File: chap54_mj.html

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1464 lines) | stat: -rw-r--r-- 132,783 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (ref) - Chapter 54: Partial permutations</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap54"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chap17_mj.html">17</a>  <a href="chap18_mj.html">18</a>  <a href="chap19_mj.html">19</a>  <a href="chap20_mj.html">20</a>  <a href="chap21_mj.html">21</a>  <a href="chap22_mj.html">22</a>  <a href="chap23_mj.html">23</a>  <a href="chap24_mj.html">24</a>  <a href="chap25_mj.html">25</a>  <a href="chap26_mj.html">26</a>  <a href="chap27_mj.html">27</a>  <a href="chap28_mj.html">28</a>  <a href="chap29_mj.html">29</a>  <a href="chap30_mj.html">30</a>  <a href="chap31_mj.html">31</a>  <a href="chap32_mj.html">32</a>  <a href="chap33_mj.html">33</a>  <a href="chap34_mj.html">34</a>  <a href="chap35_mj.html">35</a>  <a href="chap36_mj.html">36</a>  <a href="chap37_mj.html">37</a>  <a href="chap38_mj.html">38</a>  <a href="chap39_mj.html">39</a>  <a href="chap40_mj.html">40</a>  <a href="chap41_mj.html">41</a>  <a href="chap42_mj.html">42</a>  <a href="chap43_mj.html">43</a>  <a href="chap44_mj.html">44</a>  <a href="chap45_mj.html">45</a>  <a href="chap46_mj.html">46</a>  <a href="chap47_mj.html">47</a>  <a href="chap48_mj.html">48</a>  <a href="chap49_mj.html">49</a>  <a href="chap50_mj.html">50</a>  <a href="chap51_mj.html">51</a>  <a href="chap52_mj.html">52</a>  <a href="chap53_mj.html">53</a>  <a href="chap54_mj.html">54</a>  <a href="chap55_mj.html">55</a>  <a href="chap56_mj.html">56</a>  <a href="chap57_mj.html">57</a>  <a href="chap58_mj.html">58</a>  <a href="chap59_mj.html">59</a>  <a href="chap60_mj.html">60</a>  <a href="chap61_mj.html">61</a>  <a href="chap62_mj.html">62</a>  <a href="chap63_mj.html">63</a>  <a href="chap64_mj.html">64</a>  <a href="chap65_mj.html">65</a>  <a href="chap66_mj.html">66</a>  <a href="chap67_mj.html">67</a>  <a href="chap68_mj.html">68</a>  <a href="chap69_mj.html">69</a>  <a href="chap70_mj.html">70</a>  <a href="chap71_mj.html">71</a>  <a href="chap72_mj.html">72</a>  <a href="chap73_mj.html">73</a>  <a href="chap74_mj.html">74</a>  <a href="chap75_mj.html">75</a>  <a href="chap76_mj.html">76</a>  <a href="chap77_mj.html">77</a>  <a href="chap78_mj.html">78</a>  <a href="chap79_mj.html">79</a>  <a href="chap80_mj.html">80</a>  <a href="chap81_mj.html">81</a>  <a href="chap82_mj.html">82</a>  <a href="chap83_mj.html">83</a>  <a href="chap84_mj.html">84</a>  <a href="chap85_mj.html">85</a>  <a href="chap86_mj.html">86</a>  <a href="chap87_mj.html">87</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap53_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap55_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap54.html">[MathJax off]</a></p>
<p><a id="X7D6495F77B8A77BD" name="X7D6495F77B8A77BD"></a></p>
<div class="ChapSects"><a href="chap54_mj.html#X7D6495F77B8A77BD">54 <span class="Heading">Partial permutations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54_mj.html#X87B0D6657A3F2B0E">54.1 <span class="Heading">The family and categories of partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7EECE133792B30FC">54.1-1 IsPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8262A827790DD1CC">54.1-2 IsPartialPermCollection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7E63D17780F64FBA">54.1-3 PartialPermFamily</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54_mj.html#X7B9D451D7FDA1DD8">54.2 <span class="Heading">Creating partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8538BAE77F2FB2F8">54.2-1 PartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X81188D9F83F64222">54.2-2 PartialPermOp</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X80ABBF4883C79060">54.2-3 RestrictedPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X849668DD7B0B9E3B">54.2-4 JoinOfPartialPerms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X81E2B6977E28CD00">54.2-5 MeetOfPartialPerms</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X80EFB142817A0A9F">54.2-6 EmptyPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7E6ADC8583C31530">54.2-7 <span class="Heading">RandomPartialPerm</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54_mj.html#X8779F0997D0FDA78">54.3 <span class="Heading">Attributes for partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8612A4DC864E7959">54.3-1 DegreeOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8413D0EF7DEE1FFF">54.3-2 CodegreeOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7C1ABD8A80E95B39">54.3-3 RankOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X784A14F787E041D7">54.3-4 DomainOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7CD84B107831E0FC">54.3-5 ImageOfPartialPermCollection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8333293F87F654FA">54.3-6 ImageListOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7F0724A07A14DCF7">54.3-7 ImageSetOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X82AAFF938623422E">54.3-8 FixedPointsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X82FE981A87FAA2DC">54.3-9 MovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7FAF969C84CDC742">54.3-10 NrFixedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X81F5C64E7DAD27A7">54.3-11 NrMovedPoints</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X84A49C977E1E29AA">54.3-12 SmallestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7D4290A785ABC86D">54.3-13 LargestMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X85280F1A7B1014BA">54.3-14 SmallestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7A95CD437BC1CB1A">54.3-15 LargestImageOfMovedPoint</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X873A9F717DA75CBC">54.3-16 IndexPeriodOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7C04AA377F080722">54.3-17 SmallestIdempotentPower</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8185065E788BDD0D">54.3-18 ComponentsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7CB51EB67FFA95E9">54.3-19 NrComponentsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7AAAAE4082B30E18">54.3-20 ComponentRepsOfPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7A8FB86C78C49F85">54.3-21 LeftOne</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X857FC10C81507E8B">54.3-22 One</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7D90CF497D58D759">54.3-23 MultiplicativeZero</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54_mj.html#X8585AA8B78E9CDFB">54.4 <span class="Heading">Changing the representation of a partial permutation</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X81B32CB182489ACA">54.4-1 AsPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X87EC67747B260E98">54.4-2 AsPartialPerm</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54_mj.html#X848CD855802C6CE1">54.5 <span class="Heading">Operators and operations for partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7B8630027B7F0BCC">54.5-1 Inverse</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X792D3BA278DAB869"><code>54.5-2 \^</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7DC25BC47AAA9C73"><code>54.5-3 \/</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8213CD6E7C461169"><code>54.5-4 \^</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X86469D597F8BC7CE"><code>54.5-5 \*</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X869DBDF67FA3817B"><code>54.5-6 \/</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X82E3A3E186A4F2D2">54.5-7 LeftQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8659E9E57AC8D9CE"><code>54.5-8 \&lt;</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7828338C7DB8AAC7"><code>54.5-9 \=</code></a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X8382A0F8875CEB08">54.5-10 PermLeftQuoPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7C7F5EAB7E9A381D">54.5-11 PreImagePartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X797A6CC084068219">54.5-12 ComponentPartialPermInt</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X87B1ED93785257C1">54.5-13 NaturalLeqPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X81BD69307D294A1C">54.5-14 ShortLexLeqPartialPerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X83560BE678ACF855">54.5-15 TrimPartialPerm</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54_mj.html#X7849595B81D063EE">54.6 <span class="Heading">Displaying partial permutations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap54_mj.html#X7CCC82E07A73EB55">54.7 <span class="Heading">Semigroups and inverse semigroups of partial permutations</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7D161674800B50E0">54.7-1 IsPartialPermSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7D7F0BAB82F0D820">54.7-2 DegreeOfPartialPermSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X81D271B380995F8A">54.7-3 SymmetricInverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7C8AEA50834060DD">54.7-4 IsSymmetricInverseSemigroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7EA51F087CF7621F">54.7-5 NaturalPartialOrder</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap54_mj.html#X7FE18EBE79B9C17C">54.7-6 IsomorphismPartialPermSemigroup</a></span>
</div></div>
</div>

<h3>54 <span class="Heading">Partial permutations</span></h3>

<p>This chapter describes the functions in <strong class="pkg">GAP</strong> for partial permutations.</p>

<p>A <em>partial permutation</em> in <strong class="pkg">GAP</strong> is simply an injective function from any finite set of positive integers to any other finite set of positive integers. The largest point on which a partial permutation can be defined, and the largest value that the image of such a point can have, are defined by certain architecture dependent limits.</p>

<p>Every inverse semigroup is isomorphic to an inverse semigroup of partial permutations and, as such, partial permutations are to inverse semigroup theory what permutations are to group theory and transformations are to semigroup theory. In this way, partial permutations are the elements of inverse partial permutation semigroups.</p>

<p>A partial permutations in <strong class="pkg">GAP</strong> acts on a finite set of positive integers on the right. The image of a point <code class="code">i</code> under a partial permutation <code class="code">f</code> is expressed as <code class="code">i^f</code> in <strong class="pkg">GAP</strong>. This action is also implemented by the function <code class="func">OnPoints</code> (<a href="chap41_mj.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>). The preimage of a point <code class="code">i</code> under the partial permutation <code class="code">f</code> can be computed using <code class="code">i/f</code> without constructing the inverse of <code class="code">f</code>. Partial permutations in <strong class="pkg">GAP</strong> are created using the operations described in Section <a href="chap54_mj.html#X7B9D451D7FDA1DD8"><span class="RefLink">54.2</span></a>. Partial permutations are, by default, displayed in component notation, which is described in Section <a href="chap54_mj.html#X7849595B81D063EE"><span class="RefLink">54.6</span></a>.</p>

<p>The fundamental attributes of a partial permutation are:</p>


<dl>
<dt><strong class="Mark">Domain</strong></dt>
<dd><p>The <em>domain</em> of a partial permutation is just the set of positive integers where it is defined; see <code class="func">DomainOfPartialPerm</code> (<a href="chap54_mj.html#X784A14F787E041D7"><span class="RefLink">54.3-4</span></a>). We will denote the domain of a partial permutation <code class="code">f</code> by dom(<code class="code">f</code>).</p>

</dd>
<dt><strong class="Mark">Degree</strong></dt>
<dd><p>The <em>degree</em> of a partial permutation <code class="code">f</code> is just the largest positive integer where <code class="code">f</code> is defined. In other words, the degree of <code class="code">f</code> is the largest element in the domain of <code class="code">f</code>; see <code class="func">DegreeOfPartialPerm</code> (<a href="chap54_mj.html#X8612A4DC864E7959"><span class="RefLink">54.3-1</span></a>).</p>

</dd>
<dt><strong class="Mark">Image list</strong></dt>
<dd><p>The <em>image list</em> of a partial permutation <code class="code">f</code> is the list <code class="code">[i_1^f, i_2^f, .. , i_n^f]</code> where the domain of <code class="code">f</code> is <code class="code">[i_1, i_2, .., i_n]</code> see <code class="func">ImageListOfPartialPerm</code> (<a href="chap54_mj.html#X8333293F87F654FA"><span class="RefLink">54.3-6</span></a>). For example, the partial perm sending <code class="code">1</code> to <code class="code">5</code> and <code class="code">2</code> to <code class="code">4</code> has image list <code class="code">[ 5, 4 ]</code>.</p>

