File: chap72.html

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (2294 lines) | stat: -rw-r--r-- 216,552 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (ref) - Chapter 72: Class Functions</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap72"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap71.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap73.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap72_mj.html">[MathJax on]</a></p>
<p><a id="X7C91D0D17850E564" name="X7C91D0D17850E564"></a></p>
<div class="ChapSects"><a href="chap72.html#X7C91D0D17850E564">72 <span class="Heading">Class Functions</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X823319217E4B6852">72.1 <span class="Heading">Why Class Functions?</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7E75A70F7BF00A0D">72.1-1 IsClassFunction</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X8192EDDB84ADD46E">72.2 <span class="Heading">Basic Operations for Class Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X81B55C067D123B76">72.2-1 UnderlyingCharacterTable</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7FE14712843C6486">72.2-2 ValuesOfClassFunction</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X829EFBF57FCB1A94">72.3 <span class="Heading">Comparison of Class Functions</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X83B9F0C5871A5F7F">72.4 <span class="Heading">Arithmetic Operations for Class Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X83AAD5527BBAFA03">72.4-1 Characteristic</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X856AB97E785E0B04">72.4-2 ComplexConjugate</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7BCE99B88285EB39">72.4-3 Order</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X828AD0C57EA57C21">72.5 <span class="Heading">Printing Class Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7BDD2D4A7F7FB3B1">72.5-1 ViewObj</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X871160B98595D4BA">72.5-2 PrintObj</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8430D31B8163C230">72.5-3 Display</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X7BB90A8F86FFA456">72.6 <span class="Heading">Creating Class Functions from Values Lists</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X78F4E23985FCA259">72.6-1 ClassFunction</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7805AFF77EFC3306">72.6-2 VirtualCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X849DD34C7968206C">72.6-3 Character</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7B38035981D71B1B">72.6-4 ClassFunctionSameType</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X8727C2CB7ABEBC84">72.7 <span class="Heading">Creating Class Functions using Groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X86129DC37C55E4D6">72.7-1 <span class="Heading">TrivialCharacter</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X82C01DDB82D751A9">72.7-2 NaturalCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7938621F81B65E03">72.7-3 <span class="Heading">PermutationCharacter</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X86DDB47A7C6B45D0">72.8 <span class="Heading">Operations for Class Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7FE3CD08794051F8">72.8-1 IsCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X788DD05C86CB7030">72.8-2 IsVirtualCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X79A4B1D3870C8807">72.8-3 IsIrreducibleCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7802BC157C69DD75">72.8-4 DegreeOfCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X855FD9F983D275CD">72.8-5 ScalarProduct</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X858DF4E67EBB99DA">72.8-6 MatScalarProducts</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8572B18A7BAED73E">72.8-7 Norm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X78550D7087DB1181">72.8-8 ConstituentsOfCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7E0A24498710F12B">72.8-9 KernelOfCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7B4708B47D9C05B3">72.8-10 ClassPositionsOfKernel</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7E77D4147A0836D3">72.8-11 CentreOfCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7CE5B4137B399274">72.8-12 ClassPositionsOfCentre</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7C3187387C2D9938">72.8-13 InertiaSubgroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8269BE0079A64D43">72.8-14 CycleStructureClass</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X86EDB4047C5AD6E7">72.8-15 IsTransitive</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X801DC07B8029841B">72.8-16 Transitivity</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7DD8FDCF7FB7834A">72.8-17 CentralCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7A292A58827B95B8">72.8-18 DeterminantOfCharacter</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X861B435C7F68AE7D">72.8-19 