">func</var>( <var class="Arg">list</var>[i] )</code> if <code class="code">i</code> is in the range <code class="code">[ 1 .. Length( <var class="Arg">list</var> ) ]</code> and <code class="code">f</code> fixes all other points.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "NotationForTransformations", "input" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] );</span>
Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := TransformationList( [ 2, 3, 3, 1 ] );</span>
Transformation( [ 2, 3, 3, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "NotationForTransformations", "fr" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 10, 11 ], x -&gt; x ^ 2 );</span>
&lt;transformation: 1,2,3,4,5,6,7,8,9,100,121&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "NotationForTransformations", "input" );</span>
</pre></div>

<p><a id="X8040642687531E7F" name="X8040642687531E7F"></a></p>

<h5>53.2-2 Transformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transformation</code>( <var class="Arg">src</var>, <var class="Arg">dst</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationListList</code>( <var class="Arg">src</var>, <var class="Arg">dst</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p>If <var class="Arg">src</var> and <var class="Arg">dst</var> are lists of positive integers of the same length, such that <var class="Arg">src</var> contains no element twice, then <code class="code">TransformationListList( <var class="Arg">src</var>, <var class="Arg">dst</var> )</code> returns a transformation <code class="code">f</code> such that <code class="code">src[i] ^ <var class="Arg">f</var> = dst[i]</code>. The transformation <var class="Arg">f</var> fixes all points larger than the maximum of the entries in <var class="Arg">src</var> and <var class="Arg">dst</var>.</p>

<p><code class="code">TransformationListList</code> is the analogue in the context of transformations of <code class="func">MappingPermListList</code> (<a href="chap42_mj.html#X8087DCC780B9656A"><span class="RefLink">42.5-3</span></a>). <code class="code">Transformation</code> is a synonym of <code class="code">TransformationListList</code> when its arguments are two lists of positive integers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Transformation( [ 10, 11 ],[ 11, 12 ] );</span>
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationListList( [ 1, 2, 3 ], [ 4, 5, 6 ] );</span>
Transformation( [ 4, 5, 6, 4, 5, 6 ] )
</pre></div>

<p><a id="X7E82EBD68455EE4A" name="X7E82EBD68455EE4A"></a></p>

<h5>53.2-3 TransformationByImageAndKernel</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationByImageAndKernel</code>( <var class="Arg">im</var>, <var class="Arg">ker</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p>This operation returns the transformation <code class="code">f</code> where <code class="code">i ^ f = <var class="Arg">im</var>[<var class="Arg">ker</var>[i]]</code> for <code class="code">i</code> in the range <code class="code">[ 1 .. Length( <var class="Arg">ker</var> ) ]</code>. This transformation has flat kernel equal to <var class="Arg">ker</var> and image set equal to <code class="code">Set( <var class="Arg">im</var> )</code>.</p>

<p>The argument <var class="Arg">im</var> should be a duplicate free list of positive integers and <var class="Arg">ker</var> should be the flat kernel of a transformation with rank equal to the length of <var class="Arg">im</var>. If the arguments do not fulfil these conditions, then <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationByImageAndKernel( [ 8, 1, 3, 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   [ 1, 2, 3, 1, 2, 1, 2, 4 ] );</span>
Transformation( [ 8, 1, 3, 8, 1, 8, 1, 4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationByImageAndKernel( [ 1, 3, 8, 4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                   [ 1, 2, 3, 1, 2, 1, 2, 4 ] );</span>
Transformation( [ 1, 3, 8, 1, 3, 1, 3, 4 ] )
</pre></div>

<p><a id="X85D1071484CE004C" name="X85D1071484CE004C"></a></p>

<h5>53.2-4 Idempotent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Idempotent</code>( <var class="Arg">im</var>, <var class="Arg">ker</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p><code class="func">Idempotent</code> returns the idempotent transformation with image set <var class="Arg">im</var> and flat kernel <var class="Arg">ker</var> if such a transformation exists and <code class="keyw">fail</code> if it does not. More specifically, a transformation is returned when the argument <var class="Arg">im</var> is a set of positive integers and <var class="Arg">ker</var> is the flat kernel of a transformation with rank equal to the length of <var class="Arg">im</var> and where <var class="Arg">im</var> has one element in every class of the kernel corresponding to <var class="Arg">ker</var>.</p>

<p>Note that this is function does not always return the same transformation as <code class="code">TransformationByImageAndKernel</code> with the same arguments.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Idempotent( [ 2, 4, 6, 7, 8, 10, 11 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">               [ 1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5 ] );</span>
Transformation( [ 8, 2, 8, 4, 4, 6, 7, 8, 10, 10, 11, 7 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationByImageAndKernel( [ 2, 4, 6, 7, 8, 10, 11 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     [ 1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5 ] );</span>
Transformation( [ 2, 4, 2, 6, 6, 7, 8, 2, 10, 10, 11, 8 ] )
</pre></div>

<p><a id="X7C2A3FC9782F2099" name="X7C2A3FC9782F2099"></a></p>

<h5>53.2-5 TransformationOp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationOp</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationOpNC</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A transformation or <code class="keyw">fail</code>.</p>

<p><code class="func">TransformationOp</code> returns the transformation that corresponds to the action of the object <var class="Arg">obj</var> on the domain or list <var class="Arg">list</var> via the function <var class="Arg">func</var>. If the optional third argument <var class="Arg">func</var> is not specified, then the action <code class="func">OnPoints</code> (<a href="chap41_mj.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>) is used by default. Note that the returned transformation refers to the positions in <var class="Arg">list</var> even if <var class="Arg">list</var> itself consists of integers.</p>

<p>This function is the analogue in the context of transformations of <code class="func">Permutation</code> (<a href="chap41_mj.html#X7807A33381DCAB26"><span class="RefLink">41.9-1</span></a>).</p>

<p>If <var class="Arg">obj</var> does not map elements of <var class="Arg">list</var> into <var class="Arg">list</var>, then <code class="keyw">fail</code> is returned.</p>

<p><code class="func">TransformationOpNC</code> does not check that <var class="Arg">obj</var> maps elements of <var class="Arg">list</var> to elements of <var class="Arg">list</var> or that a transformation is defined by the action of <var class="Arg">obj</var> on <var class="Arg">list</var> via <var class="Arg">func</var>. This function should be used only with caution, and in situations where it is guaranteed that the arguments have the required properties.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 10, 2, 3, 10, 5, 10, 7, 2, 5, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp( f, [ 2, 3 ] );</span>
IdentityTransformation
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp( f, [ 1, 2, 3 ] );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SemigroupByMultiplicationTable( [ [ 1, 1, 1 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                          [ 1, 1, 1 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                                          [ 1, 1, 2 ] ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp( Elements( S )[1], S, OnRight );</span>
Transformation( [ 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationOp( Elements( S )[3], S, OnRight );</span>
Transformation( [ 1, 1, 2 ] )
</pre></div>

<p><a id="X7D6FCC417DE86CD1" name="X7D6FCC417DE86CD1"></a></p>

<h5>53.2-6 TransformationNumber</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TransformationNumber</code>( <var class="Arg">m</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NumberTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A transformation or a number.</p>

<p>These functions implement a bijection from the transformations with degree at most <var class="Arg">n</var> to the numbers <code class="code">[ 1 .. <var class="Arg">n</var> ^ <var class="Arg">n</var> ]</code>.</p>