</dd>
<dt><strong class="Mark">Image set</strong></dt>
<dd><p>The <em>image set</em> of a partial permutation <code class="code">f</code> is just the set of points in the image list (i.e. the image list after it has been sorted into increasing order); see <code class="func">ImageSetOfPartialPerm</code> (<a href="chap54_mj.html#X7F0724A07A14DCF7"><span class="RefLink">54.3-7</span></a>). We will denote the image set of a partial permutation <code class="code">f</code> by im(<code class="code">f</code>).</p>

</dd>
<dt><strong class="Mark">Codegree</strong></dt>
<dd><p>The <em>codegree</em> of a partial permutation <code class="code">f</code> is just the largest positive integer of the form <code class="code">i^f</code> for any <code class="code">i</code> in the domain of <code class="code">f</code>. In other words, the codegree of <code class="code">f</code> is the largest element in the image of <code class="code">f</code>; see <code class="func">CodegreeOfPartialPerm</code> (<a href="chap54_mj.html#X8413D0EF7DEE1FFF"><span class="RefLink">54.3-2</span></a>).</p>

</dd>
<dt><strong class="Mark">Rank</strong></dt>
<dd><p>The <em>rank</em> of a partial permutation <code class="code">f</code> is the size of its domain, or equivalently the size of its image set or image list; see <code class="func">RankOfPartialPerm</code> (<a href="chap54_mj.html#X7C1ABD8A80E95B39"><span class="RefLink">54.3-3</span></a>).</p>

</dd>
</dl>
<p>A <em>functional digraph</em> is a directed graph where every vertex has out-degree <code class="code">1</code>. A partial permutation <var class="Arg">f</var> can be thought of as a functional digraph with vertices <code class="code">[1..DegreeOfPartialPerm(f)]</code> and edges from <code class="code">i</code> to <code class="code">i^f</code> for every <code class="code">i</code>. A <em>component</em> of a partial permutation is defined as a component of the corresponding functional digraph. More specifically, <code class="code">i</code> and <code class="code">j</code> are in the same component if and only if there are <span class="SimpleMath">\(i=v_0, v_1, \ldots, v_n=j\)</span> such that either <span class="SimpleMath">\(v_{k+1}=v_{k}^f\)</span> or <span class="SimpleMath">\(v_{k}=v_{k+1}^f\)</span> for all <code class="code">k</code>.</p>

<p>If <code class="code">S</code> is a semigroup and <code class="code">s</code> is an element of <code class="code">S</code>, then an element <code class="code">t</code> in <code class="code">S</code> is a <em>semigroup inverse</em> for <code class="code">s</code> if <code class="code">s*t*s=s</code> and <code class="code">t*s*t=t</code>; see, for example, <code class="func">InverseOfTransformation</code> (<a href="chap53_mj.html#X860306EB7FAAD2D4"><span class="RefLink">53.5-13</span></a>). A semigroup in which every element has a unique semigroup inverse is called an <em>inverse semigroup</em>.</p>

<p>Every partial permutation belongs to a symmetric inverse monoid; see <code class="func">SymmetricInverseSemigroup</code> (<a href="chap54_mj.html#X81D271B380995F8A"><span class="RefLink">54.7-3</span></a>). Inverse semigroups of partial permutations are hence inverse subsemigroups of the symmetric inverse monoids.</p>

<p>The inverse <code class="code">f^-1</code> of a partial permutation <code class="code">f</code> is simply the partial permutation that maps <code class="code">i^f</code> to <code class="code">i</code> for all <code class="code">i</code> in the image of <code class="code">f</code>. It follows that the domain of <code class="code">f^-1</code> equals the image of <code class="code">f</code> and that the image of <code class="code">f^-1</code> equals the domain of <code class="code">f</code>. The inverse <code class="code">f^-1</code> is the unique partial permutation with the property that <code class="code">f*f^-1*f=f</code> and <code class="code">f^-1*f*f^-1=f^-1</code>. In other words, <code class="code">f^-1</code> is the unique semigroup inverse of <code class="code">f</code> in the symmetric inverse monoid.</p>

<p>If <code class="code">f</code> and <code class="code">g</code> are partial permutations, then the domain and image of the product are:</p>

<p class="center">\[
    \textrm{dom}(fg)=(\textrm{im}(f)\cap \textrm{dom}(g))f^{-1}\textrm{ and }
    \textrm{im}(fg)=(\textrm{im}(f)\cap \textrm{dom}(g))g
  \]</p>

<p>A partial permutation is an idempotent if and only if it is the identity function on its domain. The products <code class="code">f*f^-1</code> and <code class="code">f^-1*f</code> are just the identity functions on the domain and image of <code class="code">f</code>, respectively. It follows that <code class="code">f*f^-1</code> is a left identity for <code class="code">f</code> and <code class="code">f^-1*f</code> is a right identity. These products will be referred to here as the <em>left one</em> and <em>right one</em> of the partial permutation <code class="code">f</code>; see <code class="func">LeftOne</code> (<a href="chap54_mj.html#X7A8FB86C78C49F85"><span class="RefLink">54.3-21</span></a>). The <em>one</em> of a partial permutation is just the identity on the union of its domain and its image, and the <em>zero</em> of a partial permutation is just the empty partial permutation; see <code class="func">One</code> (<a href="chap54_mj.html#X857FC10C81507E8B"><span class="RefLink">54.3-22</span></a>) and <code class="func">MultiplicativeZero</code> (<a href="chap54_mj.html#X7D90CF497D58D759"><span class="RefLink">54.3-23</span></a>).</p>

<p>If <code class="code">S</code> is an arbitrary inverse semigroup, the <em>natural partial order</em> on <code class="code">S</code> is defined as follows: for elements <code class="code">x</code> and <code class="code">y</code> of <code class="code">S</code> we say <code class="code">x</code><span class="SimpleMath">\(\leq\)</span><code class="code">y</code> if there exists an idempotent element <code class="code">e</code> in <code class="code">S</code> such that <code class="code">x=ey</code>. In the context of the symmetric inverse monoid, a partial permutation <code class="code">f</code> is less than or equal to a partial permutation <code class="code">g</code> in the natural partial order if and only if <code class="code">f</code> is a restriction of <code class="code">g</code>. The natural partial order is a meet semilattice, in other words, every pair of elements has a greatest lower bound; see <code class="func">MeetOfPartialPerms</code> (<a href="chap54_mj.html#X81E2B6977E28CD00"><span class="RefLink">54.2-5</span></a>).</p>

<p>Note that unlike permutations, partial permutations do not fix unspecified points but are simply undefined on such points; see Chapter <a href="chap42_mj.html#X80F808307A2D5AB8"><span class="RefLink">42</span></a>. Similar to permutations, and unlike transformations, it is possible to multiply any two partial permutations in <strong class="pkg">GAP</strong>.</p>

<p>Internally, <strong class="pkg">GAP</strong> stores a partial permutation <code class="code">f</code> as a list consisting of the codegree of <code class="code">f</code> and the images <code class="code">i^f</code> of the points <code class="code">i</code> that are less than or equal to the degree of <code class="code">f</code>; the value <code class="code">0</code> is stored where <code class="code">i^f</code> is undefined. The domain and image set of <code class="code">f</code> are also stored after either of these values is computed. When the codegree of a partial permutation <code class="code">f</code> is less than 65536, the codegree and images <code class="code">i^f</code> are stored as 16-bit integers, the domain and image set are subobjects of <code class="code">f</code> which are immutable plain lists of <strong class="pkg">GAP</strong> integers. When the codegree of <code class="code">f</code> is greater than or equal to 65536, the codegree and images are stored as 32-bit integers; the domain and image set are stored in the same way as before. A partial permutation belongs to <code class="code">IsPPerm2Rep</code> if it is stored using 16-bit integers and to <code class="code">IsPPerm4Rep</code> otherwise.</p>

<p>In the names of the <strong class="pkg">GAP</strong> functions that deal with partial permutations, the word <q>Permutation</q> is usually abbreviated to <q>Perm</q>, to save typing. For example, the category test function for partial permutations is <code class="func">IsPartialPerm</code> (<a href="chap54_mj.html#X7EECE133792B30FC"><span class="RefLink">54.1-1</span></a>).</p>

<p><a id="X87B0D6657A3F2B0E" name="X87B0D6657A3F2B0E"></a></p>

<h4>54.1 <span class="Heading">The family and categories of partial permutations</span></h4>

<p><a id="X7EECE133792B30FC" name="X7EECE133792B30FC"></a></p>

<h5>54.1-1 IsPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPerm</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>Every partial permutation in <strong class="pkg">GAP</strong> belongs to the category <code class="code">IsPartialPerm</code>. Basic operations for partial permutations are <code class="func">DomainOfPartialPerm</code> (<a href="chap54_mj.html#X784A14F787E041D7"><span class="RefLink">54.3-4</span></a>), <code class="func">ImageListOfPartialPerm</code> (<a href="chap54_mj.html#X8333293F87F654FA"><span class="RefLink">54.3-6</span></a>), <code class="func">ImageSetOfPartialPerm</code> (<a href="chap54_mj.html#X7F0724A07A14DCF7"><span class="RefLink">54.3-7</span></a>), <code class="func">RankOfPartialPerm</code> (<a href="chap54_mj.html#X7C1ABD8A80E95B39"><span class="RefLink">54.3-3</span></a>), <code class="func">DegreeOfPartialPerm</code> (<a href="chap54_mj.html#X8612A4DC864E7959"><span class="RefLink">54.3-1</span></a>), multiplication of two partial permutations is via <code class="keyw">*</code>, and exponentiation with the first argument a positive integer <code class="code">i</code> and second argument a partial permutation <code class="code">f</code> where the result is the image <code class="code">i^f</code> of the point <code class="code">i</code> under <code class="code">f</code>. The inverse of a partial permutation <code class="code">f</code> can be obtains using <code class="code">f^-1</code>.</p>

<p><a id="X8262A827790DD1CC" name="X8262A827790DD1CC"></a></p>

<h5>54.1-2 IsPartialPermCollection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPermCollection</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>Every collection of partial permutations belongs to the category <code class="code">IsPartialPermCollection</code>. For example, a semigroup of partial permutations belongs in <code class="code">IsPartialPermCollection</code>.</p>

<p><a id="X7E63D17780F64FBA" name="X7E63D17780F64FBA"></a></p>

<h5>54.1-3 PartialPermFamily</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPermFamily</code></td><td class="tdright">(&nbsp;family&nbsp;)</td></tr></table></div>
<p>The family of all partial permutations is <code class="code">PartialPermFamily</code></p>

<p><a id="X7B9D451D7FDA1DD8" name="X7B9D451D7FDA1DD8"></a></p>

<h4>54.2 <span class="Heading">Creating partial permutations</span></h4>

<p>There are several ways of creating partial permutations in <strong class="pkg">GAP</strong>, which are described in this section.</p>