EigenvaluesChar</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7A106BE281EFD953">72.8-20 Tensored</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7B83B4108490FD06">72.8-21 TensorProduct</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X854A4E3A85C5F89B">72.9 <span class="Heading">Restricted and Induced Class Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X86BABEA6841A40CF">72.9-1 RestrictedClassFunction</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X86DB64F08035D219">72.9-2 RestrictedClassFunctions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7FE39D3D78855D3B">72.9-3 <span class="Heading">InducedClassFunction</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8484C0F985AD2D28">72.9-4 InducedClassFunctions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7C72003880743D28">72.9-5 InducedClassFunctionsByFusionMap</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7C055F327C99CE71">72.9-6 InducedCyclic</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X7C95F7937B752F48">72.10 <span class="Heading">Reducing Virtual Characters</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X86F360D983343C2A">72.10-1 ReducedClassFunctions</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7B7138ED8586F09E">72.10-2 ReducedCharacters</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7D3289BB865BCF98">72.10-3 IrreducibleDifferences</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X85B360C085B360C0">72.10-4 LLL</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X808D71A57D104ED7">72.10-5 Extract</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7F97B34A879D11BA">72.10-6 OrthogonalEmbeddingsSpecialDimension</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8799AB967C58C0E9">72.10-7 Decreased</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X85D510DC873A99B4">72.10-8 DnLattice</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X78754D007F3572A7">72.10-9 DnLatticeIterative</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X87ED98F385B00D34">72.11 <span class="Heading">Symmetrizations of Class Functions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7E220413823330EC">72.11-1 Symmetrizations</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X85CE68CA87CA383A">72.11-2 SymmetricParts</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8329E934829FE965">72.11-3 AntiSymmetricParts</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X87BA59597CA21B3E">72.11-4 ExteriorPower</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X855A7ECF80FCF0BA">72.11-5 SymmetricPower</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X78648E367C65B1F1">72.11-6 OrthogonalComponents</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X788B9AA17DD9418C">72.11-7 SymplecticComponents</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X87B86B427A88CD25">72.12 <span class="Heading">Molien Series</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7D7F94D2820B1177">72.12-1 MolienSeries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X82AC06A880EAA0AB">72.12-2 MolienSeriesInfo</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X87083C4E7D11A02E">72.12-3 ValueMolienSeries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X86BAA3C487CE86D2">72.12-4 MolienSeriesWithGivenDenominator</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X7D6336857E6BDF46">72.13 <span class="Heading">Possible Permutation Characters</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8477004C7A31D28C">72.13-1 PermCharInfo</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7A8CB0298730D808">72.13-2 PermCharInfoRelative</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X8330FDCE83D3DED3">72.14 <span class="Heading">Computing Possible Permutation Characters</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7D02541482C196A6">72.14-1 PermChars</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8127771D7EAB6EA7">72.14-2 <span class="Heading">TestPerm1, ..., TestPerm5</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X879D2A127BE366A5">72.14-3 PermBounds</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X7F11AFB783352903">72.14-4 PermComb</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X866942167802E036">72.14-5 Inequalities</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X8204FB9F847340C8">72.15 <span class="Heading">Operations for Brauer Characters</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X79BACBC47B4C413E">72.15-1 FrobeniusCharacterValue</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8304B68E84511685">72.15-2 BrauerCharacterValue</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X8038FA0480B78243">72.15-3 SizeOfFieldOfDefinition</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap72.html#X782400277F6316A4">72.15-4 RealizableBrauerCharacters</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap72.html#X7FEEDC0981A22850">72.16 <span class="Heading">Domains Generated by Class Functions</span></a>
</span>
</div>
</div>