<p>More precisely, if <var class="Arg">m</var> and <var class="Arg">n</var> are positive integers such that <var class="Arg">m</var> is at most <code class="code"><var class="Arg">n</var> ^ <var class="Arg">n</var></code>, then <code class="code">TransformationNumber</code> returns the <var class="Arg">m</var>th transformation with degree at most <var class="Arg">n</var>.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a positive integer, which is greater than or equal to the degree of <var class="Arg">f</var>, then <code class="code">NumberTransformation</code> returns the number in <code class="code">[ 1 .. <var class="Arg">n</var> ^ <var class="Arg">n</var> ]</code> that corresponds to <var class="Arg">f</var>. If the optional second argument <var class="Arg">n</var> is not specified, then the degree of <var class="Arg">f</var> is used by default.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 3, 3, 5, 3, 3 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NumberTransformation( f, 5 );</span>
1613
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NumberTransformation( f, 10 );</span>
2242256790
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationNumber( 2242256790, 10 );</span>
Transformation( [ 3, 3, 5, 3, 3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TransformationNumber( 1613, 5 );</span>
Transformation( [ 3, 3, 5, 3, 3 ] )</pre></div>

<p><a id="X8475448F87E8CB8A" name="X8475448F87E8CB8A"></a></p>

<h5>53.2-7 <span class="Heading">RandomTransformation</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomTransformation</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A random transformation.</p>

<p>If <var class="Arg">n</var> is a positive integer, then <code class="code">RandomTransformation</code> returns a random transformation with degree at most <var class="Arg">n</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomTransformation( 6 );</span>
Transformation( [ 2, 1, 2, 1, 1, 2 ] )</pre></div>

<p><a id="X8268A58685BEFD6F" name="X8268A58685BEFD6F"></a></p>

<h5>53.2-8 IdentityTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IdentityTransformation</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>This variable is bound to the identity transformation, which has degree <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdentityTransformation;</span>
IdentityTransformation
</pre></div>

<p><a id="X7F1E4B5184210D2B" name="X7F1E4B5184210D2B"></a></p>

<h5>53.2-9 ConstantTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConstantTransformation</code>( <var class="Arg">m</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p>This function returns a constant transformation <code class="code">f</code> such that <code class="code">i ^ f = <var class="Arg">n</var></code> for all <code class="code">i</code> less than or equal to <var class="Arg">m</var>, when <var class="Arg">n</var> and <var class="Arg">m</var> are positive integers.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstantTransformation( 5, 1 );</span>
Transformation( [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstantTransformation( 6, 4 );</span>
Transformation( [ 4, 4, 4, 4, 4, 4 ] )
</pre></div>

<p><a id="X7F81A18B813C9DF0" name="X7F81A18B813C9DF0"></a></p>

<h4>53.3 <span class="Heading">Changing the representation of a transformation</span></h4>

<p>It is possible that a transformation in <strong class="pkg">GAP</strong> can be represented as another type of object, or that another type of <strong class="pkg">GAP</strong> object can be represented as a transformation.</p>

<p>The operations <code class="func">AsPermutation</code> (<a href="chap42_mj.html#X8353AB8987E35DF3"><span class="RefLink">42.5-6</span></a>) and <code class="func">AsPartialPerm</code> (<a href="chap54_mj.html#X87EC67747B260E98"><span class="RefLink">54.4-2</span></a>) can be used to convert transformations into permutations or partial permutations, where appropriate. In this section we describe functions for converting other types of objects into transformations.</p>

<p><a id="X7C5360B2799943F3" name="X7C5360B2799943F3"></a></p>

<h5>53.3-1 AsTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">AsTransformation</code> returns the permutation, transformation, partial permutation or binary relation <var class="Arg">f</var> as a transformation.</p>


<dl>
<dt><strong class="Mark">for permutations</strong></dt>
<dd><p>If <var class="Arg">f</var> is a permutation and <var class="Arg">n</var> is a non-negative integer, then <code class="code">AsTransformation( <var class="Arg">f</var>, <var class="Arg">n</var> )</code> returns the transformation <code class="code">g</code> such that <code class="code">i ^ g = i ^ f</code> for all <code class="code">i</code> in the range <code class="code">[ 1 .. <var class="Arg">n</var> ]</code>.</p>

<p>If no non-negative integer <var class="Arg">n</var> is specified, then the largest moved point of <var class="Arg">f</var> is used as the value for <var class="Arg">n</var>; see <code class="func">LargestMovedPoint</code> (<a href="chap42_mj.html#X84AA603987C94AC0"><span class="RefLink">42.3-2</span></a>).</p>

</dd>
<dt><strong class="Mark">for transformations</strong></dt>
<dd><p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a non-negative integer less than the degree of <var class="Arg">f</var> such that <var class="Arg">f</var> is a transformation of <code class="code">[ 1 .. <var class="Arg">n</var> ]</code>, then <code class="code">AsTransformation</code> returns the restriction of <var class="Arg">f</var> to <code class="code">[ 1 .. <var class="Arg">n</var> ]</code>.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is not specified or is greater than or equal to the degree of <var class="Arg">f</var>, then <var class="Arg">f</var> is returned.</p>

</dd>
<dt><strong class="Mark">for partial permutations</strong></dt>
<dd><p>A partial permutation <var class="Arg">f</var> can be converted into a transformation <code class="code">g</code> as follows. The degree <code class="code">m</code> of <code class="code">g</code> is equal to the maximum of <var class="Arg">n</var>, the largest moved point of <var class="Arg">f</var> plus <code class="code">1</code>, and the largest image of a moved point plus <code class="code">1</code>. The transformation <code class="code">g</code> agrees with <var class="Arg">f</var> on the domain of <var class="Arg">f</var> and maps the points in <code class="code">[ 1 .. m ]</code>, which are not in the domain of <var class="Arg">f</var> to <code class="code">n</code>, i.e. <code class="code">i ^ g = i ^ <var class="Arg">f</var></code> for all <code class="code">i</code> in the domain of <var class="Arg">f</var>, <code class="code">i ^ g = n</code> for all <code class="code">i</code> in <code class="code">[ 1 .. n ]</code>, and <code class="code">i ^ g = i</code> for all <code class="code">i</code> greater than <var class="Arg">n</var>. <code class="code">AsTransformation( <var class="Arg">f</var> )</code> returns the transformation <code class="code">g</code> defined in the previous sentences.</p>

<p>If the optional argument <var class="Arg">n</var> is not present, then the default value of the maximum of the largest moved point and the largest image of a moved point of <var class="Arg">f</var> plus <code class="code">1</code> is used.</p>

</dd>
<dt><strong class="Mark">for binary relations</strong></dt>
<dd><p>In the case that <var class="Arg">f</var> is a binary relation, which defines a transformation, <code class="code">AsTransformation</code> returns that transformation.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 3, 5, 3, 4, 1, 2 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( f, 5 );</span>
Transformation( [ 3, 5, 3, 4, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( f, 10 );</span>
Transformation( [ 3, 5, 3, 4, 1, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( (1,3)(2,4) );</span>
Transformation( [ 3, 4, 1, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( (1,3)(2,4), 10 );</span>
Transformation( [ 3, 4, 1, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4, 5, 6 ], [ 6, 7, 1, 4, 3, 2 ] );</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( f, 11 );</span>
Transformation( [ 6, 7, 1, 4, 3, 2, 11, 11, 11, 11, 11 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm( last, DomainOfPartialPerm( f ) );</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( f, 14 );</span>
Transformation( [ 6, 7, 1, 4, 3, 2, 14, 14, 14, 14, 14, 14, 14, 14 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm( last, DomainOfPartialPerm( f ) );</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( f );</span>
Transformation( [ 6, 7, 1, 4, 3, 2, 8, 8 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsTransformation( Transformation( [ 1, 1, 2 ] ), 0 );</span>
IdentityTransformation
</pre></div>