<p><a id="X8538BAE77F2FB2F8" name="X8538BAE77F2FB2F8"></a></p>

<h5>54.2-1 PartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPerm</code>( <var class="Arg">dom</var>, <var class="Arg">img</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPerm</code>( <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>Partial permutations can be created in two ways: by giving the domain and the image, or the dense image list.</p>


<dl>
<dt><strong class="Mark">Domain and image</strong></dt>
<dd><p>The partial permutation defined by a domain <var class="Arg">dom</var> and image <var class="Arg">img</var>, where <var class="Arg">dom</var> is a set of positive integers and <var class="Arg">img</var> is a duplicate free list of positive integers, maps <var class="Arg">dom</var><code class="code">[i]</code> to <var class="Arg">img</var><code class="code">[i]</code>. For example, the partial permutation mapping <code class="code">1</code> and <code class="code">5</code> to <code class="code">20</code> and <code class="code">2</code> can be created using:</p>


<div class="example"><pre>PartialPerm([1,5],[20,2]); </pre></div>

<p>In this setting, <code class="code">PartialPerm</code> is the analogue in the context of partial permutations of <code class="func">MappingPermListList</code> (<a href="chap42_mj.html#X8087DCC780B9656A"><span class="RefLink">42.5-3</span></a>).</p>

</dd>
<dt><strong class="Mark">Dense image list</strong></dt>
<dd><p>The partial permutation defined by a dense image list <var class="Arg">list</var>, maps the positive integer <code class="code">i</code> to <var class="Arg">list</var><code class="code">[i]</code> if <var class="Arg">list</var><code class="code">[i]&lt;&gt;0</code> and is undefined at <code class="code">i</code> if <var class="Arg">list</var><code class="code">[i]=0</code>. For example, the partial permutation mapping <code class="code">1</code> and <code class="code">5</code> to <code class="code">20</code> and <code class="code">2</code> can be created using:</p>


<div class="example"><pre>PartialPerm([20,0,0,0,2]);</pre></div>

<p>In this setting, <code class="code">PartialPerm</code> is the analogue in the context of partial permutations of <code class="func">PermList</code> (<a href="chap42_mj.html#X78D611D17EA6E3BC"><span class="RefLink">42.5-2</span></a>).</p>

</dd>
</dl>
<p>Regardless of which of these two methods are used to create a partial permutation in <strong class="pkg">GAP</strong> the internal representation is the same.</p>

<p>If the largest point in the domain is larger than the rank of the partial permutation, then using the dense image list to define the partial permutation will require less typing; otherwise using the domain and the image will require less typing. For example, the partial permutation mapping <code class="code">10000</code> to <code class="code">1</code> can be defined using:</p>


<div class="example"><pre>PartialPerm([10000], [1]);</pre></div>

<p>but using the dense image list would require a list with <code class="code">9999</code> entries equal to <code class="code">0</code> and the final entry equal to <code class="code">1</code>. On the other hand, the identity on <code class="code">[1,2,3,4,6]</code> can be defined using:</p>


<div class="example"><pre>PartialPerm([1,2,3,4,0,6]);</pre></div>

<p>Please note that a partial permutation in <strong class="pkg">GAP</strong> is never a permutation nor is a permutation ever a partial permutation. For example, the permutation <code class="code">(1,4,2)</code> fixes <code class="code">3</code> but the partial permutation <code class="code">PartialPerm([4,1,0,2]);</code> is not defined on <code class="code">3</code>.</p>

<p><a id="X81188D9F83F64222" name="X81188D9F83F64222"></a></p>

<h5>54.2-2 PartialPermOp</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPermOp</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PartialPermOpNC</code>( <var class="Arg">obj</var>, <var class="Arg">list</var>[, <var class="Arg">func</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation or <code class="keyw">fail</code>.</p>

<p><code class="func">PartialPermOp</code> returns the partial permutation that corresponds to the action of the object <var class="Arg">obj</var> on the domain or list <var class="Arg">list</var> via the function <var class="Arg">func</var>. If the optional third argument <var class="Arg">func</var> is not specified, then the action <code class="func">OnPoints</code> (<a href="chap41_mj.html#X7FE417DD837987B4"><span class="RefLink">41.2-1</span></a>) is used by default. Note that the returned partial permutation refers to the positions in <var class="Arg">list</var> even if <var class="Arg">list</var> itself consists of integers.</p>

<p>This function is the analogue in the context of partial permutations of <code class="func">Permutation</code> (<a href="chap41_mj.html#X7807A33381DCAB26"><span class="RefLink">41.9-1</span></a>) or <code class="func">TransformationOp</code> (<a href="chap53_mj.html#X7C2A3FC9782F2099"><span class="RefLink">53.2-5</span></a>).</p>

<p>If <var class="Arg">obj</var> does not map the elements of <var class="Arg">list</var> injectively, then <code class="keyw">fail</code> is returned.</p>

<p><code class="func">PartialPermOpNC</code> does not check that <var class="Arg">obj</var> maps elements of <var class="Arg">list</var> injectively or that a partial permutation is defined by the action of <var class="Arg">obj</var> on <var class="Arg">list</var> via <var class="Arg">func</var>. This function should be used only with caution, in situations where it is guaranteed that the arguments have the required properties.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 9, 10, 4, 2, 10, 5, 9, 10, 9, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PartialPermOp(f, [ 6 .. 8 ], OnPoints);</span>
[1,4][2,5][3,6]</pre></div>

<p><a id="X80ABBF4883C79060" name="X80ABBF4883C79060"></a></p>

<h5>54.2-3 RestrictedPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">set</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p><code class="code">RestrictedPartialPerm</code> returns a new partial permutation that acts on the points in the set of positive integers <var class="Arg">set</var> in the same way as the partial permutation <var class="Arg">f</var>, and that is undefined on those points that are not in <var class="Arg">set</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 3, 4, 7, 8, 9 ], [ 9, 4, 1, 6, 2, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedPartialPerm(f, [ 2, 3, 6, 10 ] );</span>
[3,4]</pre></div>

<p><a id="X849668DD7B0B9E3B" name="X849668DD7B0B9E3B"></a></p>

<h5>54.2-4 JoinOfPartialPerms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; JoinOfPartialPerms</code>( <var class="Arg">arg</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; JoinOfIdempotentPartialPermsNC</code>( <var class="Arg">arg</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation or <code class="keyw">fail</code>.</p>

<p>The join of partial permutations <var class="Arg">f</var> and <var class="Arg">g</var> is just the join, or supremum, of <var class="Arg">f</var> and <var class="Arg">g</var> under the natural partial ordering of partial permutations.</p>

<p><code class="code">JoinOfPartialPerms</code> returns the union of the partial permutations in its argument if this defines a partial permutation, and <code class="keyw">fail</code> if it is not. The argument <var class="Arg">arg</var> can be a partial permutation collection or a number of partial permutations.</p>

<p>The function <code class="code">JoinOfIdempotentPartialPermsNC</code> returns the join of its argument which is assumed to be a collection of idempotent partial permutations or a number of idempotent partial permutations. It is not checked that the arguments are idempotents. The performance of this function is higher than <code class="code">JoinOfPartialPerms</code> when it is known <em>a priori</em> that the argument consists of idempotents.</p>

<p>The union of <var class="Arg">f</var> and <var class="Arg">g</var> is a partial permutation if and only if <var class="Arg">f</var> and <var class="Arg">g</var> agree on the intersection dom(<var class="Arg">f</var>)<span class="SimpleMath">\(\cap\)</span> dom(<var class="Arg">g</var>) of their domains and the images of dom(<var class="Arg">f</var>)<span class="SimpleMath">\(\setminus\)</span> dom(<var class="Arg">g</var>) and dom(<var class="Arg">g</var>)<span class="SimpleMath">\(\setminus\)</span> dom(<var class="Arg">f</var>) under <var class="Arg">f</var> and <var class="Arg">g</var>, respectively, are disjoint.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );</span>
[3,7][8,1,2,6,9][10,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 11, 12, 14, 16, 18, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 17, 20, 11, 19, 14, 12 ] );</span>
[16,19,12,20][18,14,11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, g);</span>
[3,7][8,1,2,6,9][10,5][16,19,12,20][18,14,11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 4, 5, 6, 7 ], [ 5, 7, 3, 1, 4 ] );</span>
[6,1,5,3](4,7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 100 ], [ 1 ] );</span>
[100,1]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, g);</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 3, 4 ], [ 3, 2, 4 ] );</span>
[1,3,2](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 4 ], [ 2, 3, 4 ] );</span>
[1,2,3](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, g);</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1 ], [ 2 ] );</span>
[1,2]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">JoinOfPartialPerms(f, f^-1);</span>
(1,2)</pre></div>

<p><a id="X81E2B6977E28CD00" name="X81E2B6977E28CD00"></a></p>

<h5>54.2-5 MeetOfPartialPerms</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MeetOfPartialPerms</code>( <var class="Arg">arg</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>The meet of partial permutations <var class="Arg">f</var> and <var class="Arg">g</var> is just the meet, or infimum, of <var class="Arg">f</var> and <var class="Arg">g</var> under the natural partial ordering of partial permutations. In other words, the meet is the greatest partial permutation which is a restriction of both <var class="Arg">f</var> and <var class="Arg">g</var>.</p>

<p>Note that unlike the join of partial permutations, the meet always exists.</p>

<p><code class="func">MeetOfPartialPerms</code> returns the meet of the partial permutations in its argument. The argument <var class="Arg">arg</var> can be a partial permutation collection or a number of partial permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 100000 ], [ 2, 6, 7, 1, 5 ] );</span>
[3,7][100000,5](1,2,6)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 6 ], [ 2, 4, 6, 1, 5 ] );</span>
[3,6,5](1,2,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MeetOfPartialPerms(f, g);</span>
[1,2]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 5, 6, 7, 9, 10 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 4, 10, 5, 6, 7, 1, 3, 2 ] );</span>
[9,3,5,6,7,1,4](2,10)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MeetOfPartialPerms(f, g);</span>
&lt;empty partial perm&gt;</pre></div>

<p><a id="X80EFB142817A0A9F" name="X80EFB142817A0A9F"></a></p>

<h5>54.2-6 EmptyPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EmptyPartialPerm</code>(  )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: The empty partial permutation.</p>

<p>The empty partial permutation is returned by this function when it is called with no arguments. This is just short hand for <code class="code">PartialPerm([]);</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">EmptyPartialPerm();</span>
&lt;empty partial perm&gt;</pre></div>

<p><a id="X7E6ADC8583C31530" name="X7E6ADC8583C31530"></a></p>

<h5>54.2-7 <span class="Heading">RandomPartialPerm</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomPartialPerm</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomPartialPerm</code>( <var class="Arg">set</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomPartialPerm</code>( <var class="Arg">dom</var>, <var class="Arg">img</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: A random partial permutation.</p>

<p>In its first form, <code class="code">RandomPartialPerm</code> returns a randomly chosen partial permutation where points in the domain and image are bounded above by the positive integer <var class="Arg">n</var>.</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomPartialPerm(10);</span>
[2,9][4,1,6,5][7,3](8)</pre></div>

<p>In its second form, <code class="code">RandomPartialPerm</code> returns a randomly chosen partial permutation with points in the domain and image contained in the set of positive integers <var class="Arg">set</var>.</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RandomPartialPerm([1,2,3,1000]);</span>
[2,3,1000](1)</pre></div>