<h3>72 <span class="Heading">Class Functions</span></h3>

<p>This chapter describes operations for <em>class functions of finite groups</em>. For operations concerning <em>character tables</em>, see Chapter <a href="chap71.html#X7B7A9EE881E01C10"><span class="RefLink">71</span></a>.</p>

<p>Several examples in this chapter require the <strong class="pkg">GAP</strong> Character Table Library to be available. If it is not yet loaded then we load it now.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage( "ctbllib" );</span>
true
</pre></div>

<p><a id="X823319217E4B6852" name="X823319217E4B6852"></a></p>

<h4>72.1 <span class="Heading">Why Class Functions?</span></h4>

<p>In principle it is possible to represent group characters or more general class functions by the plain lists of their values, and in fact many operations for class functions work with plain lists of class function values. But this has two disadvantages.</p>

<p>First, it is then necessary to regard a values list explicitly as a class function of a particular character table, by supplying this character table as an argument. In practice this means that with this setup, the user has the task to put the objects into the right context. For example, forming the scalar product or the tensor product of two class functions or forming an induced class function or a conjugate class function then needs three arguments in this case; this is particularly inconvenient in cases where infix operations cannot be used because of the additional argument, as for tensor products and induced class functions.</p>

<p>Second, when one says that <q><span class="SimpleMath">χ</span> is a character of a group <span class="SimpleMath">G</span></q> then this object <span class="SimpleMath">χ</span> carries a lot of information. <span class="SimpleMath">χ</span> has certain properties such as being irreducible or not. Several subgroups of <span class="SimpleMath">G</span> are related to <span class="SimpleMath">χ</span>, such as the kernel and the centre of <span class="SimpleMath">χ</span>. Other attributes of characters are the determinant and the central character. This knowledge cannot be stored in a plain list.</p>

<p>For dealing with a group together with its characters, and maybe also subgroups and their characters, it is desirable that <strong class="pkg">GAP</strong> keeps track of the interpretation of characters. On the other hand, for using characters without accessing their groups, such as characters of tables from the <strong class="pkg">GAP</strong> table library, dealing just with values lists is often sufficient. In particular, if one deals with incomplete character tables then it is often necessary to specify the arguments explicitly, for example one has to choose a fusion map or power map from a set of possibilities.</p>

<p>The main idea behind class function objects is that a class function object is equal to its values list in the sense of <code class="func">\=</code> (<a href="chap31.html#X7EF67D047F03CA6F"><span class="RefLink">31.11-1</span></a>), so class function objects can be used wherever their values lists can be used, but there are operations for class function objects that do not work just with values lists. <strong class="pkg">GAP</strong> library functions prefer to return class function objects rather than returning just values lists, for example <code class="func">Irr</code> (<a href="chap71.html#X873B3CC57E9A5492"><span class="RefLink">71.8-2</span></a>) lists consist of class function objects, and <code class="func">TrivialCharacter</code> (<a href="chap72.html#X86129DC37C55E4D6"><span class="RefLink">72.7-1</span></a>) returns a class function object.</p>

<p>Here is an <em>example</em> that shows both approaches. First we define some groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S4:= SymmetricGroup( 4 );;  SetName( S4, "S4" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D8:= SylowSubgroup( S4, 2 );; SetName( D8, "D8" );</span>
</pre></div>

<p>We do some computations using the functions described later in this Chapter, first with class function objects.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irrS4:= Irr( S4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irrD8:= Irr( D8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= irrD8[4];</span>
Character( CharacterTable( D8 ), [ 1, -1, 1, -1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi * chi;</span>
Character( CharacterTable( D8 ), [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ind:= chi ^ S4;</span>
Character( CharacterTable( S4 ), [ 3, -1, -1, 0, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( irrS4, x -&gt; ScalarProduct( x, ind ) );</span>
[ 0, 1, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">det:= Determinant( ind );</span>
Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cent:= CentralCharacter( ind );</span>
ClassFunction( CharacterTable( S4 ), [ 1, -2, -1, 0, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rest:= Restricted( cent, D8 );</span>
ClassFunction( CharacterTable( D8 ), [ 1, -2, -1, -1, 2 ] )
</pre></div>