<p><a id="X846A6F6B7B715188" name="X846A6F6B7B715188"></a></p>

<h5>53.3-2 RestrictedTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedTransformation</code>( <var class="Arg">f</var>, <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">RestrictedTransformation</code> returns the new transformation <code class="code">g</code> such that <code class="code"> i ^ g = i ^ <var class="Arg">f</var></code> for all <code class="code">i</code> in <var class="Arg">list</var> and such that <code class="code">i ^ g = i</code> for all <code class="code">i</code> not in <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2, 10, 5, 9, 10, 9, 6, 3, 8, 4, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedTransformation( f, [ 1, 2, 3, 10, 11, 12 ] );</span>
Transformation( [ 2, 10, 5, 4, 5, 6, 7, 8, 9, 4, 6, 5 ] )</pre></div>

<p><a id="X8708AE247F5B129B" name="X8708AE247F5B129B"></a></p>

<h5>53.3-3 PermutationOfImage</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutationOfImage</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A permutation or <code class="keyw">fail</code>.</p>

<p>If the transformation <var class="Arg">f</var> is a permutation of the points in its image, then <code class="code">PermutationOfImage</code> returns this permutation. If <var class="Arg">f</var> does not permute its image, then <code class="keyw">fail</code> is returned.</p>

<p>If <var class="Arg">f</var> happens to be a permutation, then <code class="code">PermutationOfImage</code> with argument <var class="Arg">f</var> returns the same value as <code class="code">AsPermutation</code> with argument <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 5, 8, 3, 5, 8, 6, 2, 2, 7, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage( f );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 8, 2, 10, 2, 4, 4, 7, 6, 9, 10 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage( f );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 3, 6, 6, 2, 10, 2, 3, 10, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage( f );</span>
(2,3,6,10,5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 5, 2, 8, 4, 1, 8, 10, 3, 5, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationOfImage( f );</span>
(1,5)(3,8)(7,10)
</pre></div>

<p><a id="X812CEC008609A8A2" name="X812CEC008609A8A2"></a></p>

<h4>53.4 <span class="Heading">Operators for transformations</span></h4>

<p><a id="X853031E37F214D10" name="X853031E37F214D10"></a></p>

<h5><code>53.4-1 \^</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \^</code>( <var class="Arg">i</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">i</var> ^ <var class="Arg">f</var></code> returns the image of the positive integer <var class="Arg">i</var> under the transformation <var class="Arg">f</var>.</p>

<p><a id="X824A8E247DE7E53E" name="X824A8E247DE7E53E"></a></p>

<h5><code>53.4-2 \^</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \^</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> ^ <var class="Arg">g</var></code> returns <code class="code"><var class="Arg">g</var> ^ -1 * <var class="Arg">f</var> * <var class="Arg">g</var></code> when <var class="Arg">f</var> is a transformation and <var class="Arg">g</var> is a permutation <code class="func">\^</code> (<a href="chap31_mj.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>). This operation requires essentially the same number of steps as multiplying a transformation by a permutation, which is approximately one third of the number required to first invert <var class="Arg">g</var>, take the product with <var class="Arg">f</var>, and then the product with <var class="Arg">g</var>.</p>

<p><a id="X7F6573E67D27D822" name="X7F6573E67D27D822"></a></p>

<h5><code>53.4-3 \*</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \*</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> * <var class="Arg">g</var></code> returns the composition of <var class="Arg">f</var> and <var class="Arg">g</var> when <var class="Arg">f</var> and <var class="Arg">g</var> are transformations or permutations. The product of a permutation and a transformation is returned as a transformation.</p>

<p><a id="X828CA7137F97C124" name="X828CA7137F97C124"></a></p>

<h5><code>53.4-4 \/</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \/</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> / <var class="Arg">g</var></code> returns <code class="code"><var class="Arg">f</var> * <var class="Arg">g</var> ^ -1</code> when <var class="Arg">f</var> is a transformation and <var class="Arg">g</var> is a permutation. This operation requires essentially the same number of steps as multiplying a transformation by a permutation, which is approximately half the number required to first invert <var class="Arg">g</var> and then take the product with <var class="Arg">f</var>.</p>

<p><a id="X7856D91E8709EF5B" name="X7856D91E8709EF5B"></a></p>

<h5>53.4-5 LeftQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftQuotient</code>( <var class="Arg">g</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>returns <code class="code"><var class="Arg">g</var> ^ -1 * <var class="Arg">f</var></code> when <var class="Arg">f</var> is a transformation and <var class="Arg">g</var> is a permutation. This operation uses essentially the same number of steps as multiplying a transformation by a permutation, which is approximately half the number required to first invert <var class="Arg">g</var> and then take the product with <var class="Arg">f</var>.</p>

<p><a id="X84B8E294826A9377" name="X84B8E294826A9377"></a></p>

<h5><code>53.4-6 \&lt;</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \&lt;</code>( <var class="Arg">i</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> &lt; <var class="Arg">g</var></code> returns <code class="keyw">true</code> if the image list of <var class="Arg">f</var> is lexicographically less than the image list of <var class="Arg">g</var> and <code class="keyw">false</code> if it is not.</p>

<p><a id="X7D454AAD851AE07E" name="X7D454AAD851AE07E"></a></p>

<h5><code>53.4-7 \=</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \=</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> = <var class="Arg">g</var></code> returns <code class="keyw">true</code> if the transformation <var class="Arg">f</var> equals the transformation <var class="Arg">g</var> and returns <code class="keyw">false</code> if it does not.</p>

<p><a id="X83DBA2A18719EFA8" name="X83DBA2A18719EFA8"></a></p>

<h5>53.4-8 PermLeftQuoTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoTransformation</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoTransformationNC</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A permutation.</p>

<p>Returns the permutation on the image set of <var class="Arg">f</var> induced by <code class="code"><var class="Arg">f</var> ^ -1 * <var class="Arg">g</var></code> when the transformations <var class="Arg">f</var> and <var class="Arg">g</var> have equal kernel and image set.</p>

<p><code class="code">PermLeftQuoTransformation</code> verifies that <var class="Arg">f</var> and <var class="Arg">g</var> have equal kernels and image sets, and returns an error if they do not. <code class="code">PermLeftQuoTransformationNC</code> does no checks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g := Transformation( [ 5, 7, 1, 6, 4, 3, 2, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermLeftQuoTransformation( f, g );</span>
(1,6,7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermLeftQuoTransformation( g, f );</span>
(1,7,6)
</pre></div>

<p><a id="X8275DFAA8270BB59" name="X8275DFAA8270BB59"></a></p>

<h5>53.4-9 IsInjectiveListTrans</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsInjectiveListTrans</code>( <var class="Arg">list</var>, <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>The argument <var class="Arg">obj</var> should be a transformation or the list of images of a transformation and <var class="Arg">list</var> should be a list of positive integers. <code class="code">IsInjectiveListTrans</code> checks if <var class="Arg">obj</var> is injective on <var class="Arg">list</var>.</p>

<p>More precisely, if <var class="Arg">obj</var> is a transformation, then we define <code class="code">f := <var class="Arg">obj</var></code> and if <var class="Arg">obj</var> is the image list of a transformation we define <code class="code">f := Transformation( <var class="Arg">obj</var> )</code>. <code class="code">IsInjectiveListTrans</code> returns <code class="keyw">true</code> if <code class="code">f</code> is injective on <var class="Arg">list</var> and <code class="keyw">false</code> if it is not. If <var class="Arg">list</var> is not duplicate free, then <code class="keyw">false</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 1, 5 ], f );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 5, 1 ], f );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 5, 1, 5, 1, 1, ], f );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsInjectiveListTrans( [ 5, 1, 2, 3 ], [ 1, 2, 3, 4, 5 ] );</span>
true
</pre></div>