<p>In its third form, <code class="code">RandomPartialPerm</code> creates a randomly chosen partial permutation with domain contained in the set of positive integers <var class="Arg">dom</var> and image contained in the set of positive integers <var class="Arg">img</var>. The arguments <var class="Arg">dom</var> and <var class="Arg">img</var> do not have to have equal length.</p>

<p>Note that it is not guaranteed in either of these cases that partial permutations are chosen with a uniform distribution.</p>

<p><a id="X8779F0997D0FDA78" name="X8779F0997D0FDA78"></a></p>

<h4>54.3 <span class="Heading">Attributes for partial permutations</span></h4>

<p>In this section we describe the functions available in <strong class="pkg">GAP</strong> for finding various attributes of partial permutations.</p>

<p><a id="X8612A4DC864E7959" name="X8612A4DC864E7959"></a></p>

<h5>54.3-1 DegreeOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>degree</em> of a partial permutation <var class="Arg">f</var> is the largest positive integer where it is defined, i.e. the maximum element in the domain of <var class="Arg">f</var>.</p>

<p>The degree a collection of partial permutations <var class="Arg">coll</var> is the largest degree of any partial permutation in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );</span>
[3,7][8,1,2,6,9][10,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfPartialPerm(f);</span>
10</pre></div>

<p><a id="X8413D0EF7DEE1FFF" name="X8413D0EF7DEE1FFF"></a></p>

<h5>54.3-2 CodegreeOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodegreeOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodegreeOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>codegree</em> of a partial permutation <var class="Arg">f</var> is the largest positive integer in its image.</p>

<p>The codegree a collection of partial permutations <var class="Arg">coll</var> is the largest codegree of any partial permutation in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], [ 7, 1, 4, 3, 2, 6, 5 ] );</span>
[8,6][10,5,2,1,7](3,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodegreeOfPartialPerm(f);</span>
7</pre></div>

<p><a id="X7C1ABD8A80E95B39" name="X7C1ABD8A80E95B39"></a></p>

<h5>54.3-3 RankOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>rank</em> of a partial permutation <var class="Arg">f</var> is the size of its domain, or equivalently the size of its image set or image list.</p>

<p>The rank of a partial permutation collection <var class="Arg">coll</var> is the size of the union of the domains of the elements of <var class="Arg">coll</var>, or equivalently, the total number of points on which the elements of <var class="Arg">coll</var> act. Note that this is value may not the same as the size of the union of the images of the elements in <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 6, 8, 9 ], [ 7, 10, 1, 9, 4, 2 ] );</span>
[6,9,2,10][8,4,1,7]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfPartialPerm(f);</span>
6</pre></div>

<p><a id="X784A14F787E041D7" name="X784A14F787E041D7"></a></p>

<h5>54.3-4 DomainOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DomainOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DomainOfPartialPermCollection</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A set of positive integers (maybe empty).</p>

<p>The <em>domain</em> of a partial permutation <var class="Arg">f</var> is the set of positive integers where <var class="Arg">f</var> is defined.</p>

<p>The domain of a partial permutation collection <var class="Arg">coll</var> is the union of the domains of its elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );</span>
[3,7][8,1,2,6,9][10,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DomainOfPartialPerm(f);</span>
[ 1, 2, 3, 6, 8, 10 ]</pre></div>

<p><a id="X7CD84B107831E0FC" name="X7CD84B107831E0FC"></a></p>

<h5>54.3-5 ImageOfPartialPermCollection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageOfPartialPermCollection</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A set of positive integers (maybe empty).</p>

<p>The <em>image</em> of a partial permutation collection <var class="Arg">coll</var> is the union of the images of its elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);</span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageOfPartialPermCollection(GeneratorsOfInverseSemigroup(S));</span>
[ 1 .. 5 ]</pre></div>

<p><a id="X8333293F87F654FA" name="X8333293F87F654FA"></a></p>

<h5>54.3-6 ImageListOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageListOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: The list of images of a partial permutation.</p>

<p>The <em>image list</em> of a partial permutation <var class="Arg">f</var> is the list of images of the elements of the domain <var class="Arg">f</var> where <code class="code">ImageListOfPartialPerm(<var class="Arg">f</var>)[i]=DomainOfPartialPerm(<var class="Arg">f</var>)[i]^<var class="Arg">f</var></code> for any <code class="code">i</code> in the range from <code class="code">1</code> to the rank of <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], [ 7, 1, 4, 3, 2, 6, 5 ] );</span>
[8,6][10,5,2,1,7](3,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageListOfPartialPerm(f);</span>
[ 7, 1, 4, 3, 2, 6, 5 ]</pre></div>

<p><a id="X7F0724A07A14DCF7" name="X7F0724A07A14DCF7"></a></p>

<h5>54.3-7 ImageSetOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ImageSetOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: The image set of a partial permutation.</p>

<p>The <em>image set</em> of a partial permutation <code class="code">f</code> is just the set of points in the image list (i.e. the image list after it has been sorted into increasing order).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 7, 10 ], [ 10, 2, 3, 5, 7, 6 ] );</span>
[1,10,6](2)(3)(5)(7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ImageSetOfPartialPerm(f);</span>
[ 2, 3, 5, 6, 7, 10 ]</pre></div>

<p><a id="X82AAFF938623422E" name="X82AAFF938623422E"></a></p>

<h5>54.3-8 FixedPointsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FixedPointsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FixedPointsOfPartialPerm</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p><code class="code">FixedPointsOfPartialPerm</code> returns the set of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>=i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">FixedPointsOfPartialPerm</code> returns the set of points fixed by every element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6, 7 ], [ 1, 3, 4, 7, 5 ] );</span>
[2,3,4][6,7,5](1)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(f);</span>
[ 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm([1 .. 10]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(f);</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]</pre></div>

<p><a id="X82FE981A87FAA2DC" name="X82FE981A87FAA2DC"></a></p>

<h5>54.3-9 MovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p><code class="code">MovedPoints</code> returns the set of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">MovedPoints</code> returns the set of points moved by some element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4 ], [ 5, 7, 1, 6 ] );</span>
[2,7][3,1,5][4,6]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints(f);</span>
[ 1, 2, 3, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(f);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FixedPointsOfPartialPerm(PartialPerm([1 .. 4]));</span>
[ 1, 2, 3, 4 ]</pre></div>

<p><a id="X7FAF969C84CDC742" name="X7FAF969C84CDC742"></a></p>

<h5>54.3-10 NrFixedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrFixedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrFixedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrFixedPoints</code> returns the number of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>=i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">NrFixedPoints</code> returns the number of points fixed by every element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4, 5 ], [ 3, 2, 4, 6, 1 ] );</span>
[5,1,3,4,6](2)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrFixedPoints(f);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrFixedPoints(PartialPerm([1 .. 10]));</span>
10</pre></div>

<p><a id="X81F5C64E7DAD27A7" name="X81F5C64E7DAD27A7"></a></p>

<h5>54.3-11 NrMovedPoints</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrMovedPoints</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrMovedPoints</code> returns the number of points <code class="code">i</code> in the domain of the partial permutation <var class="Arg">f</var> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code>.</p>

<p>When the argument is a collection of partial permutations <var class="Arg">coll</var>, <code class="code">NrMovedPoints</code> returns the number of points moved by some element of the collection of partial permutations <var class="Arg">coll</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 4, 5, 7, 8 ], [ 4, 5, 6, 7, 1, 3, 2 ] );</span>
[8,2,5,1,4,7,3,6]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints(f);</span>
7
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrMovedPoints(PartialPerm([1 .. 4]));</span>
0</pre></div>

<p><a id="X84A49C977E1E29AA" name="X84A49C977E1E29AA"></a></p>

<h5>54.3-12 SmallestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestMovedPoint</code> returns the smallest positive integer <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is an identity partial permutation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the smallest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">SmallestMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 3 ], [ 4, 3 ] );</span>
[1,4](3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint(f);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestMovedPoint(PartialPerm([1 .. 10]));</span>
infinity</pre></div>

<p><a id="X7D4290A785ABC86D" name="X7D4290A785ABC86D"></a></p>

<h5>54.3-13 LargestMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">LargestMovedPoint</code> returns the largest positive integers <code class="code">i</code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity partial permutation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the largest point which is moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">LargestMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 3, 4, 5 ], [ 5, 1, 6, 4 ] );</span>
[3,1,5,4,6]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint(f);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestMovedPoint(PartialPerm([1 .. 10]));</span>
0</pre></div>

<p><a id="X85280F1A7B1014BA" name="X85280F1A7B1014BA"></a></p>

<h5>54.3-14 SmallestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">infinity</code>.</p>

<p><code class="code">SmallestImageOfMovedPoint</code> returns the smallest positive integer <code class="code">i^<var class="Arg">f</var></code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is the identity partial permutation, then <code class="keyw">infinity</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the smallest integer which is the image a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">SmallestImageOfMovedPoint</code> returns <code class="keyw">infinity</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);</span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(S);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(S);</span>
infinity
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6 ] );</span>
[4,6](1)(2)(3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestImageOfMovedPoint(f);</span>
6</pre></div>

<p><a id="X7A95CD437BC1CB1A" name="X7A95CD437BC1CB1A"></a></p>

<h5>54.3-15 LargestImageOfMovedPoint</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LargestImageOfMovedPoint</code>( <var class="Arg">coll</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">LargestImageOfMovedPoint</code> returns the largest positive integer <code class="code">i^<var class="Arg">f</var></code> such that <code class="code">i^<var class="Arg">f</var>&lt;&gt;i</code> if such an <code class="code">i</code> exists. If <var class="Arg">f</var> is an identity partial permutation, then <code class="code">0</code> is returned.</p>

<p>If the argument is a collection of partial permutations <var class="Arg">coll</var>, then the largest integer which is the image of a point moved by at least one element of <var class="Arg">coll</var> is returned, if such a point exists. If <var class="Arg">coll</var> only contains identity partial permutations, then <code class="code">LargestImageOfMovedPoint</code> returns <code class="code">0</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);</span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(S);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(S);</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LargestImageOfMovedPoint(f);</span>
6</pre></div>

<p><a id="X873A9F717DA75CBC" name="X873A9F717DA75CBC"></a></p>

<h5>54.3-16 IndexPeriodOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IndexPeriodOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A pair of positive integers.</p>

<p>Returns the least positive integers <code class="code">m, r</code> such that <code class="code"><var class="Arg">f</var>^(m+r)=<var class="Arg">f</var>^m</code>, which are known as the <em>index</em> and <em>period</em> of the partial permutation <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1 ] );</span>
[2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexPeriodOfPartialPerm(f);</span>
[ 6, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f^6=f^7;</span>
true</pre></div>