<p>Now we repeat these calculations with plain lists of character values. Here we need the character tables in some places.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tS4:= CharacterTable( S4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tD8:= CharacterTable( D8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= ValuesOfClassFunction( irrD8[4] );</span>
[ 1, -1, 1, -1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Tensored( [ chi ], [ chi ] )[1];</span>
[ 1, 1, 1, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ind:= InducedClassFunction( tD8, chi, tS4 );</span>
ClassFunction( CharacterTable( S4 ), [ 3, -1, -1, 0, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( tS4 ), x -&gt; ScalarProduct( tS4, x, ind ) );</span>
[ 0, 1, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">det:= DeterminantOfCharacter( tS4, ind );</span>
ClassFunction( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">cent:= CentralCharacter( tS4, ind );</span>
ClassFunction( CharacterTable( S4 ), [ 1, -2, -1, 0, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rest:= Restricted( tS4, cent, tD8 );</span>
ClassFunction( CharacterTable( D8 ), [ 1, -2, -1, -1, 2 ] )
</pre></div>

<p>If one deals with character tables from the <strong class="pkg">GAP</strong> table library then one has no access to their groups, but often the tables provide enough information for computing induced or restricted class functions, symmetrizations etc., because the relevant class fusions and power maps are often stored on library tables. In these cases it is possible to use the tables instead of the groups as arguments. (If necessary information is not uniquely determined by the tables then an error is signalled.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s5 := CharacterTable( "A5.2" );; irrs5 := Irr( s5  );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m11:= CharacterTable( "M11"  );; irrm11:= Irr( m11 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= TrivialCharacter( s5 );</span>
Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi ^ m11;</span>
Character( CharacterTable( "M11" ), [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0
 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Determinant( irrs5[4] );</span>
Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, -1, -1, -1 ] )
</pre></div>

<p>Functions that compute <em>normal</em> subgroups related to characters have counterparts that return the list of class positions corresponding to these groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassPositionsOfKernel( irrs5[2] );</span>
[ 1, 2, 3, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassPositionsOfCentre( irrs5[2] );</span>
[ 1, 2, 3, 4, 5, 6, 7 ]
</pre></div>

<p>Non-normal subgroups cannot be described this way, so for example inertia subgroups (see <code class="func">InertiaSubgroup</code> (<a href="chap72.html#X7C3187387C2D9938"><span class="RefLink">72.8-13</span></a>)) can in general not be computed from character tables without access to their groups.</p>

<p><a id="X7E75A70F7BF00A0D" name="X7E75A70F7BF00A0D"></a></p>

<h5>72.1-1 IsClassFunction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsClassFunction</code>( <var class="Arg">obj</var> )</td><td class="tdright">(&nbsp;category&nbsp;)</td></tr></table></div>
<p>A <em>class function</em> (in characteristic <span class="SimpleMath">p</span>) of a finite group <span class="SimpleMath">G</span> is a map from the set of (<span class="SimpleMath">p</span>-regular) elements in <span class="SimpleMath">G</span> to the field of cyclotomics that is constant on conjugacy classes of <span class="SimpleMath">G</span>.</p>

<p>Each class function in <strong class="pkg">GAP</strong> is represented by an <em>immutable list</em>, where at the <span class="SimpleMath">i</span>-th position the value on the <span class="SimpleMath">i</span>-th conjugacy class of the character table of <span class="SimpleMath">G</span> is stored. The ordering of the conjugacy classes is the one used in the underlying character table. Note that if the character table has access to its underlying group then the ordering of conjugacy classes in the group and in the character table may differ (see <a href="chap71.html#X793E0EBF84B07313"><span class="RefLink">71.6</span></a>); class functions always refer to the ordering of classes in the character table.</p>

<p><em>Class function objects</em> in <strong class="pkg">GAP</strong> are not just plain lists, they store the character table of the group <span class="SimpleMath">G</span> as value of the attribute <code class="func">UnderlyingCharacterTable</code> (<a href="chap72.html#X81B55C067D123B76"><span class="RefLink">72.2-1</span></a>). The group <span class="SimpleMath">G</span> itself is accessible only via the character table and thus only if the character table stores its group, as value of the attribute <code class="func">UnderlyingGroup</code> (<a href="chap71.html#X7FF4826A82B667AF"><span class="RefLink">71.6-1</span></a>). The reason for this is that many computations with class functions are possible without using their groups, for example class functions of character tables in the <strong class="pkg">GAP</strong> character table library do in general not have access to their underlying groups.</p>

