1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
[1X67 [33X[0;0YAlgebraic extensions of fields[133X[101X
[33X[0;0YIf we adjoin a root [22Xα[122X of an irreducible polynomial [22Xf ∈ K[x][122X to the field [22XK[122X
we get an [13Xalgebraic extension[113X [22XK(α)[122X, which is again a field. We call [22XK[122X the
[13Xbase field[113X of [22XK(α)[122X.[133X
[33X[0;0YBy Kronecker's construction, we may identify [22XK(α)[122X with the factor ring
[22XK[x]/(f)[122X, an identification that also provides a method for computing in
these extension fields.[133X
[33X[0;0YIt is important to note that different extensions of the same field are
entirely different (and its elements lie in different families), even if
mathematically one could be embedded in the other one.[133X
[33X[0;0YCurrently [5XGAP[105X only allows extension fields of fields [22XK[122X, when [22XK[122X itself is not
an extension field.[133X
[1X67.1 [33X[0;0YCreation of Algebraic Extensions[133X[101X
[1X67.1-1 AlgebraicExtension[101X
[33X[1;0Y[29X[2XAlgebraicExtension[102X( [3XK[103X, [3Xf[103X[, [3Xnam[103X] ) [32X operation[133X
[33X[1;0Y[29X[2XAlgebraicExtensionNC[102X( [3XK[103X, [3Xf[103X[, [3Xnam[103X] ) [32X operation[133X
[33X[0;0Yconstructs an extension [3XL[103X of the field [3XK[103X by one root of the irreducible
polynomial [3Xf[103X, using Kronecker's construction. [3XL[103X is a field whose
[2XLeftActingDomain[102X ([14X57.1-11[114X) value is [3XK[103X. The polynomial [3Xf[103X is the
[2XDefiningPolynomial[102X ([14X58.2-7[114X) value of [3XL[103X and the attribute
[2XRootOfDefiningPolynomial[102X ([14X58.2-8[114X) of [3XL[103X holds a root of [3Xf[103X in [3XL[103X. By default
this root is printed as [10Xa[110X, this string can be overwritten with the optional
argument [3Xnam[103X.[133X
[33X[0;0YThe first version of the command checks that the polynomial [3Xf[103X is an
irreducible polynomial over [3XK[103X. This check is skipped with the [10XNC[110X variant.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xx:=Indeterminate(Rationals,"x");;[127X[104X
[4X[25Xgap>[125X [27Xp:=x^4+3*x^2+1;;[127X[104X
[4X[25Xgap>[125X [27Xe:=AlgebraicExtension(Rationals,p);[127X[104X
[4X[28X<algebraic extension over the Rationals of degree 4>[128X[104X
[4X[25Xgap>[125X [27XIsField(e);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xa:=RootOfDefiningPolynomial(e);[127X[104X
[4X[28Xa[128X[104X
[4X[25Xgap>[125X [27Xl := AlgebraicExtensionNC(Rationals, x^24+3*x^2+1, "alpha");;[127X[104X
[4X[25Xgap>[125X [27XRootOfDefiningPolynomial(l)^50;[127X[104X
[4X[28X9*alpha^6+6*alpha^4+alpha^2[128X[104X
[4X[32X[104X
[1X67.1-2 IsAlgebraicExtension[101X
[33X[1;0Y[29X[2XIsAlgebraicExtension[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0Yis the category of algebraic extensions of fields.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XIsAlgebraicExtension(e);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XIsAlgebraicExtension(Rationals);[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X67.2 [33X[0;0YElements in Algebraic Extensions[133X[101X
[33X[0;0YAccording to Kronecker's construction, the elements of an algebraic
extension are considered to be polynomials in the primitive element. The
elements of the base field are represented as polynomials of degree zero.