<p><a id="X7C04AA377F080722" name="X7C04AA377F080722"></a></p>

<h5>54.3-17 SmallestIdempotentPower</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SmallestIdempotentPower</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p>This function returns the least positive integer <code class="code">n</code> such that the partial permutation <code class="code"><var class="Arg">f</var>^n</code> is an idempotent. The smallest idempotent power of <var class="Arg">f</var> is the least multiple of the period of <var class="Arg">f</var> that is greater than or equal to the index of <var class="Arg">f</var>; see <code class="func">IndexPeriodOfPartialPerm</code> (<a href="chap54_mj.html#X873A9F717DA75CBC"><span class="RefLink">54.3-16</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 18, 19, 20 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 5, 1, 7, 3, 10, 2, 12, 14, 11, 16, 6, 9, 15 ] );</span>
[4,3,7,2,1,5,10,14][8,12][13,16][18,6][19,9][20,15](11)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SmallestIdempotentPower(f);</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f^8;</span>
&lt;identity partial perm on [ 11 ]&gt;</pre></div>

<p><a id="X8185065E788BDD0D" name="X8185065E788BDD0D"></a></p>

<h5>54.3-18 ComponentsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A list of lists of positive integer.</p>

<p><code class="code">ComponentsOfPartialPerm</code> returns a list of the components of the partial permutation <var class="Arg">f</var>. Each component is a subset of the domain of <var class="Arg">f</var>, and the union of the components equals the domain.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );</span>
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentsOfPartialPerm(f);</span>
[ [ 1, 20 ], [ 2, 4, 19, 13, 15 ], [ 7, 14 ], [ 8, 3, 6 ],
  [ 10, 12, 5, 9 ], [ 11, 17 ] ]</pre></div>

<p><a id="X7CB51EB67FFA95E9" name="X7CB51EB67FFA95E9"></a></p>

<h5>54.3-19 NrComponentsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NrComponentsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer.</p>

<p><code class="code">NrComponentsOfPartialPerm</code> returns the number of components of the partial permutation <var class="Arg">f</var> on its domain.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );</span>
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NrComponentsOfPartialPerm(f);</span>
6</pre></div>

<p><a id="X7AAAAE4082B30E18" name="X7AAAAE4082B30E18"></a></p>

<h5>54.3-20 ComponentRepsOfPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentRepsOfPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A list of positive integers.</p>

<p><code class="code">ComponentRepsOfPartialPerm</code> returns the representatives, in the following sense, of the components of the partial permutation <var class="Arg">f</var>. Every component of <var class="Arg">f</var> contains a unique element in the domain but not the image of <var class="Arg">f</var>; this element is called the <em>representative</em> of the component. If <code class="code">i</code> is a representative of a component of <var class="Arg">f</var>, then for every <code class="code">j</code><span class="SimpleMath">\(\not=\)</span><code class="code">i</code> in the component of <code class="code">i</code>, there exists a positive integer <code class="code">k</code> such that <code class="code">i ^ (<var class="Arg">f</var> ^ k) = j</code>. Unlike transformations, there is exactly one representative for every component of <var class="Arg">f</var>. <code class="code">ComponentRepsOfPartialPerm</code> returns the least number of representatives.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );</span>
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentRepsOfPartialPerm(f);</span>
[ 1, 2, 7, 8, 10, 11 ]</pre></div>

<p><a id="X7A8FB86C78C49F85" name="X7A8FB86C78C49F85"></a></p>

<h5>54.3-21 LeftOne</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftOne</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RightOne</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p><code class="code">LeftOne</code> returns the identity partial permutation <code class="code">e</code> such that the domain and image of <code class="code">e</code> equal the domain of the partial permutation <var class="Arg">f</var> and such that <code class="code">e*<var class="Arg">f</var>=f</code>.</p>

<p><code class="code">RightOne</code> returns the identity partial permutation <code class="code">e</code> such that the domain and image of <code class="code">e</code> equal the image of <var class="Arg">f</var> and such that <code class="code"><var class="Arg">f</var>*e=f</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 5, 6, 7 ], [ 10, 1, 6, 5, 8, 7 ] );</span>
[2,1,10][4,6,8](5)(7)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RightOne(f);</span>
&lt;identity partial perm on [ 1, 5, 6, 7, 8, 10 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LeftOne(f);</span>
&lt;identity partial perm on [ 1, 2, 4, 5, 6, 7 ]&gt;</pre></div>

<p><a id="X857FC10C81507E8B" name="X857FC10C81507E8B"></a></p>

<h5>54.3-22 One</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; One</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>As described in <code class="func">OneImmutable</code> (<a href="chap31_mj.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>), <code class="code">One</code> returns the multiplicative neutral element of the partial permutation <var class="Arg">f</var>, which is the identity partial permutation on the union of the domain and image of <var class="Arg">f</var>. Equivalently, the one of <var class="Arg">f</var> is the join of the right one and left one of <var class="Arg">f</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm([ 1, 2, 3, 4, 5, 7, 10 ], [ 3, 7, 9, 6, 1, 10, 2 ]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One(f);</span>
&lt;identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 9, 10 ]&gt;</pre></div>

<p><a id="X7D90CF497D58D759" name="X7D90CF497D58D759"></a></p>

<h5>54.3-23 MultiplicativeZero</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MultiplicativeZero</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: The empty partial permutation.</p>

<p>As described in <code class="func">MultiplicativeZero</code> (<a href="chap35_mj.html#X7B39F93C8136D642"><span class="RefLink">35.4-11</span></a>), <code class="code">Zero</code> returns the multiplicative zero element of the partial permutation <var class="Arg">f</var>, which is the empty partial permutation.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm([ 1, 2, 3, 4, 5, 7, 10 ], [ 3, 7, 9, 6, 1, 10, 2 ]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicativeZero(f);</span>
&lt;empty partial perm&gt;</pre></div>

<p><a id="X8585AA8B78E9CDFB" name="X8585AA8B78E9CDFB"></a></p>

<h4>54.4 <span class="Heading">Changing the representation of a partial permutation</span></h4>

<p>It is possible that a partial permutation in <strong class="pkg">GAP</strong> can be represented by other types of objects, or that other types of <strong class="pkg">GAP</strong> objects can be represented by partial permutations. Partial permutations which are mathematically permutations can be converted into permutations in <strong class="pkg">GAP</strong> using the function <code class="func">AsPermutation</code> (<a href="chap42_mj.html#X8353AB8987E35DF3"><span class="RefLink">42.5-6</span></a>). Similarly, a partial permutation can be converted into a transformation using <code class="func">AsTransformation</code> (<a href="chap53_mj.html#X7C5360B2799943F3"><span class="RefLink">53.3-1</span></a>).</p>

<p>In this section we describe functions for converting other types of objects in <strong class="pkg">GAP</strong> into partial permutations.</p>

<p><a id="X81B32CB182489ACA" name="X81B32CB182489ACA"></a></p>

<h5>54.4-1 AsPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">set</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation.</p>

<p>A permutation <var class="Arg">f</var> defines a partial permutation when it is restricted to any finite set of positive integers. <code class="code">AsPartialPerm</code> can be used to obtain this partial permutation.</p>

<p>There are several possible arguments for <code class="code">AsPartialPerm</code>:</p>


<dl>
<dt><strong class="Mark">for a permutation and set of positive integers</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that equals <var class="Arg">f</var> on the set of positive integers <var class="Arg">set</var> and that is undefined on every other positive integer.</p>

<p>Note that as explained in <code class="func">PartialPerm</code> (<a href="chap54_mj.html#X8538BAE77F2FB2F8"><span class="RefLink">54.2-1</span></a>) <em>a permutation is never a partial permutation</em> in <strong class="pkg">GAP</strong>, please keep this in mind when using <code class="code">AsPartialPerm</code>.</p>

</dd>
<dt><strong class="Mark">for a permutation</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that agrees with <var class="Arg">f</var> on <code class="code">[1..LargestMovedPoint(<var class="Arg">f</var>)]</code> and that is not defined on any other positive integer.</p>

</dd>
<dt><strong class="Mark">for a permutation and a positive integer</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that agrees with <var class="Arg">f</var> on <code class="code">[1..<var class="Arg">n</var>]</code>, when <var class="Arg">n</var> is a positive integer, and that is not defined on any other positive integer.</p>

</dd>
</dl>
<p>The operation <code class="func">PartialPermOp</code> (<a href="chap54_mj.html#X81188D9F83F64222"><span class="RefLink">54.2-2</span></a>) can also be used to convert permutations into partial permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f);</span>
(1)(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16)(6)(11)(15)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f, [ 1, 2, 3 ] );</span>
[2,8][3,5](1)</pre></div>

<p><a id="X87EC67747B260E98" name="X87EC67747B260E98"></a></p>

<h5>54.4-2 AsPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">set</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AsPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>Returns: A partial permutation or <code class="keyw">fail</code>.</p>

<p>A transformation <var class="Arg">f</var> defines a partial permutation when it is restricted to a set of positive integers where it is injective. <code class="code">AsPartialPerm</code> can be used to obtain this partial permutation.</p>

<p>There are several possible arguments for <code class="code">AsPartialPerm</code>:</p>


<dl>
<dt><strong class="Mark">for a transformation and set of positive integers</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation obtained by restricting <var class="Arg">f</var> to the set of positive integers <var class="Arg">set</var> when:</p>


<ul>
<li><p><var class="Arg">set</var> contains no elements exceeding the degree of <var class="Arg">f</var>;</p>

</li>
<li><p><var class="Arg">f</var> is injective on <var class="Arg">set</var>.</p>

</li>
</ul>
</dd>
<dt><strong class="Mark">for a transformation and a positive integer</strong></dt>
<dd><p><code class="code">AsPartialPerm</code> returns the partial permutation that agrees with <var class="Arg">f</var> on <code class="code">[1..<var class="Arg">n</var>]</code> when <var class="Arg">A</var> is a positive integer and this set satisfies the conditions given above.</p>

</dd>
</dl>
<p>The operation <code class="func">PartialPermOp</code> (<a href="chap54_mj.html#X81188D9F83F64222"><span class="RefLink">54.2-2</span></a>) can also be used to convert transformations into partial permutations.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=Transformation( [ 8, 3, 5, 9, 6, 2, 9, 7, 9 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f, [1, 2, 3, 5, 8]);</span>
[1,8,7][2,3,5,6]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f, 3);</span>
[1,8][2,3,5]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AsPartialPerm(f, [ 2 .. 4 ] );</span>
[2,3,5][4,9]</pre></div>

<p><a id="X848CD855802C6CE1" name="X848CD855802C6CE1"></a></p>

<h4>54.5 <span class="Heading">Operators and operations for partial permutations</span></h4>

<p><a id="X7B8630027B7F0BCC" name="X7B8630027B7F0BCC"></a></p>

<h5>54.5-1 Inverse</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Inverse</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>returns the inverse of the partial permutation <var class="Arg">f</var>.</p>

<p><a id="X792D3BA278DAB869" name="X792D3BA278DAB869"></a></p>

<h5><code>54.5-2 \^</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \^</code>( <var class="Arg">i</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>returns the image of the positive integer <var class="Arg">i</var> under the partial permutation <var class="Arg">f</var> if it is defined and <code class="code">0</code> if it is not.</p>

<p><a id="X7DC25BC47AAA9C73" name="X7DC25BC47AAA9C73"></a></p>

<h5><code>54.5-3 \/</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \/</code>( <var class="Arg">i</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>returns the preimage of the positive integer <var class="Arg">i</var> under the partial permutation <var class="Arg">f</var> if it is defined and <code class="code">0</code> if it is not. Note that the inverse of <var class="Arg">f</var> is not calculated to find the preimage of <var class="Arg">i</var>.</p>