<p><a id="X834A313B7DAF06D5" name="X834A313B7DAF06D5"></a></p>

<h5>53.4-10 ComponentTransformationInt</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentTransformationInt</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A list of positive integers.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a positive integer, then <code class="code">ComponentTransformationInt</code> returns those elements <code class="code">i</code> such that <code class="code"><var class="Arg">n</var> ^ <var class="Arg">f</var> ^ j = i</code> for some positive integer <code class="code">j</code>, i.e. the elements of the component of <var class="Arg">f</var> containing <var class="Arg">n</var> that can be obtained by applying powers of <var class="Arg">f</var> to <var class="Arg">n</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 2, 8, 4, 7, 5, 8, 3, 5, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentTransformationInt( f, 1 );</span>
[ 1, 6, 5, 7, 8, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentTransformationInt( f, 12 );</span>
[ 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentTransformationInt( f, 5 );</span>
[ 5, 7, 8, 3 ]
</pre></div>

<p><a id="X82F5DEEC837B60A3" name="X82F5DEEC837B60A3"></a></p>

<h5>53.4-11 PreImagesOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PreImagesOfTransformation</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p>Returns the preimages of the positive integer <var class="Arg">n</var> under the transformation <var class="Arg">f</var>, i.e. the positive integers <code class="code">i</code> such that <code class="code">i ^ <var class="Arg">f</var> = n</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagesOfTransformation( f, 1 );</span>
[ 8, 9 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagesOfTransformation( f, 3 );</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagesOfTransformation( f, 100 );</span>
[ 100 ]
</pre></div>

<p><a id="X86DE4F7A7C535820" name="X86DE4F7A7C535820"></a></p>

<h4>53.5 <span class="Heading">Attributes for transformations</span></h4>

<p>In this section we describe the functions available in <strong class="pkg">GAP</strong> for finding various properties and attributes of transformations.</p>

<p><a id="X78A209C87CF0E32B" name="X78A209C87CF0E32B"></a></p>

<h5>53.5-1 DegreeOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfTransformationCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>The <em>degree</em> of a transformation <var class="Arg">f</var> is the largest value such that <code class="code">n ^ <var class="Arg">f</var> &lt;&gt; n</code> or <code class="code">i ^ <var class="Arg">f</var> = n</code> for some <code class="code">i &lt;&gt; n</code>. Equivalently, the degree of a transformation is the least value <code class="code">n</code> such that <code class="code">[ n + 1, n + 2, ... ]</code> is fixed pointwise by <var class="Arg">f</var>.</p>

<p>The degree of a collection of transformations <var class="Arg">coll</var> is the maximum degree of any transformation in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformation( IdentityTransformation );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformationCollection(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ Transformation( [ 1, 3, 4, 1 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  Transformation( [ 3, 1, 1, 3, 4 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  Transformation( [ 2, 4, 1, 2 ] ) ] );</span>
5
</pre></div>

<p><a id="X7AEC9E6687B3505A" name="X7AEC9E6687B3505A"></a></p>

<h5>53.5-2 ImageListOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageListOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ListTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: The list of images of a transformation.</p>

<p>Returns the list of images of <code class="code">[ 1 .. <var class="Arg">n</var> ]</code> under the transformation <var class="Arg">f</var>, which is <code class="code">[ 1 ^ <var class="Arg">f</var> .. <var class="Arg">n</var> ^ <var class="Arg">f</var> ]</code>. If the optional second argument <var class="Arg">n</var> is not present, then the degree of <var class="Arg">f</var> is used by default.</p>

<p>This is the analogue for transformations of <code class="func">ListPerm</code> (<a href="chap42_mj.html#X7A9DCFD986958C1E"><span class="RefLink">42.5-1</span></a>) for permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2 ,3, 4, 2, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageListOfTransformation( f );</span>
[ 2, 3, 4, 2, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageListOfTransformation( f, 10 );</span>
[ 2, 3, 4, 2, 4, 6, 7, 8, 9, 10 ]
</pre></div>

<p><a id="X839A6D6082A21D1F" name="X839A6D6082A21D1F"></a></p>

<h5>53.5-3 ImageSetOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageSetOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: The set of images of the transformation.</p>

<p>Returns the set of points in the list of images of <code class="code">[ 1 .. <var class="Arg">n</var> ]</code> under <var class="Arg">f</var>, i.e. the sorted list of images with duplicates removed. If the optional second argument <var class="Arg">n</var> is not given, then the degree of <var class="Arg">f</var> is used.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfTransformation( f );</span>
[ 1, 2, 3, 4, 5, 6, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfTransformation( f, 10 );</span>
[ 1, 2, 3, 4, 5, 6, 7, 9, 10 ]
</pre></div>

<p><a id="X818EBB167C7EA37B" name="X818EBB167C7EA37B"></a></p>

<h5>53.5-4 RankOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">list</var>] )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: The rank of a transformation.</p>

<p>When the arguments are a transformation <var class="Arg">f</var> and a positive integer <var class="Arg">n</var>, <code class="code">RankOfTransformation</code> returns the size of the set of images of the transformation <var class="Arg">f</var> in the range <code class="code">[ 1 .. <var class="Arg">n</var> ]</code>. If the optional second argument <var class="Arg">n</var> is not specified, then the degree of <var class="Arg">f</var> is used.</p>

<p>When the arguments are a transformation <var class="Arg">f</var> and a list <var class="Arg">list</var> of positive integers, this function returns the size of the set of images of the transformation <var class="Arg">f</var> on <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 8, 5, 8, 2, 2, 8, 4, 7, 3, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfTransformation( f );</span>
[ 1, 2, 3, 4, 5, 7, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfTransformation( f );</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfTransformation( f, 100 );</span>
97
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfTransformation( f, [ 2, 5, 8 ] );</span>
3
</pre></div>

<p><a id="X844F00F982D5BD3C" name="X844F00F982D5BD3C"></a></p>

<h5>53.5-5 MovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p>When the argument is a transformation, <code class="code">MovedPoints</code> returns the set of positive integers <code class="code">i</code> such that <code class="code">i ^ <var class="Arg">f</var> &lt;&gt; i</code>.</p>

<p><code class="code">MovedPoints</code> returns the set of points moved by some element of the collection of transformations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 10, 1, 4, 6, 5, 1, 2, 3, 3 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints( f );</span>
[ 1, 2, 3, 5, 6, 7, 8, 9, 10 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := IdentityTransformation;</span>
IdentityTransformation
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints( f );</span>
[  ]
</pre></div>

<p><a id="X7FA6A4B57FDA003D" name="X7FA6A4B57FDA003D"></a></p>

<h5>53.5-6 NrMovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>When the argument is a transformation,<code class="code">NrMovedPoints</code> returns the number of positive integers <code class="code">i</code> such that <code class="code">i ^ <var class="Arg">f</var> &lt;&gt; i</code>.</p>

<p><code class="code">MovedPoints</code> returns the number of points which are moved by at least one element of the collection of transformations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 7, 1, 4, 3, 2, 7, 7, 6, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( f );</span>
9
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints( IdentityTransformation );</span>
0
</pre></div>

<p><a id="X86C0DDDC7881273A" name="X86C0DDDC7881273A"></a></p>

<h5>53.5-7 SmallestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestMovedPoint</code> returns the smallest positive integer <code class="code">i</code> such that <code class="code">i ^ <var class="Arg">f</var> &lt;&gt; i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the smallest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">SmallestMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup( 5 );</span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint( S );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( IdentityTransformation );</span>
&lt;trivial transformation group of degree 0 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint( S );</span>
infinity
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint( f );</span>
4
</pre></div>

<p><a id="X8383A7727AC97724" name="X8383A7727AC97724"></a></p>

<h5>53.5-8 LargestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">LargestMovedPoint</code> returns the largest positive integers <code class="code">i</code> such that <code class="code">i ^ <var class="Arg">f</var> &lt;&gt; i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the largest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">LargestMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup( 5 );</span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint( S );</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( IdentityTransformation );</span>
&lt;trivial transformation group of degree 0 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint( S );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint( f );</span>
5
</pre></div>