<p>There are (at least) two reasons why class functions in <strong class="pkg">GAP</strong> are <em>not</em> implemented as mappings. First, we want to distinguish class functions in different characteristics, for example to be able to define the Frobenius character of a given Brauer character; viewed as mappings, the trivial characters in all characteristics coprime to the order of <span class="SimpleMath">G</span> are equal. Second, the product of two class functions shall be again a class function, whereas the product of general mappings is defined as composition.</p>

<p>A further argument is that the typical operations for mappings such as <code class="func">Image</code> (<a href="chap32.html#X87F4D35A826599C6"><span class="RefLink">32.4-6</span></a>) and <code class="func">PreImage</code> (<a href="chap32.html#X836FAEAC78B55BF4"><span class="RefLink">32.5-6</span></a>) play no important role for class functions.</p>

<p><a id="X8192EDDB84ADD46E" name="X8192EDDB84ADD46E"></a></p>

<h4>72.2 <span class="Heading">Basic Operations for Class Functions</span></h4>

<p>Basic operations for class functions are <code class="func">UnderlyingCharacterTable</code> (<a href="chap72.html#X81B55C067D123B76"><span class="RefLink">72.2-1</span></a>), <code class="func">ValuesOfClassFunction</code> (<a href="chap72.html#X7FE14712843C6486"><span class="RefLink">72.2-2</span></a>), and the basic operations for lists (see <a href="chap21.html#X7B202D147A5C2884"><span class="RefLink">21.2</span></a>).</p>

<p><a id="X81B55C067D123B76" name="X81B55C067D123B76"></a></p>

<h5>72.2-1 UnderlyingCharacterTable</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; UnderlyingCharacterTable</code>( <var class="Arg">psi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>For a class function <var class="Arg">psi</var> of a group <span class="SimpleMath">G</span> the character table of <span class="SimpleMath">G</span> is stored as value of <code class="func">UnderlyingCharacterTable</code>. The ordering of entries in the list <var class="Arg">psi</var> (see <code class="func">ValuesOfClassFunction</code> (<a href="chap72.html#X7FE14712843C6486"><span class="RefLink">72.2-2</span></a>)) refers to the ordering of conjugacy classes in this character table.</p>

<p>If <var class="Arg">psi</var> is an ordinary class function then the underlying character table is the ordinary character table of <span class="SimpleMath">G</span> (see <code class="func">OrdinaryCharacterTable</code> (<a href="chap71.html#X8011EEB684848039"><span class="RefLink">71.8-4</span></a>)), if <var class="Arg">psi</var> is a class function in characteristic <span class="SimpleMath">p ≠ 0</span> then the underlying character table is the <span class="SimpleMath">p</span>-modular Brauer table of <span class="SimpleMath">G</span> (see <code class="func">BrauerTable</code> (<a href="chap71.html#X8476B25A79D7A7FC"><span class="RefLink">71.3-2</span></a>)). So the underlying characteristic of <var class="Arg">psi</var> can be read off from the underlying character table.</p>

<p><a id="X7FE14712843C6486" name="X7FE14712843C6486"></a></p>

<h5>72.2-2 ValuesOfClassFunction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ValuesOfClassFunction</code>( <var class="Arg">psi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>is the list of values of the class function <var class="Arg">psi</var>, the <span class="SimpleMath">i</span>-th entry being the value on the <span class="SimpleMath">i</span>-th conjugacy class of the underlying character table (see <code class="func">UnderlyingCharacterTable</code> (<a href="chap72.html#X81B55C067D123B76"><span class="RefLink">72.2-1</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SymmetricGroup( 4 );</span>
Sym( [ 1 .. 4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= TrivialCharacter( g );</span>
Character( CharacterTable( Sym( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UnderlyingCharacterTable( psi );</span>
CharacterTable( Sym( [ 1 .. 4 ] ) )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ValuesOfClassFunction( psi );</span>
[ 1, 1, 1, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsList( psi );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi[1];</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( psi );</span>
5
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsBound( psi[6] );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Concatenation( psi, [ 2, 3 ] );</span>
[ 1, 1, 1, 1, 1, 2, 3 ]
</pre></div>