<p><a id="X8213CD6E7C461169" name="X8213CD6E7C461169"></a></p>

<h5><code>54.5-4 \^</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \^</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> ^ <var class="Arg">g</var></code> returns <code class="code"><var class="Arg">g</var>^-1*<var class="Arg">f</var>*<var class="Arg">g</var></code> when <var class="Arg">f</var> is a partial permutation and <var class="Arg">g</var> is a permutation or partial permutation; see <code class="func">\^</code> (<a href="chap31_mj.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>). This operation requires essentially the same number of steps as multiplying partial permutations, which is around one third as many as inverting and multiplying twice.</p>

<p><a id="X86469D597F8BC7CE" name="X86469D597F8BC7CE"></a></p>

<h5><code>54.5-5 \*</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \*</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> * <var class="Arg">g</var></code> returns the composition of <var class="Arg">f</var> and <var class="Arg">g</var> when <var class="Arg">f</var> and <var class="Arg">g</var> are partial permutations or permutations. The product of a permutation and a partial permutation is returned as a partial permutation.</p>

<p><a id="X869DBDF67FA3817B" name="X869DBDF67FA3817B"></a></p>

<h5><code>54.5-6 \/</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \/</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> / <var class="Arg">g</var></code> returns <code class="code"><var class="Arg">f</var>*<var class="Arg">g</var>^-1</code> when <var class="Arg">f</var> is a partial permutation and <var class="Arg">g</var> is a permutation or partial permutation. This operation requires essentially the same number of steps as multiplying partial permutations, which is approximately half that required to first invert <var class="Arg">g</var> and then take the product with <var class="Arg">f</var>.</p>

<p><a id="X82E3A3E186A4F2D2" name="X82E3A3E186A4F2D2"></a></p>

<h5>54.5-7 LeftQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeftQuotient</code>( <var class="Arg">g</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>returns <code class="code"><var class="Arg">g</var>^-1*<var class="Arg">f</var></code> when <var class="Arg">f</var> is a partial permutation and <var class="Arg">g</var> is a permutation or partial permutation. This operation requires essentially the same number of steps as multiplying partial permutations, which is approximately half that required to first invert <var class="Arg">g</var> and then take the product with <var class="Arg">f</var>.</p>

<p><a id="X8659E9E57AC8D9CE" name="X8659E9E57AC8D9CE"></a></p>

<h5><code>54.5-8 \&lt;</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \&lt;</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> &lt; <var class="Arg">g</var></code> returns <code class="keyw">true</code> if the image of <var class="Arg">f</var> on the range from 1 to the degree of <var class="Arg">f</var> is lexicographically less than the corresponding image for <var class="Arg">g</var> and <code class="keyw">false</code> if it is not. See <code class="func">NaturalLeqPartialPerm</code> (<a href="chap54_mj.html#X87B1ED93785257C1"><span class="RefLink">54.5-13</span></a>) and <code class="func">ShortLexLeqPartialPerm</code> (<a href="chap54_mj.html#X81BD69307D294A1C"><span class="RefLink">54.5-14</span></a>) for additional orders for partial permutations.</p>

<p><a id="X7828338C7DB8AAC7" name="X7828338C7DB8AAC7"></a></p>

<h5><code>54.5-9 \=</code></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; \=</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p><code class="code"><var class="Arg">f</var> = <var class="Arg">g</var></code> returns <code class="keyw">true</code> if the partial permutation <var class="Arg">f</var> equals the partial permutation <var class="Arg">g</var> and returns <code class="keyw">false</code> if it does not.</p>

<p><a id="X8382A0F8875CEB08" name="X8382A0F8875CEB08"></a></p>

<h5>54.5-10 PermLeftQuoPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermLeftQuoPartialPermNC</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A permutation.</p>

<p>Returns the permutation on the image set of <var class="Arg">f</var> induced by <code class="code"><var class="Arg">f</var>^-1*<var class="Arg">g</var></code> when the partial permutations <var class="Arg">f</var> and <var class="Arg">g</var> have equal domain and image set.</p>

<p><code class="code">PermLeftQuoPartialPerm</code> verifies that <var class="Arg">f</var> and <var class="Arg">g</var> have equal domains and image sets, and returns an error if they do not. <code class="code">PermLeftQuoPartialPermNC</code> does no checks.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 5, 7 ], [ 7, 9, 10, 4, 2, 5 ] );</span>
[1,7,5,2,9][3,10](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 5, 7 ], [ 7, 4, 9, 2, 5, 10 ] );</span>
[1,7,10][3,9](2,4)(5)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermLeftQuoPartialPerm(f, g);</span>
(2,5,10,9,4)</pre></div>

<p><a id="X7C7F5EAB7E9A381D" name="X7C7F5EAB7E9A381D"></a></p>

<h5>54.5-11 PreImagePartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PreImagePartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">i</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A positive integer or <code class="keyw">fail</code>.</p>

<p><code class="code">PreImagePartialPerm</code> returns the preimage of the positive integer <var class="Arg">i</var> under the partial permutation <var class="Arg">f</var> if <var class="Arg">i</var> belongs to the image of <var class="Arg">f</var>. If <var class="Arg">i</var> does not belong to the image of <var class="Arg">f</var>, then <code class="keyw">fail</code> is returned.</p>

<p>The same result can be obtained by using <code class="code"><var class="Arg">i</var>/<var class="Arg">f</var></code> as described in Section <a href="chap54_mj.html#X848CD855802C6CE1"><span class="RefLink">54.5</span></a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 9, 10 ], [ 5, 10, 7, 8, 9, 1 ] );</span>
[2,10,1,5,8][3,7](9)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 8);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 5);</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 1);</span>
10
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 10);</span>
2
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PreImagePartialPerm(f, 2);</span>
fail</pre></div>

<p><a id="X797A6CC084068219" name="X797A6CC084068219"></a></p>

<h5>54.5-12 ComponentPartialPermInt</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComponentPartialPermInt</code>( <var class="Arg">f</var>, <var class="Arg">i</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: A set of positive integers.</p>

<p><code class="code">ComponentPartialPermInt</code> returns the elements of the component of <var class="Arg">f</var> containing <var class="Arg">i</var> that can be obtained by repeatedly applying <var class="Arg">f</var> to <var class="Arg">i</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 11, 4, 14, 16, 15, 3, 20, 8, 17, 19, 1, 6, 12 ] );</span>
[2,4,14,17,6,15,19][5,16,1,11][7,3][10,8,20][18,12]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 4);</span>
[ 4, 14, 17, 6, 15, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 3);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 10);</span>
[ 10, 8, 20 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComponentPartialPermInt(f, 100);</span>
[  ]</pre></div>

<p><a id="X87B1ED93785257C1" name="X87B1ED93785257C1"></a></p>

<h5>54.5-13 NaturalLeqPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalLeqPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>The <em>natural partial order</em> <span class="SimpleMath">\(\leq\)</span> on an inverse semigroup <code class="code">S</code> is defined by <code class="code">s</code><span class="SimpleMath">\(\leq\)</span><code class="code">t</code> if there exists an idempotent <code class="code">e</code> in <code class="code">S</code> such that <code class="code">s=et</code>. Hence if <var class="Arg">f</var> and <var class="Arg">g</var> are partial permutations, then <var class="Arg">f</var><span class="SimpleMath">\(\leq\)</span><var class="Arg">g</var> if and only if <var class="Arg">f</var> is a restriction of <var class="Arg">g</var>; see <code class="func">RestrictedPartialPerm</code> (<a href="chap54_mj.html#X80ABBF4883C79060"><span class="RefLink">54.2-3</span></a>).</p>

<p><code class="code">NaturalLeqPartialPerm</code> returns <code class="keyw">true</code> if <var class="Arg">f</var> is a restriction of <var class="Arg">g</var> and <code class="keyw">false</code> if it is not. Note that since this is a partial order and not a total order, it is possible that <var class="Arg">f</var> and <var class="Arg">g</var> are incomparable with respect to the natural partial order.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=RestrictedPartialPerm(f, [ 1, 2, 3, 9, 13, 20 ] );</span>
[1,3,14][2,12]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(g,f);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(f,g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(f, g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(g, f);</span>
false</pre></div>

<p><a id="X81BD69307D294A1C" name="X81BD69307D294A1C"></a></p>

<h5>54.5-14 ShortLexLeqPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ShortLexLeqPartialPerm</code>( <var class="Arg">f</var>, <var class="Arg">g</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p><code class="code">ShortLexLeqPartialPerm</code> returns <code class="keyw">true</code> if the concatenation of the domain and image list of <var class="Arg">f</var> is short-lex less than the corresponding concatenation for <var class="Arg">g</var> and <code class="keyw">false</code> otherwise.</p>

<p>Note that this is not the natural partial order on partial permutation or the same as comparing <var class="Arg">f</var> and <var class="Arg">g</var> using <code class="code">\&lt;</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 4, 6, 7, 8, 10 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 8, 1, 9, 4, 10, 5, 6 ] );</span>
[2,8,5][7,10,6,4,9](1,3)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 7, 1, 4, 3, 2, 6, 5 ] );</span>
[8,6][10,5,2,1,7](3,4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f&lt;g;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g&lt;f;</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ShortLexLeqPartialPerm(f, g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ShortLexLeqPartialPerm(g, f);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(f, g);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(g, f);</span>
false</pre></div>

<p><a id="X83560BE678ACF855" name="X83560BE678ACF855"></a></p>

<h5>54.5-15 TrimPartialPerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TrimPartialPerm</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: Nothing.</p>

<p>It can happen that the internal representation of a partial permutation uses more memory than necessary. For example, by composing a partial permutation with codegree less than 65536 with a partial permutation with codegree greater than 65535. It is possible that the resulting partial permutation <var class="Arg">f</var> has its codegree and images stored as 32-bit integers, while none of its image points exceeds 65536. The purpose of this function is to change the internal representation of such an <var class="Arg">f</var> from using 32-bit to using 16-bit integers.</p>

<p>Note that the partial permutation <var class="Arg">f</var> is changed in-place, and nothing is returned by this function.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2 ], [ 3, 4 ] )</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">*PartialPerm( [ 3, 5 ], [ 3, 100000 ] );</span>
[1,3]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPPerm4Rep(f);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TrimPartialPerm(f); f;</span>
[1,3]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPPerm4Rep(f);</span>
false</pre></div>

<p><a id="X7849595B81D063EE" name="X7849595B81D063EE"></a></p>

<h4>54.6 <span class="Heading">Displaying partial permutations</span></h4>

<p>It is possible to change the way that <strong class="pkg">GAP</strong> displays partial permutations using the user preferences <code class="code">PartialPermDisplayLimit</code> and <code class="code">NotationForPartialPerms</code>; see Section <code class="func">UserPreference</code> (<a href="chap3_mj.html#X7B0AD104839B6C3C"><span class="RefLink">3.2-3</span></a>) for more information about user preferences.</p>

<p>If <code class="code">f</code> is a partial permutation of rank <code class="code">r</code> exceeding the value of the user preference <code class="code">PartialPermDisplayLimit</code>, then <code class="code">f</code> is displayed as:</p>