<p><a id="X7CCFE27E83676572" name="X7CCFE27E83676572"></a></p>

<h5>53.5-9 SmallestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestImageOfMovedPoint</code> returns the smallest positive integer <code class="code">i ^ <var class="Arg">f</var></code> such that <code class="code">i ^ <var class="Arg">f</var> &lt;&gt; i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the smallest integer which is the image a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">SmallestImageOfMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup( 5 );</span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint( S );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( IdentityTransformation );</span>
&lt;trivial transformation group of degree 0 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint( S );</span>
infinity
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint( f );</span>
6
</pre></div>

<p><a id="X7E7172567C3A3E63" name="X7E7172567C3A3E63"></a></p>

<h5>53.5-10 LargestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">LargestImageOfMovedPoint</code> returns the largest positive integer <code class="code">i ^ <var class="Arg">f</var></code> such that <code class="code">i ^ <var class="Arg">f</var> &lt;&gt; i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity transformation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of transformations <var class="Arg">coll</var>, then the largest integer which is the image a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity transformations, then <code class="code">LargestImageOfMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup( 5 );</span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint( S );</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( IdentityTransformation );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint( S );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint( f );</span>
6
</pre></div>

<p><a id="X8083794579274E87" name="X8083794579274E87"></a></p>

<h5>53.5-11 FlatKernelOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FlatKernelOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: The flat kernel of a transformation.</p>

<p>If the kernel classes of the transformation <var class="Arg">f</var> on <code class="code">[ 1 .. <var class="Arg">n</var> ]</code> are <span class="SimpleMath">\(K_1, \dots, K_r\)</span>, then <code class="code">FlatKernelOfTransformation</code> returns a list <code class="code">L</code> such that <code class="code">L[i] = j</code> for all <code class="code">i</code> in <span class="SimpleMath">\(K_j\)</span>. For a given transformation and positive integer <var class="Arg">n</var>, there is a unique such list.</p>

<p>If the optional second argument <var class="Arg">n</var> is not present, then the degree of <var class="Arg">f</var> is used by default.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 10, 3, 7, 10, 1, 5, 9, 2, 6, 10 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FlatKernelOfTransformation( f );</span>
[ 1, 2, 3, 1, 4, 5, 6, 7, 8, 1 ]
</pre></div>

<p><a id="X80FCB5048789CF75" name="X80FCB5048789CF75"></a></p>

<h5>53.5-12 KernelOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KernelOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>, <var class="Arg">bool</var>] )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: The kernel of a transformation.</p>

<p>When the arguments are a transformation <var class="Arg">f</var>, a positive integer <var class="Arg">n</var>, and <code class="keyw">true</code>, <code class="code">KernelOfTransformation</code> returns the kernel of the transformation <var class="Arg">f</var> on <code class="code">[ 1 .. <var class="Arg">n</var> ]</code> as a set of sets of positive integers. If the argument <var class="Arg">bool</var> is <code class="keyw">false</code>, then only the non-singleton classes are returned.</p>

<p>The second and third arguments are optional, the default values are the degree of <var class="Arg">f</var> and <code class="keyw">true</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 11, 1, 12, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation( f );</span>
[ [ 1, 4 ], [ 2, 5 ], [ 3 ], [ 6, 7 ], [ 8, 10 ], [ 9 ], [ 11 ],
  [ 12 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation( f, 5 );</span>
[ [ 1, 4 ], [ 2, 5 ], [ 3 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation( f, 5, false );</span>
[ [ 1, 4 ], [ 2, 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation( f, 15 );</span>
[ [ 1, 4 ], [ 2, 5 ], [ 3 ], [ 6, 7 ], [ 8, 10 ], [ 9 ], [ 11 ],
  [ 12 ], [ 13 ], [ 14 ], [ 15 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KernelOfTransformation( f, false );</span>
[ [ 1, 4 ], [ 2, 5 ], [ 6, 7 ], [ 8, 10 ] ]
</pre></div>

<p><a id="X860306EB7FAAD2D4" name="X860306EB7FAAD2D4"></a></p>

<h5>53.5-13 InverseOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InverseOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">InverseOfTransformation</code> returns a semigroup inverse of the transformation <var class="Arg">f</var> in the full transformation semigroup. An <em>inverse</em> of <var class="Arg">f</var> is any transformation <code class="code">g</code> such that <code class="code"><var class="Arg">f</var> * g * <var class="Arg">f</var> = <var class="Arg">f</var></code> and <code class="code">g * <var class="Arg">f</var> * g = g</code>. Every transformation has at least one inverse.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g := InverseOfTransformation( f );</span>
Transformation( [ 8, 1, 1, 1, 10, 2, 3, 1, 6, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f * g * f;</span>
Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g * f * g;</span>
Transformation( [ 8, 1, 1, 1, 10, 2, 3, 1, 6, 1 ] )
</pre></div>

<p><a id="X7BB9DB6E8558356D" name="X7BB9DB6E8558356D"></a></p>

<h5>53.5-14 Inverse</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Inverse</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p>If the transformation <var class="Arg">f</var> is a bijection, then <code class="code">Inverse</code> or <code class="code"><var class="Arg">f</var> ^ -1</code> returns the inverse of <var class="Arg">f</var>. If <var class="Arg">f</var> is not a bijection, then <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] ) ^ -1;</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Transformation( [ 2, 3, 1 ] ) ^ -1;</span>
Transformation( [ 3, 1, 2 ] )
</pre></div>

<p><a id="X863216CB7AF88BED" name="X863216CB7AF88BED"></a></p>

<h5>53.5-15 IndexPeriodOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IndexPeriodOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A pair of positive integers.</p>

<p>Returns the least positive integers <code class="code">m</code> and <code class="code">r</code> such that <code class="code"><var class="Arg">f</var> ^ (m + r) = <var class="Arg">f</var> ^ m</code>, which are known as the <em>index</em> and <em>period</em> of the transformation <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 3, 4, 4, 6, 1, 3, 3, 7, 1 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation( f );</span>
[ 2, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f ^ 2 = f ^ 5;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation( IdentityTransformation );</span>
[ 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation( Transformation( [ 1, 2, 1 ] ) );</span>
[ 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation( Transformation( [ 1, 2, 3 ] ) );</span>
[ 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfTransformation( Transformation( [ 1, 3, 2 ] ) );</span>
[ 1, 2 ]
</pre></div>

<p><a id="X85FE9F20810BCC70" name="X85FE9F20810BCC70"></a></p>

<h5>53.5-16 SmallestIdempotentPower</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestIdempotentPower</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>This function returns the least positive integer <code class="code">n</code> such that the transformation <code class="code"><var class="Arg">f</var> ^ n</code> is an idempotent. The smallest idempotent power of <var class="Arg">f</var> is the least multiple of the period of <var class="Arg">f</var> that is greater than or equal to the index of <var class="Arg">f</var>; see <code class="func">IndexPeriodOfTransformation</code> (<a href="chap53_mj.html#X863216CB7AF88BED"><span class="RefLink">53.5-15</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 7, 4, 1, 7, 4, 6, 1, 3, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestIdempotentPower( f );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 6, 6, 2, 7, 1, 5, 3, 10, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestIdempotentPower( f );</span>
2
</pre></div>

<p><a id="X858E944481F6B591" name="X858E944481F6B591"></a></p>

<h5>53.5-17 ComponentsOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentsOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A list of lists of positive integers.</p>

<p><code class="code">ComponentsOfTransformation</code> returns a list of the components of the transformation <var class="Arg">f</var>. Each component is a subset of <code class="code">[ 1 .. DegreeOfTransformation( f ) ]</code>, and the union of the components is <code class="code">[ 1 .. DegreeOfTransformation( f ) ]</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentsOfTransformation( f );</span>
[ [ 1, 6, 4, 9 ], [ 2, 12, 3, 11, 5, 7, 10 ], [ 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := AsTransformation( (1,8,2,4,11,5,10)(3,7)(9,12) );</span>
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentsOfTransformation( f );</span>
[ [ 1, 8, 2, 4, 11, 5, 10 ], [ 3, 7 ], [ 6 ], [ 9, 12 ] ]</pre></div>