<p><a id="X829EFBF57FCB1A94" name="X829EFBF57FCB1A94"></a></p>

<h4>72.3 <span class="Heading">Comparison of Class Functions</span></h4>

<p>With respect to <code class="func">\=</code> (<a href="chap31.html#X7EF67D047F03CA6F"><span class="RefLink">31.11-1</span></a>) and <code class="func">\&lt;</code> (<a href="chap31.html#X7EF67D047F03CA6F"><span class="RefLink">31.11-1</span></a>), class functions behave equally to their lists of values (see <code class="func">ValuesOfClassFunction</code> (<a href="chap72.html#X7FE14712843C6486"><span class="RefLink">72.2-2</span></a>)). So two class functions are equal if and only if their lists of values are equal, no matter whether they are class functions of the same character table, of the same group but w.r.t. different class ordering, or of different groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">grps:= Filtered( AllSmallGroups( 8 ), g -&gt; not IsAbelian( g ) );</span>
[ &lt;pc group of size 8 with 3 generators&gt;,
  &lt;pc group of size 8 with 3 generators&gt; ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t1:= CharacterTable( grps[1] );  SetName( t1, "t1" );</span>
CharacterTable( &lt;pc group of size 8 with 3 generators&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( grps[2] );  SetName( t2, "t2" );</span>
CharacterTable( &lt;pc group of size 8 with 3 generators&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CharacterDegrees( t1 );</span>
[ [ 1, 4 ], [ 2, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr1:= Irr( grps[1] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr2:= Irr( grps[2] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr1 = irr2;</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr1[1];</span>
Character( t1, [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr1[5];</span>
Character( t1, [ 2, 0, 0, -2, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr2[1];</span>
Character( t2, [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsSSortedList( irr1 );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr1[1] &lt; irr1[2];  # the triv. character has no '-1'</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr1[2] &lt; irr1[5];</span>
true
</pre></div>

<p><a id="X83B9F0C5871A5F7F" name="X83B9F0C5871A5F7F"></a></p>

<h4>72.4 <span class="Heading">Arithmetic Operations for Class Functions</span></h4>

<p>Class functions are <em>row vectors</em> of cyclotomics. The <em>additive</em> behaviour of class functions is defined such that they are equal to the plain lists of class function values except that the results are represented again as class functions whenever this makes sense. The <em>multiplicative</em> behaviour, however, is different. This is motivated by the fact that the tensor product of class functions is a more interesting operation than the vector product of plain lists. (Another candidate for a multiplication of compatible class functions would have been the inner product, which is implemented via the function <code class="func">ScalarProduct</code> (<a href="chap72.html#X855FD9F983D275CD"><span class="RefLink">72.8-5</span></a>). In terms of filters, the arithmetic of class functions is based on the decision that they lie in <code class="func">IsGeneralizedRowVector</code> (<a href="chap21.html#X87ABCEE9809585A0"><span class="RefLink">21.12-1</span></a>), with additive nesting depth <span class="SimpleMath">1</span>, but they do <em>not</em> lie in <code class="func">IsMultiplicativeGeneralizedRowVector</code> (<a href="chap21.html#X7FBCA5B58308C158"><span class="RefLink">21.12-2</span></a>).</p>