<div class="example"><pre>&lt;partial perm on r pts with degree m, codegree n&gt;</pre></div>

<p>where the degree and codegree are <code class="code">m</code> and <code class="code">n</code>, respectively. The idea is to abbreviate the display of partial permutations defined on many points. The default value for the <code class="code">PartialPermDisplayLimit</code> is <code class="code">100</code>.</p>

<p>If the rank of <code class="code">f</code> does not exceed the value of <code class="code">PartialPermDisplayLimit</code>, then how <code class="code">f</code> is displayed depends on the value of the user preference <code class="code">NotationForPartialPerms</code> except in the case that <code class="code">f</code> is the empty partial permutation or an identity partial permutation.</p>

<p>There are three possible values for <code class="code">NotationForPartialPerms</code> user preference, which are described below.</p>


<dl>
<dt><strong class="Mark">component</strong></dt>
<dd><p>Similar to permutations, and unlike transformations, partial permutations can be expressed as products of disjoint permutations and chains. A <em>chain</em> is a list <code class="code">c</code> of some length <code class="code">n</code> such that:</p>


<ul>
<li><p><code class="code">c[1]</code> is an element of the domain of <var class="Arg">f</var> but not the image</p>

</li>
<li><p><code class="code">c[i]^<var class="Arg">f</var>=c[i+1]</code> for all <code class="code">i</code> in the range from <code class="code">1</code> to <code class="code">n-1</code>.</p>

</li>
<li><p><code class="code">c[n]</code> is in the image of <var class="Arg">f</var> but not the domain.</p>

</li>
</ul>
<p>In the display, permutations are displayed as they usually are in <strong class="pkg">GAP</strong>, except that fixed points are displayed enclosed in round brackets, and chains are displayed enclosed in square brackets.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm([ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ]);</span>
[1,3,14][16,8,2,12,15](4)(5,11)[6,18,10,9][7,17,20](19)</pre></div>

<p>This option is the most compact way to display a partial permutation and is the default value of the user preference <code class="code">NotationForPartialPerms</code>.</p>

</dd>
<dt><strong class="Mark">domainimage</strong></dt>
<dd><p>With this option a partial permutation <code class="code">f</code> is displayed in the format: <code class="code">DomainOfPartialPerm(<var class="Arg">f</var>)-&gt; ImageListOfPartialPerm(<var class="Arg">f</var>)</code>.</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 4, 5, 6, 7 ], [ 10, 1, 6, 5, 8, 7 ]);</span>
[ 1, 2, 4, 5, 6, 7 ] -&gt; [ 10, 1, 6, 5, 8, 7 ]</pre></div>

</dd>
<dt><strong class="Mark">input</strong></dt>
<dd><p>With this option a partial permutation <var class="Arg">f</var> is displayed as: <code class="code">PartialPerm(DomainOfPartialPerm(<var class="Arg">f</var>), ImageListOfPartialPerm(<var class="Arg">f</var>))</code> which corresponds to the input (of the first type described in <code class="func">PartialPerm</code> (<a href="chap54_mj.html#X8538BAE77F2FB2F8"><span class="RefLink">54.2-1</span></a>)).</p>


<div class="example"><pre><span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm( [ 1, 2, 3, 5, 6, 9, 10 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 4, 7, 3, 8, 2, 1, 6 ] );</span>
PartialPerm( [ 1, 2, 3, 5, 6, 9, 10 ], [ 4, 7, 3, 8, 2, 1, 6 ] )</pre></div>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("PartialPermDisplayLimit", 12);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UserPreference("PartialPermDisplayLimit");</span>
12
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm([1,2,3,4,5,6], [6,7,1,4,3,2]);</span>
[5,3,1,6,2,7](4)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=PartialPerm(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] );</span>
&lt;partial perm on 15 pts with degree 19, codegree 20&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("PartialPermDisplayLimit", 100);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
[1,3,14][6,18,10,9][7,17,20][16,8,2,12,15](4)(5,11)(19)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UserPreference("NotationForPartialPerms");</span>
"component"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForPartialPerms", "domainimage");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ] -&gt;
[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetUserPreference("NotationForPartialPerms", "input");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f;</span>
PartialPerm(
[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],
[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] )</pre></div>

<p><a id="X7CCC82E07A73EB55" name="X7CCC82E07A73EB55"></a></p>

<h4>54.7 <span class="Heading">Semigroups and inverse semigroups of partial permutations</span></h4>

<p>As mentioned at the start of the chapter, every inverse semigroup is isomorphic to a semigroup of partial permutations, and in this section we describe the functions in <strong class="pkg">GAP</strong> specific to partial permutation semigroups. For more information about semigroups and inverse semigroups see Chapter <a href="chap51_mj.html#X8665D8737FDD5B10"><span class="RefLink">51</span></a>.</p>

<p>The <strong class="pkg">Semigroups</strong> package contains many additional functions and methods for computing with semigroups of partial permutations. In particular, <strong class="pkg">Semigroups</strong> contains more efficient methods than those available in the <strong class="pkg">GAP</strong> library (and in many cases more efficient than any other software) for creating semigroups of transformations, calculating their Green's classes, size, elements, group of units, minimal ideal, small generating sets, testing membership, finding the inverses of a regular element, factorizing elements over the generators, and more.</p>

<p>Since a partial permutation semigroup is also a partial permutation collection, there are special methods for <code class="func">DomainOfPartialPermCollection</code> (<a href="chap54_mj.html#X784A14F787E041D7"><span class="RefLink">54.3-4</span></a>), <code class="func">ImageOfPartialPermCollection</code> (<a href="chap54_mj.html#X7CD84B107831E0FC"><span class="RefLink">54.3-5</span></a>), <code class="func">FixedPointsOfPartialPerm</code> (<a href="chap54_mj.html#X82AAFF938623422E"><span class="RefLink">54.3-8</span></a>), <code class="func">MovedPoints</code> (<a href="chap54_mj.html#X82FE981A87FAA2DC"><span class="RefLink">54.3-9</span></a>), <code class="func">NrFixedPoints</code> (<a href="chap54_mj.html#X7FAF969C84CDC742"><span class="RefLink">54.3-10</span></a>), <code class="func">NrMovedPoints</code> (<a href="chap54_mj.html#X81F5C64E7DAD27A7"><span class="RefLink">54.3-11</span></a>), <code class="func">LargestMovedPoint</code> (<a href="chap54_mj.html#X7D4290A785ABC86D"><span class="RefLink">54.3-13</span></a>), and <code class="func">SmallestMovedPoint</code> (<a href="chap54_mj.html#X84A49C977E1E29AA"><span class="RefLink">54.3-12</span></a>) when applied to a partial permutation semigroup.</p>

<p><a id="X7D161674800B50E0" name="X7D161674800B50E0"></a></p>

<h5>54.7-1 IsPartialPermSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPermSemigroup</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;filter&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsPartialPermMonoid</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;filter&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>A <em>partial perm semigroup</em> is simply a semigroup consisting of partial permutations, which may or may not be an inverse semigroup. An object <var class="Arg">obj</var> in <strong class="pkg">GAP</strong> is a partial perm semigroup if and only if it satisfies <code class="func">IsSemigroup</code> (<a href="chap51_mj.html#X7B412E5B8543E9B7"><span class="RefLink">51.1-1</span></a>) and <code class="func">IsPartialPermCollection</code> (<a href="chap54_mj.html#X8262A827790DD1CC"><span class="RefLink">54.1-2</span></a>).</p>

<p>A <em>partial perm monoid</em> is a monoid consisting of partial permutations. An object in <strong class="pkg">GAP</strong> is a partial perm monoid if it satisfies <code class="func">IsMonoid</code> (<a href="chap51_mj.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>) and <code class="func">IsPartialPermCollection</code> (<a href="chap54_mj.html#X8262A827790DD1CC"><span class="RefLink">54.1-2</span></a>).</p>

<p>Note that it is possible for a partial perm semigroup to have a multiplicative neutral element (i.e. an identity element) but not to satisfy <code class="code">IsPartialPermMonoid</code>. For example,</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f := PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(f, One(f));</span>
&lt;commutative partial perm monoid of rank 9 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPartialPermMonoid(S);</span>
true</pre></div>

<p>Note that unlike transformation semigroups, the <code class="func">One</code> (<a href="chap31_mj.html#X8046262384895B2A"><span class="RefLink">31.10-2</span></a>) of a partial permutation semigroup must coincide with the multiplicative neutral element, if either exists.</p>

<p>For more details see <code class="func">IsMagmaWithOne</code> (<a href="chap35_mj.html#X86071DE7835F1C7C"><span class="RefLink">35.1-2</span></a>).</p>

<p><a id="X7D7F0BAB82F0D820" name="X7D7F0BAB82F0D820"></a></p>

<h5>54.7-2 DegreeOfPartialPermSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CodegreeOfPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankOfPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: A non-negative integer.</p>

<p>The <em>degree</em> of a partial permutation semigroup <var class="Arg">S</var> is the largest degree of any partial permutation in <var class="Arg">S</var>.</p>

<p>The <em>codegree</em> of a partial permutation semigroup <var class="Arg">S</var> is the largest positive integer in its image.</p>

<p>The <em>rank</em> of a partial permutation semigroup <var class="Arg">S</var> is the number of points on which it acts.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup( PartialPerm( [ 1, 5 ], [ 10000, 3 ] ) );</span>
&lt;commutative partial perm semigroup of rank 2 with 1 generator&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DegreeOfPartialPermSemigroup(S);</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CodegreeOfPartialPermSemigroup(S);</span>
10000
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankOfPartialPermSemigroup(S);</span>
2</pre></div>

<p><a id="X81D271B380995F8A" name="X81D271B380995F8A"></a></p>

<h5>54.7-3 SymmetricInverseSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricInverseSemigroup</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricInverseMonoid</code>( <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: The symmetric inverse semigroup of degree <var class="Arg">n</var>.</p>

<p>If <var class="Arg">n</var> is a non-negative integer, then <code class="code">SymmetricInverseSemigroup</code> returns the inverse semigroup consisting of all partial permutations with degree and codegree at most <var class="Arg">n</var>. Note that <var class="Arg">n</var> must be non-negative, but in particular, can equal <code class="code">0</code>.</p>

<p>The symmetric inverse semigroup has <span class="SimpleMath">\(\sum_{r=0}^n{n\choose r}^2\cdot r!\)</span> elements and is generated by any set that of partial permutations that generate the symmetric group on <var class="Arg">n</var> points and any partial permutation of rank <code class="code"><var class="Arg">n</var>-1</code>.</p>

<p><code class="code">SymmetricInverseMonoid</code> is a synonym for <code class="code">SymmetricInverseSemigroup</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := SymmetricInverseSemigroup(5);</span>
&lt;symmetric inverse monoid of degree 5&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
1546
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GeneratorsOfInverseMonoid(S);</span>
[ (1,2,3,4,5), (1,2)(3)(4)(5), [5,4,3,2,1] ]</pre></div>

<p><a id="X7C8AEA50834060DD" name="X7C8AEA50834060DD"></a></p>

<h5>54.7-4 IsSymmetricInverseSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSymmetricInverseSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsSymmetricInverseMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>Returns: <code class="keyw">true</code> or <code class="keyw">false</code>.</p>