<p><a id="X8640AE1C79201470" name="X8640AE1C79201470"></a></p>

<h5>53.5-18 NrComponentsOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrComponentsOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrComponentsOfTransformation</code> returns the number of components of the transformation <var class="Arg">f</var> on the range <code class="code">[ 1 .. DegreeOfTransformation( <var class="Arg">f</var> ) ]</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrComponentsOfTransformation( f );</span>
3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := AsTransformation( (1,8,2,4,11,5,10)(3,7)(9,12) );</span>
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrComponentsOfTransformation( f );</span>
4
</pre></div>

<p><a id="X784650B583CEAF7D" name="X784650B583CEAF7D"></a></p>

<h5>53.5-19 ComponentRepsOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentRepsOfTransformation</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A list of lists of positive integers.</p>

<p><code class="code">ComponentRepsOfTransformation</code> returns the representatives, in the following sense, of the components of the transformation <var class="Arg">f</var>. For every <code class="code">i</code> in <code class="code">[ 1 .. DegreeOfTransformation( f ) ]</code> there exists a representative <code class="code">j</code> and a positive integer <code class="code">k</code> such that <code class="code">i ^ (<var class="Arg">f</var> ^ k) = j</code>. The representatives returned by <code class="code">ComponentRepsOfTransformation</code> are partitioned according to the component they belong to. <code class="code">ComponentRepsOfTransformation</code> returns the least number of representatives.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentRepsOfTransformation( f );</span>
[ [ 3, 10 ], [ 9 ], [ 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := AsTransformation( (1,8,2,4,11,5,10)(3,7)(9,12) );</span>
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentRepsOfTransformation( f );</span>
[ [ 1 ], [ 3 ], [ 6 ], [ 9 ] ]
</pre></div>

<p><a id="X7EAA15557D55D93B" name="X7EAA15557D55D93B"></a></p>

<h5>53.5-20 CyclesOfTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CyclesOfTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">list</var>] )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A list of lists of positive integers.</p>

<p>When the arguments of this function are a transformation <var class="Arg">f</var> and a list <var class="Arg">list</var>, it returns a list of the cycles of the components of <var class="Arg">f</var> containing any element of <var class="Arg">list</var>.</p>

<p>If the optional second argument is not present, then the range <code class="code">[ 1 .. DegreeOfTransformation( <var class="Arg">f</var> ) ]</code> is used as the default value for <var class="Arg">list</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );</span>
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclesOfTransformation( f );</span>
[ [ 6 ], [ 12 ], [ 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclesOfTransformation( f, [ 1, 2, 4 ] );</span>
[ [ 6 ], [ 12 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CyclesOfTransformation( f, [ 1 .. 17 ] );</span>
[ [ 6 ], [ 12 ], [ 8 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ] ]
</pre></div>

<p><a id="X786EB02A829260DB" name="X786EB02A829260DB"></a></p>

<h5>53.5-21 CycleTransformationInt</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CycleTransformationInt</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A list of positive integers.</p>

<p>If <var class="Arg">f</var> is a transformation and <var class="Arg">n</var> is a positive integer, then <code class="code">CycleTransformationInt</code> returns the cycle of the component of <var class="Arg">f</var> containing <var class="Arg">n</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 6, 2, 8, 4, 7, 5, 8, 3, 5, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CycleTransformationInt( f, 1 );</span>
[ 8, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CycleTransformationInt( f, 12 );</span>
[ 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CycleTransformationInt( f, 5 );</span>
[ 8, 3 ]
</pre></div>

<p><a id="X845869E0815A6AA6" name="X845869E0815A6AA6"></a></p>

<h5>53.5-22 LeftOne</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftOne</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightOne</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A transformation.</p>

<p><code class="code">LeftOne</code> returns an idempotent transformation <code class="code">e</code> such that the kernel (with respect to the degree of <var class="Arg">f</var>) of <code class="code">e</code> equals the kernel of the transformation <var class="Arg">f</var> and <code class="code">e * <var class="Arg">f</var> = f</code>.</p>

<p><code class="code">RightOne</code> returns an idempotent transformation <code class="code">e</code> such that the image set (with respect to the degree of <var class="Arg">f</var>) of <code class="code">e</code> equals the image set of <var class="Arg">f</var> and <code class="code"><var class="Arg">f</var> * e = f</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e := RightOne( f );</span>
Transformation( [ 1, 2, 2, 4, 4, 6, 7, 7, 9, 10, 11, 11 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdempotent( e );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f * e = f;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e := LeftOne( f );</span>
Transformation( [ 1, 2, 3, 1, 5, 5, 7, 8, 9, 2, 11, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">e * f = f;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIdempotent( e );</span>
true
</pre></div>

<p><a id="X7F19C9C77F9F8981" name="X7F19C9C77F9F8981"></a></p>

<h5>53.5-23 TrimTransformation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TrimTransformation</code>( <var class="Arg">f</var>[, <var class="Arg">n</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: Nothing.</p>

<p>It can happen that the internal representation of a transformation uses more memory than necessary. For example, this can happen when composing transformations where it is possible that the resulting transformation <var class="Arg">f</var> belongs to <code class="code">IsTrans4Rep</code> and stores its images as 32-bit integers, while none of its moved points exceeds 65536. The purpose of <code class="code">TrimTransformation</code> is to change the internal representation of such an <var class="Arg">f</var> to remove the trailing fixed points in the internal representation of <var class="Arg">f</var>.</p>

<p>If the optional second argument <var class="Arg">n</var> is provided, then the internal representation of <var class="Arg">f</var> is reduced to the images of the first <var class="Arg">n</var> positive integers. Please note that it must be the case that <code class="code">i ^ <var class="Arg">f</var> &lt;= n</code> for all <code class="code">i</code> in the range <code class="code">[ 1 .. <var class="Arg">n</var> ]</code> otherwise the resulting object will not define a transformation.</p>

<p>If the optional second argument is not included, then the degree of <var class="Arg">f</var> is used by default.</p>

<p>The transformation <var class="Arg">f</var> is changed in-place, and nothing is returned by this function.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 1 .. 2 ^ 16 ], x -&gt; x + 1 );</span>
&lt;transformation on 65537 pts with rank 65536&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g := Transformation( [ 1 .. 2 ^ 16 + 1 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">function( x )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  if x = 1 or x = 65537 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return x;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  else</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    return x - 1;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">  fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end );</span>
&lt;transformation on 65536 pts with rank 65535&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h := g * f;</span>
Transformation( [ 2, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformation( h ); IsTrans4Rep( h ); MemoryUsage( h );</span>
65537
true
262188
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TrimTransformation( h ); h;</span>
Transformation( [ 2, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformation( h ); IsTrans4Rep( h ); MemoryUsage( h );</span>
2
false
44
</pre></div>

<p><a id="X810D23017A5527B7" name="X810D23017A5527B7"></a></p>

<h4>53.6 <span class="Heading">Displaying transformations</span></h4>

<p>It is possible to change the way that <strong class="pkg">GAP</strong> displays transformations using the user preferences <code class="code">TransformationDisplayLimit</code> and <code class="code">NotationForTransformations</code>; see Section <code class="func">UserPreference</code> (<a href="chap3_mj.html#X7B0AD104839B6C3C"><span class="RefLink">3.2-3</span></a>) for more information about user preferences.</p>

<p>If <code class="code">f</code> is a transformation where the degree <code class="code">n</code> of <code class="code">f</code> exceeds the value of the user preference <code class="code">TransformationDisplayLimit</code>, then <code class="code">f</code> is displayed as:</p>


<div class="example"><pre>&lt;transformation on n pts with rank r&gt;</pre></div>