[5XGAP[105X therefore displays elements of an algebraic extension as polynomials in
an indeterminate [21Xa[121X, which is a root of the defining polynomial of the
extension. Polynomials of degree zero are displayed with a leading
exclamation mark to indicate that they are different from elements of the
base field.[133X
[33X[0;0YThe usual field operations are applicable to algebraic elements.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xa^3/(a^2+a+1);[127X[104X
[4X[28X-1/2*a^3+1/2*a^2-1/2*a[128X[104X
[4X[25Xgap>[125X [27Xa*(1/a);[127X[104X
[4X[28X!1[128X[104X
[4X[32X[104X
[33X[0;0YThe external representation of algebraic extension elements are the
polynomial coefficients in the primitive element [10Xa[110X, the operations
[2XExtRepOfObj[102X ([14X79.8-1[114X) and [2XObjByExtRep[102X ([14X79.8-1[114X) can be used for conversion.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XExtRepOfObj(One(a));[127X[104X
[4X[28X[ 1, 0, 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XExtRepOfObj(a^3+2*a-9);[127X[104X
[4X[28X[ -9, 2, 0, 1 ][128X[104X
[4X[25Xgap>[125X [27XObjByExtRep(FamilyObj(a),[3,19,-27,433]);[127X[104X
[4X[28X433*a^3-27*a^2+19*a+3[128X[104X
[4X[32X[104X
[33X[0;0Y[5XGAP[105X does [13Xnot[113X embed the base field in its algebraic extensions and therefore
lists which contain elements of the base field and of the extension are not
homogeneous and thus cannot be used as polynomial coefficients or to form
matrices. The remedy is to multiply the list(s) with the value of the
attribute [2XOne[102X ([14X31.10-2[114X) of the extension which will embed all entries in the
extension.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xm:=[[1,a],[0,1]];[127X[104X
[4X[28X[ [ 1, a ], [ 0, 1 ] ][128X[104X
[4X[25Xgap>[125X [27XIsMatrix(m);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27Xm:=m*One(e);[127X[104X
[4X[28X[ [ !1, a ], [ !0, !1 ] ][128X[104X
[4X[25Xgap>[125X [27XIsMatrix(m);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xm^2;[127X[104X
[4X[28X[ [ !1, 2*a ], [ !0, !1 ] ][128X[104X
[4X[32X[104X
[1X67.2-1 IsAlgebraicElement[101X
[33X[1;0Y[29X[2XIsAlgebraicElement[102X( [3Xobj[103X ) [32X Category[133X
[33X[0;0Yis the category for elements of an algebraic extension.[133X
[1X67.3 [33X[0;0YFinding Subfields[133X[101X
[1X67.3-1 IdealDecompositionsOfPolynomial[101X
[33X[1;0Y[29X[2XIdealDecompositionsOfPolynomial[102X( [3Xpol[103X ) [32X function[133X
[33X[0;0YLet [22Xf[122X be a univariate, rational, irreducible, polynomial. A pair [22Xg[122X,[22Xh[122X of
polynomials of degree strictly smaller than that of [22Xf[122X, such that
[22Xf(x)|g(h(x))[122X is called an ideal decomposition. In the context of field
extensions, if [22Xα[122X is a root of [22Xf[122X in a suitable extension and [22XQ[122X the field of
rational numbers. Such decompositions correspond to (proper) subfields [22XQ <
Q(β) < Q(α)[122X, where [22Xg[122X is the minimal polynomial of [22Xβ[122X. This function
determines such decompositions up to equality of the subfields [22XQ(β)[122X, thus
determining subfields of a given algebraic extension. It returns a list of
pairs [22X[g,h][122X (and an empty list if no such decomposition exists). If the
option [3Xonlyone[103X is given it returns at most one such decomposition (and
performs faster).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xx:=X(Rationals,"x");;pol:=x^8-24*x^6+144*x^4-288*x^2+144;;[127X[104X
[4X[25Xgap>[125X [27Xl:=IdealDecompositionsOfPolynomial(pol);[127X[104X
[4X[28X[ [ x^2+72*x+144, x^6-20*x^4+60*x^2-36 ],[128X[104X
[4X[28X [ x^2-48*x+144, x^6-21*x^4+84*x^2-48 ],[128X[104X
[4X[28X [ x^2+288*x+17280, x^6-24*x^4+132*x^2-288 ],[128X[104X
[4X[28X [ x^4-24*x^3+144*x^2-288*x+144, x^2 ] ][128X[104X
[4X[25Xgap>[125X [27XList(l,x->Value(x[1],x[2])/pol);[127X[104X
[4X[28X[ x^4-16*x^2-8, x^4-18*x^2+33, x^4-24*x^2+120, 1 ][128X[104X
[4X[25Xgap>[125X [27XIdealDecompositionsOfPolynomial(pol:onlyone);[127X[104X
[4X[28X[ [ x^2+72*x+144, x^6-20*x^4+60*x^2-36 ] ][128X[104X
[4X[32X[104X
[33X[0;0YIn this example the given polynomial is regular with Galois group [22XQ_8[122X, as
expected we get four proper subfields.[133X
|