<p>If the partial perm semigroup <var class="Arg">S</var> of degree and codegree <var class="Arg">n</var> equals the symmetric inverse semigroup on <var class="Arg">n</var> points, then <code class="code">IsSymmetricInverseSemigroup</code> return <code class="keyw">true</code> and otherwise it returns <code class="keyw">false</code>.</p>

<p><code class="code">IsSymmetricInverseMonoid</code> is a synonym of <code class="code">IsSymmetricInverseSemigroup</code>. It is common in the literature for the symmetric inverse monoid to be referred to as the symmetric inverse semigroup.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(AsPartialPerm((1, 3, 4, 2), 5), AsPartialPerm((1, 3, 5), 5),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 4 ] ) );</span>
&lt;partial perm semigroup of rank 5 with 3 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSymmetricInverseSemigroup(S);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S;</span>
&lt;symmetric inverse monoid of degree 5&gt;</pre></div>

<p><a id="X7EA51F087CF7621F" name="X7EA51F087CF7621F"></a></p>

<h5>54.7-5 NaturalPartialOrder</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalPartialOrder</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReverseNaturalPartialOrder</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: The natural partial order on an inverse semigroup.</p>

<p>The <em>natural partial order</em> <span class="SimpleMath">\(\leq\)</span> on an inverse semigroup <var class="Arg">S</var> is defined by <code class="code">s</code><span class="SimpleMath">\(\leq\)</span><code class="code">t</code> if there exists an idempotent <code class="code">e</code> in <var class="Arg">S</var> such that <code class="code">s=et</code>. Hence if <code class="code">f</code> and <code class="code">g</code> are partial permutations, then <code class="code">f</code><span class="SimpleMath">\(\leq\)</span><code class="code">g</code> if and only if <code class="code">f</code> is a restriction of <code class="code">g</code>; see <code class="func">RestrictedPartialPerm</code> (<a href="chap54_mj.html#X80ABBF4883C79060"><span class="RefLink">54.2-3</span></a>).</p>

<p><code class="code">NaturalPartialOrder</code> returns the natural partial order on the inverse semigroup of partial permutations <var class="Arg">S</var> as a list of sets of positive integers where entry <code class="code">i</code> in <code class="code">NaturalPartialOrder(<var class="Arg">S</var>)</code> is the set of positions in <code class="code">Elements(<var class="Arg">S</var>)</code> of elements which are less than <code class="code">Elements(<var class="Arg">S</var>)[i]</code>. See also <code class="func">NaturalLeqPartialPerm</code> (<a href="chap54_mj.html#X87B1ED93785257C1"><span class="RefLink">54.5-13</span></a>).</p>

<p><code class="code">ReverseNaturalPartialOrder</code> returns the reverse of the natural partial order on the inverse semigroup of partial permutations <var class="Arg">S</var> as a list of sets of positive integers where entry <code class="code">i</code> in <code class="code">ReverseNaturalPartialOrder(<var class="Arg">S</var>)</code> is the set of positions in <code class="code">Elements(<var class="Arg">S</var>)</code> of elements which are greater than <code class="code">Elements(<var class="Arg">S</var>)[i]</code>. See also <code class="func">NaturalLeqPartialPerm</code> (<a href="chap54_mj.html#X87B1ED93785257C1"><span class="RefLink">54.5-13</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseSemigroup([ PartialPerm( [ 1, 3 ], [ 1, 3 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2 ], [ 3, 2 ] ) ] );</span>
&lt;inverse partial perm semigroup of rank 3 with 2 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
11
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalPartialOrder(S);</span>
[ [  ], [ 1 ], [ 1 ], [ 1 ], [ 1, 2, 4 ], [ 1, 3, 4 ], [ 1 ], [ 1 ],
  [ 1, 4, 7 ], [ 1, 4, 8 ], [ 1, 2, 8 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[10]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[1]);</span>
false</pre></div>

<p><a id="X7FE18EBE79B9C17C" name="X7FE18EBE79B9C17C"></a></p>

<h5>54.7-6 IsomorphismPartialPermSemigroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPartialPermSemigroup</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsomorphismPartialPermMonoid</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Returns: An isomorphism.</p>

<p><code class="code">IsomorphismPartialPermSemigroup(<var class="Arg">S</var>)</code> returns an isomorphism from the inverse semigroup <var class="Arg">S</var> to an inverse semigroup of partial permutations.</p>

<p><code class="code">IsomorphismPartialPermMonoid(<var class="Arg">S</var>)</code> returns an isomorphism from the inverse semigroup <var class="Arg">S</var> to an inverse monoid of partial permutations, if possible.</p>

<p>We only describe <code class="code">IsomorphismPartialPermMonoid</code>, the corresponding statements for <code class="code">IsomorphismPartialPermSemigroup</code> also hold.</p>


<dl>
<dt><strong class="Mark">Partial permutation semigroups</strong></dt>
<dd><p>If <var class="Arg">S</var> is a partial permutation semigroup that does not satisfy <code class="func">IsMonoid</code> (<a href="chap51_mj.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>) but where <code class="code">MultiplicativeNeutralElement(<var class="Arg">S</var>)&lt;&gt;fail</code>, then <code class="code">IsomorphismPartialPermMonoid(<var class="Arg">S</var>)</code> returns an isomorphism from <var class="Arg">S</var> to an inverse monoid of partial permutations.</p>

</dd>
<dt><strong class="Mark">Permutation groups</strong></dt>
<dd><p>If <var class="Arg">S</var> is a permutation group, then <code class="code">IsomorphismPartialPermMonoid</code> returns an isomorphism from <var class="Arg">S</var> to an inverse monoid of partial permutations on the set <code class="code">MovedPoints(<var class="Arg">S</var>)</code> obtained using <code class="func">AsPartialPerm</code> (<a href="chap54_mj.html#X81B32CB182489ACA"><span class="RefLink">54.4-1</span></a>). The inverse of this isomorphism is obtained using <code class="func">AsPermutation</code> (<a href="chap42_mj.html#X8353AB8987E35DF3"><span class="RefLink">42.5-6</span></a>).</p>

</dd>
<dt><strong class="Mark">Transformation semigroups</strong></dt>
<dd><p>If <var class="Arg">S</var> is a transformation semigroup which is mathematically a monoid but which does not necessarily belong to the category <code class="func">IsMonoid</code> (<a href="chap51_mj.html#X861C523483C6248C"><span class="RefLink">51.2-1</span></a>), then <code class="code">IsomorphismPartialPermMonoid</code> returns an isomorphism from <var class="Arg">S</var> to an inverse monoid of partial permutations.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := InverseSemigroup(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 3, 4, 5 ], [ 4, 2, 3, 1, 5 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">PartialPerm( [ 1, 2, 4, 5 ], [ 3, 1, 4, 2 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsMonoid(S);</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
508
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso := IsomorphismPartialPermMonoid(S);</span>
MappingByFunction( &lt;inverse partial perm semigroup of size 508,
 rank 5 with 2 generators&gt;, &lt;inverse partial perm monoid of size 508,
 rank 5 with 2 generators&gt;
 , function( object ) ... end, function( object ) ... end )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
508
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(Range(iso));</span>
508
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G := Group((1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsomorphismPartialPermSemigroup(G);</span>
MappingByFunction( Group([ (1,2)(3,8)(4,6)(5,7), (1,3,4,7)
(2,5,6,8), (1,4)(2,6)(3,7)
(5,8) ]), &lt;partial perm group of rank 8 with 3 generators&gt;
, function( p ) ... end, &lt;Attribute "AsPermutation"&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S := Semigroup(Transformation( [ 2, 5, 1, 7, 3, 7, 7 ] ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Transformation( [ 3, 6, 5, 7, 2, 1, 7 ] ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">iso := IsomorphismPartialPermMonoid(S);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MultiplicativeNeutralElement(S) ^ iso;</span>
&lt;identity partial perm on [ 1, 2, 3, 4, 5, 6 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">One(Range(iso));</span>
&lt;identity partial perm on [ 1, 2, 3, 4, 5, 6 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MovedPoints(Range(iso));</span>
[ 1 .. 5 ]</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap53_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap55_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chap17_mj.html">17</a>  <a href="chap18_mj.html">18</a>  <a href="chap19_mj.html">19</a>  <a href="chap20_mj.html">20</a>  <a href="chap21_mj.html">21</a>  <a href="chap22_mj.html">22</a>  <a href="chap23_mj.html">23</a>  <a href="chap24_mj.html">24</a>  <a href="chap25_mj.html">25</a>  <a href="chap26_mj.html">26</a>  <a href="chap27_mj.html">27</a>  <a href="chap28_mj.html">28</a>  <a href="chap29_mj.html">29</a>  <a href="chap30_mj.html">30</a>  <a href="chap31_mj.html">31</a>  <a href="chap32_mj.html">32</a>  <a href="chap33_mj.html">33</a>  <a href="chap34_mj.html">34</a>  <a href="chap35_mj.html">35</a>  <a href="chap36_mj.html">36</a>  <a href="chap37_mj.html">37</a>  <a href="chap38_mj.html">38</a>  <a href="chap39_mj.html">39</a>  <a href="chap40_mj.html">40</a>  <a href="chap41_mj.html">41</a>  <a href="chap42_mj.html">42</a>  <a href="chap43_mj.html">43</a>  <a href="chap44_mj.html">44</a>  <a href="chap45_mj.html">45</a>  <a href="chap46_mj.html">46</a>  <a href="chap47_mj.html">47</a>  <a href="chap48_mj.html">48</a>  <a href="chap49_mj.html">49</a>  <a href="chap50_mj.html">50</a>  <a href="chap51_mj.html">51</a>  <a href="chap52_mj.html">52</a>  <a href="chap53_mj.html">53</a>  <a href="chap54_mj.html">54</a>  <a href="chap55_mj.html">55</a>  <a href="chap56_mj.html">56</a>  <a href="chap57_mj.html">57</a>  <a href="chap58_mj.html">58</a>  <a href="chap59_mj.html">59</a>  <a href="chap60_mj.html">60</a>  <a href="chap61_mj.html">61</a>  <a href="chap62_mj.html">62</a>  <a href="chap63_mj.html">63</a>  <a href="chap64_mj.html">64</a>  <a href="chap65_mj.html">65</a>  <a href="chap66_mj.html">66</a>  <a href="chap67_mj.html">67</a>  <a href="chap68_mj.html">68</a>  <a href="chap69_mj.html">69</a>  <a href="chap70_mj.html">70</a>  <a href="chap71_mj.html">71</a>  <a href="chap72_mj.html">72</a>  <a href="chap73_mj.html">73</a>  <a href="chap74_mj.html">74</a>  <a href="chap75_mj.html">75</a>  <a href="chap76_mj.html">76</a>  <a href="chap77_mj.html">77</a>  <a href="chap78_mj.html">78</a>  <a href="chap79_mj.html">79</a>  <a href="chap80_mj.html">80</a>  <a href="chap81_mj.html">81</a>  <a href="chap82_mj.html">82</a>  <a href="chap83_mj.html">83</a>  <a href="chap84_mj.html">84</a>  <a href="chap85_mj.html">85</a>  <a href="chap86_mj.html">86</a>  <a href="chap87_mj.html">87</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>