<p>where <code class="code">r</code> is the rank of <code class="code">f</code> relative to <code class="code">n</code>. The idea is to abbreviate the display of transformations defined on many points. The default value for the <code class="code">TransformationDisplayLimit</code> is <code class="code">100</code>.</p>

<p>If the degree of <code class="code">f</code> does not exceed the value of <code class="code">TransformationDisplayLimit</code>, then how <code class="code">f</code> is displayed depends on the value of the user preference <code class="code">NotationForTransformations</code>.</p>

<p>There are two possible values for <code class="code">NotationForTransformations</code>:</p>


<dl>
<dt><strong class="Mark">input</strong></dt>
<dd><p>With this option a transformation <var class="Arg">f</var> is displayed in as: <code class="code">Transformation( ImageListOfTransformation( <var class="Arg">f</var>, n ) )</code> where <code class="code">n</code> is the degree of <var class="Arg">f</var>. The only exception is the identity transformation, which is displayed as: <code class="code">IdentityTransformation</code>.</p>

</dd>
<dt><strong class="Mark">fr</strong></dt>
<dd><p>With this option a transformation <var class="Arg">f</var> is displayed in as: <code class="code">&lt;transformation: ImageListOfTransformation( <var class="Arg">f</var>, n )&gt;</code> where <code class="code">n</code> is the largest moved point of <var class="Arg">f</var>. The only exception is the identity transformation, which is displayed as: <code class="code">&lt;identity transformation&gt;</code>.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "TransformationDisplayLimit", 12 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] );</span>
&lt;transformation on 12 pts with rank 10&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "TransformationDisplayLimit", 100 );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference( "NotationForTransformations", "fr" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
&lt;transformation: 3,8,12,1,11,9,9,4,10,5,10,6&gt;
</pre></div>

<p><a id="X7B51CE257B814B09" name="X7B51CE257B814B09"></a></p>

<h4>53.7 <span class="Heading">Semigroups of transformations</span></h4>

<p>As mentioned at the start of the chapter, every semigroup is isomorphic to a semigroup of transformations, and in this section we describe the functions in <strong class="pkg">GAP</strong> specific to transformation semigroups. For more information about semigroups in general see Chapter <a href="chap51_mj.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>

<p>The <strong class="pkg">Semigroups</strong> package contains many additional functions and methods for computing with semigroups of transformations. In particular, <strong class="pkg">Semigroups</strong> contains more efficient methods than those available in the <strong class="pkg">GAP</strong> library (and in many cases more efficient than any other software) for creating semigroups of transformations, calculating their Green's classes, size, elements, group of units, minimal ideal, small generating sets, testing membership, finding the inverses of a regular element, factorizing elements over the generators, and more. Since a transformation semigroup is also a transformation collection, there are special methods for <code class="func">MovedPoints</code> (<a href="chap53_mj.html#X844F00F982D5BD3C"><span class="RefLink">53.5-5</span></a>), <code class="func">NrMovedPoints</code> (<a href="chap53_mj.html#X7FA6A4B57FDA003D"><span class="RefLink">53.5-6</span></a>), <code class="func">LargestMovedPoint</code> (<a href="chap53_mj.html#X8383A7727AC97724"><span class="RefLink">53.5-8</span></a>), <code class="func">SmallestMovedPoint</code> (<a href="chap53_mj.html#X86C0DDDC7881273A"><span class="RefLink">53.5-7</span></a>), <code class="func">LargestImageOfMovedPoint</code> (<a href="chap53_mj.html#X7E7172567C3A3E63"><span class="RefLink">53.5-10</span></a>), and <code class="func">SmallestImageOfMovedPoint</code> (<a href="chap53_mj.html#X7CCFE27E83676572"><span class="RefLink">53.5-9</span></a>), when applied to a transformation semigroup.</p>

<p><a id="X7EAF835D7FE4026F" name="X7EAF835D7FE4026F"></a></p>

<h5>53.7-1 IsTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformationSemigroup</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;synonym&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransformationMonoid</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;synonym&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>A <em>transformation semigroup</em> is simply a semigroup consisting of transformations. An object <var class="Arg">obj</var> is a transformation semigroup in <strong class="pkg">GAP</strong> if it satisfies <code class="func">IsSemigroup</code> (<a href="chap51_mj.html#X7B412E5B8543E9B7"><span class="RefLink">51.1-1</span></a>) and <code class="func">IsTransformationCollection</code> (<a href="chap53_mj.html#X7A6747CE85F2E6EA"><span class="RefLink">53.1-2</span></a>).</p>

<p>A <em>transformation monoid</em> is a monoid consisting of transformations. An object <var class="Arg">obj</var> is a transformation monoid in <strong class="pkg">GAP</strong> if it satisfies <code class="func">IsMonoid</code> (<a href="chap51_mj.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>) and <code class="func">IsTransformationCollection</code> (<a href="chap53_mj.html#X7A6747CE85F2E6EA"><span class="RefLink">53.1-2</span></a>).</p>

<p>Note that it is possible for a transformation semigroup to have a multiplicative neutral element (i.e. an identity element) but not to satisfy <code class="code">IsTransformationMonoid</code>. For example,</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( f, One( f ) );</span>
&lt;commutative transformation monoid of degree 10 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid( S );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTransformationMonoid( S );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 8, 1, 4, 5, 6, 7, 1, 10, 10 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10 ] ) );</span>
&lt;transformation semigroup of degree 10 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One( S );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicativeNeutralElement( S );</span>
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid( S );</span>
false
</pre></div>

<p>In this example <code class="code">S</code> cannot be converted into a monoid using <code class="func">AsMonoid</code> (<a href="chap51_mj.html#X7B22038F832B9C0F"><span class="RefLink">51.2-5</span></a>) since the <code class="func">One</code> (<a href="chap31_mj.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>) of any element in <code class="code">S</code> differs from the multiplicative neutral element.</p>

<p>For more details see <code class="func">IsMagmaWithOne</code> (<a href="chap35_mj.html#X86071DE7835F1C7C"><span class="RefLink">35.1-2</span></a>).</p>

<p><a id="X7EA699C687952544" name="X7EA699C687952544"></a></p>

<h5>53.7-2 DegreeOfTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>degree</em> of a transformation semigroup <var class="Arg">S</var> is just the maximum of the degrees of the elements of <var class="Arg">S</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 8, 1, 4, 5, 6, 7, 1, 10, 10, 11 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 11 ] ) );</span>
&lt;transformation semigroup of degree 10 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfTransformationSemigroup( S );</span>
10
</pre></div>

<p><a id="X7D2B0685815B4053" name="X7D2B0685815B4053"></a></p>

<h5>53.7-3 FullTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FullTransformationSemigroup</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FullTransformationMonoid</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: The full transformation semigroup of degree <var class="Arg">n</var>.</p>

<p>If <var class="Arg">n</var> is a positive integer, then <code class="code">FullTransformationSemigroup</code> returns the monoid consisting of all transformations with degree at most <var class="Arg">n</var>, called the <em>full transformation semigroup</em>.</p>

<p>The full transformation semigroup is regular, has <code class="code"><var class="Arg">n</var> ^ <var class="Arg">n</var></code> elements, and is generated by any set containing transformations that generate the symmetric group on <var class="Arg">n</var> points and any transformation of rank <code class="code"><var class="Arg">n</var> - 1</code>.</p>

<p><code class="code">FulTransformationMonoid</code> is a synonym for <code class="code">FullTransformationSemigroup</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FullTransformationSemigroup( 1234 );</span>
&lt;full transformation monoid of degree 1234&gt;
</pre></div>