<p>More specifically, the scalar multiple of a class function with a cyclotomic is a class function, and the sum and the difference of two class functions of the same underlying character table (see <code class="func">UnderlyingCharacterTable</code> (<a href="chap72.html#X81B55C067D123B76"><span class="RefLink">72.2-1</span></a>)) are again class functions of this table. The sum and the difference of a class function and a list that is <em>not</em> a class function are plain lists, as well as the sum and the difference of two class functions of different character tables.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SymmetricGroup( 4 );;  tbl:= CharacterTable( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetName( tbl, "S4" );  irr:= Irr( g );</span>
[ Character( S4, [ 1, -1, 1, 1, -1 ] ),
  Character( S4, [ 3, -1, -1, 0, 1 ] ),
  Character( S4, [ 2, 0, 2, -1, 0 ] ),
  Character( S4, [ 3, 1, -1, 0, -1 ] ),
  Character( S4, [ 1, 1, 1, 1, 1 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">2 * irr[5];</span>
Character( S4, [ 2, 2, 2, 2, 2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr[1] / 7;</span>
ClassFunction( S4, [ 1/7, -1/7, 1/7, 1/7, -1/7 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lincomb:= irr[3] + irr[1] - irr[5];</span>
VirtualCharacter( S4, [ 2, -2, 2, -1, -2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lincomb:= lincomb + 2 * irr[5];</span>
VirtualCharacter( S4, [ 4, 0, 4, 1, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsCharacter( lincomb );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lincomb;</span>
Character( S4, [ 4, 0, 4, 1, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr[5] + 2;</span>
[ 3, 3, 3, 3, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr[5] + [ 1, 2, 3, 4, 5 ];</span>
[ 2, 3, 4, 5, 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">zero:= 0 * irr[1];</span>
VirtualCharacter( S4, [ 0, 0, 0, 0, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">zero + Z(3);</span>
[ Z(3), Z(3), Z(3), Z(3), Z(3) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr[5] + TrivialCharacter( DihedralGroup( 8 ) );</span>
[ 2, 2, 2, 2, 2 ]
</pre></div>

<p>The product of two class functions of the same character table is the tensor product (pointwise product) of these class functions. Thus the set of all class functions of a fixed group forms a ring, and for any field <span class="SimpleMath">F</span> of cyclotomics, the <span class="SimpleMath">F</span>-span of a given set of class functions forms an algebra.</p>

<p>The product of two class functions of <em>different</em> tables and the product of a class function and a list that is <em>not</em> a class function are not defined, an error is signalled in these cases. Note that in this respect, class functions behave differently from their values lists, for which the product is defined as the standard scalar product.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tens:= irr[3] * irr[4];</span>
Character( S4, [ 6, 0, -2, 0, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ValuesOfClassFunction( irr[3] ) * ValuesOfClassFunction( irr[4] );</span>
4
</pre></div>

<p>Class functions without zero values are invertible, the <em>inverse</em> is defined pointwise. As a consequence, for example groups of linear characters can be formed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tens / irr[1];</span>
Character( S4, [ 6, 0, -2, 0, 0 ] )
</pre></div>

<p>Other (somewhat strange) implications of the definition of arithmetic operations for class functions, together with the general rules of list arithmetic (see <a href="chap21.html#X845EEAF083D43CCE"><span class="RefLink">21.11</span></a>), apply to the case of products involving <em>lists</em> of class functions. No inverse of the list of irreducible characters as a matrix is defined; if one is interested in the inverse matrix then one can compute it from the matrix of class function values.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Inverse( List( irr, ValuesOfClassFunction ) );</span>
[ [ 1/24, 1/8, 1/12, 1/8, 1/24 ], [ -1/4, -1/4, 0, 1/4, 1/4 ],
  [ 1/8, -1/8, 1/4, -1/8, 1/8 ], [ 1/3, 0, -1/3, 0, 1/3 ],
  [ -1/4, 1/4, 0, -1/4, 1/4 ] ]
</pre></div>