<p><a id="X85C58E1E818C838C" name="X85C58E1E818C838C"></a></p>

<h5>53.7-4 IsFullTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsFullTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsFullTransformationMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>If the transformation semigroup <var class="Arg">S</var> of degree <code class="code">n</code> contains every transformation of degree at most <code class="code">n</code>, then <code class="code">IsFullTransformationSemigroup</code> returns <code class="keyw">true</code> and otherwise it returns <code class="keyw">false</code>.</p>

<p><code class="code">IsFullTransformationMonoid</code> is a synonym of <code class="code">IsFullTransformationSemigroup</code>. It is common in the literature for the full transformation monoid to be referred to as the full transformation semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( AsTransformation( (1,3,4,2), 5 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   AsTransformation( (1,3,5), 5 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   Transformation( [ 1, 1, 2, 3, 4 ] ) );</span>
&lt;transformation semigroup of degree 5 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsFullTransformationSemigroup( S );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S;</span>
&lt;full transformation monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsFullTransformationMonoid( S );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := FullTransformationSemigroup( 5 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsFullTransformationSemigroup( S );</span>
true
</pre></div>

<p><a id="X78F29C817CF6827F" name="X78F29C817CF6827F"></a></p>

<h5>53.7-5 IsomorphismTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismTransformationMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: An isomorphism to a transformation semigroup or monoid.</p>

<p>Returns an isomorphism from the finite semigroup <var class="Arg">S</var> to a transformation semigroup. For most types of objects in <strong class="pkg">GAP</strong> the degree of this transformation semigroup will be equal to the size of <var class="Arg">S</var> plus <code class="code">1</code>.</p>

<p>Let <code class="code"><var class="Arg">S</var> ^ 1</code> denote the monoid obtained from <var class="Arg">S</var> by adjoining an identity element. Then <var class="Arg">S</var> acts faithfully on <code class="code"><var class="Arg">S</var> ^ 1</code> by right multiplication, i.e. every element of <var class="Arg">S</var> describes a transformation on <code class="code">1, .. , |S| + 1</code>. The isomorphism from <var class="Arg">S</var> to the transformation semigroup described in this way is called the <em>right regular representation</em> of <var class="Arg">S</var>. In most cases, <code class="code">IsomorphismTransformationSemigroup</code> will return the right regular representation of <var class="Arg">S</var>.</p>

<p>As exceptions, if <var class="Arg">S</var> is a permutation group or a partial perm semigroup, then the elements of <var class="Arg">S</var> act naturally and faithfully by transformations on the values from <code class="code">1</code> to the largest moved point of <var class="Arg">S</var>.</p>

<p>If <var class="Arg">S</var> is a finitely presented semigroup, then the Todd-Coxeter approach will be attempted.</p>

<p><code class="code">IsomorphismTransformationMonoid</code> differs from <code class="code">IsomorphismTransformationSemigroup</code> only in that its range is a transformation monoid, and not only a semigroup, when the semigroup <var class="Arg">S</var> is a monoid.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( [ [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ^ 0 ] ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> [ [ Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ] ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( S );</span>
81
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismTransformationSemigroup( S );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup( 4 );</span>
&lt;symmetric inverse monoid of degree 4&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismTransformationMonoid( S );</span>
MappingByFunction( &lt;symmetric inverse monoid of degree 4&gt;,
&lt;transformation monoid of degree 5 with 4 generators&gt;
 , function( x ) ... end, &lt;Operation "AsPartialPerm"&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Group( (1,2,3) );</span>
Group([ (1,2,3) ])
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismTransformationMonoid( G );</span>
MappingByFunction( Group([ (1,2,3) ]), &lt;commutative transformation
 monoid of degree 3 with 1 generator&gt;
 , function( x ) ... end, function( x ) ... end )</pre></div>

<p><a id="X820ECE00846E480F" name="X820ECE00846E480F"></a></p>

<h5>53.7-6 AntiIsomorphismTransformationSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AntiIsomorphismTransformationSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: An anti-isomorphism.</p>

<p>If <var class="Arg">S</var> is a semigroup, then <code class="code">AntiIsomorphismTransformationSemigroup</code> returns an anti-isomorphism from <var class="Arg">S</var> to a transformation semigroup. At present, the degree of the resulting transformation semigroup equals the size of <var class="Arg">S</var> plus <span class="SimpleMath">\(1\)</span>, and, consequently, this function is of limited use.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( Transformation( [ 5, 5, 1, 1, 3 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                   Transformation( [ 2, 4, 1, 5, 5 ] ) );</span>
&lt;transformation semigroup of degree 5 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size( S );</span>
172
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AntiIsomorphismTransformationSemigroup( S );</span>
MappingByFunction( &lt;transformation semigroup of size 172, degree 5
 with 2 generators&gt;, &lt;transformation semigroup of degree 173 with 2
 generators&gt;, function( x ) ... end, function( x ) ... end )
</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap52_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap54_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chap17_mj.html">17</a>  <a href="chap18_mj.html">18</a>  <a href="chap19_mj.html">19</a>  <a href="chap20_mj.html">20</a>  <a href="chap21_mj.html">21</a>  <a href="chap22_mj.html">22</a>  <a href="chap23_mj.html">23</a>  <a href="chap24_mj.html">24</a>  <a href="chap25_mj.html">25</a>  <a href="chap26_mj.html">26</a>  <a href="chap27_mj.html">27</a>  <a href="chap28_mj.html">28</a>  <a href="chap29_mj.html">29</a>  <a href="chap30_mj.html">30</a>  <a href="chap31_mj.html">31</a>  <a href="chap32_mj.html">32</a>  <a href="chap33_mj.html">33</a>  <a href="chap34_mj.html">34</a>  <a href="chap35_mj.html">35</a>  <a href="chap36_mj.html">36</a>  <a href="chap37_mj.html">37</a>  <a href="chap38_mj.html">38</a>  <a href="chap39_mj.html">39</a>  <a href="chap40_mj.html">40</a>  <a href="chap41_mj.html">41</a>  <a href="chap42_mj.html">42</a>  <a href="chap43_mj.html">43</a>  <a href="chap44_mj.html">44</a>  <a href="chap45_mj.html">45</a>  <a href="chap46_mj.html">46</a>  <a href="chap47_mj.html">47</a>  <a href="chap48_mj.html">48</a>  <a href="chap49_mj.html">49</a>  <a href="chap50_mj.html">50</a>  <a href="chap51_mj.html">51</a>  <a href="chap52_mj.html">52</a>  <a href="chap53_mj.html">53</a>  <a href="chap54_mj.html">54</a>  <a href="chap55_mj.html">55</a>  <a href="chap56_mj.html">56</a>  <a href="chap57_mj.html">57</a>  <a href="chap58_mj.html">58</a>  <a href="chap59_mj.html">59</a>  <a href="chap60_mj.html">60</a>  <a href="chap61_mj.html">61</a>  <a href="chap62_mj.html">62</a>  <a href="chap63_mj.html">63</a>  <a href="chap64_mj.html">64</a>  <a href="chap65_mj.html">65</a>  <a href="chap66_mj.html">66</a>  <a href="chap67_mj.html">67</a>  <a href="chap68_mj.html">68</a>  <a href="chap69_mj.html">69</a>  <a href="chap70_mj.html">70</a>  <a href="chap71_mj.html">71</a>  <a href="chap72_mj.html">72</a>  <a href="chap73_mj.html">73</a>  <a href="chap74_mj.html">74</a>  <a href="chap75_mj.html">75</a>  <a href="chap76_mj.html">76</a>  <a href="chap77_mj.html">77</a>  <a href="chap78_mj.html">78</a>  <a href="chap79_mj.html">79</a>  <a href="chap80_mj.html">80</a>  <a href="chap81_mj.html">81</a>  <a href="chap82_mj.html">82</a>  <a href="chap83_mj.html">83</a>  <a href="chap84_mj.html">84</a>  <a href="chap85_mj.html">85</a>  <a href="chap86_mj.html">86</a>  <a href="chap87_mj.html">87</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>