<p>Also the product of a class function with a list of class functions is <em>not</em> a vector-matrix product but the list of pointwise products.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr[1] * irr{ [ 1 .. 3 ] };</span>
[ Character( S4, [ 1, 1, 1, 1, 1 ] ),
  Character( S4, [ 3, 1, -1, 0, -1 ] ),
  Character( S4, [ 2, 0, 2, -1, 0 ] ) ]
</pre></div>

<p>And the product of two lists of class functions is <em>not</em> the matrix product but the sum of the pointwise products.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr * irr;</span>
Character( S4, [ 24, 4, 8, 3, 4 ] )
</pre></div>

<p>The <em>powering</em> operator <code class="func">\^</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>) has several meanings for class functions. The power of a class function by a nonnegative integer is clearly the tensor power. The power of a class function by an element that normalizes the underlying group or by a Galois automorphism is the conjugate class function. (As a consequence, the application of the permutation induced by such an action cannot be denoted by <code class="func">\^</code> (<a href="chap31.html#X8481C9B97B214C23"><span class="RefLink">31.12-1</span></a>); instead one can use <code class="func">Permuted</code> (<a href="chap21.html#X7B5A19098406347A"><span class="RefLink">21.20-17</span></a>).) The power of a class function by a group or a character table is the induced class function (see <code class="func">InducedClassFunction</code> (<a href="chap72.html#X7FE39D3D78855D3B"><span class="RefLink">72.9-3</span></a>)). The power of a group element by a class function is the class function value at (the conjugacy class containing) this element.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr[3] ^ 3;</span>
Character( S4, [ 8, 0, 8, -1, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lin:= LinearCharacters( DerivedSubgroup( g ) );</span>
[ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
  Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
  [ 1, 1, E(3), E(3)^2 ] ),
  Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
  [ 1, 1, E(3)^2, E(3) ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( lin, chi -&gt; chi ^ (1,2) );</span>
[ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ), [ 1, 1, 1, 1 ] ),
  Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
  [ 1, 1, E(3)^2, E(3) ] ),
  Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
  [ 1, 1, E(3), E(3)^2 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Orbit( GaloisGroup( CF(3) ), lin[2] );</span>
[ Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
  [ 1, 1, E(3), E(3)^2 ] ),
  Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
  [ 1, 1, E(3)^2, E(3) ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lin[1]^g;</span>
Character( S4, [ 2, 0, 2, 2, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">(1,2,3)^lin[2];</span>
E(3)
</pre></div>

<p><a id="X83AAD5527BBAFA03" name="X83AAD5527BBAFA03"></a></p>

<h5>72.4-1 Characteristic</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Characteristic</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>The <em>characteristic</em> of class functions is zero, as for all list of cyclotomics. For class functions of a <span class="SimpleMath">p</span>-modular character table, such as Brauer characters, the prime <span class="SimpleMath">p</span> is given by the <code class="func">UnderlyingCharacteristic</code> (<a href="chap71.html#X7F58A82F7D88000A"><span class="RefLink">71.9-5</span></a>) value of the character table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Characteristic( irr[1] );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irrmod2:= Irr( g, 2 );</span>
[ Character( BrauerTable( Sym( [ 1 .. 4 ] ), 2 ), [ 1, 1 ] ),
  Character( BrauerTable( Sym( [ 1 .. 4 ] ), 2 ), [ 2, -1 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Characteristic( irrmod2[1] );</span>
0
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">UnderlyingCharacteristic( UnderlyingCharacterTable( irrmod2[1] ) );</span>
2
</pre></div>

<p><a id="X856AB97E785E0B04" name="X856AB97E785E0B04"></a></p>

<h5>72.4-2 ComplexConjugate</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ComplexConjugate</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GaloisCyc</code>( <var class="Arg">chi</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Permuted</code>( <var class="Arg">chi</var>, <var class="Arg">pi</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>The operations <code class="func">ComplexConjugate</code>, <code class="func">GaloisCyc</code>, and <code class="func">Permuted</code> return a class function when they are called with a class function; The complex conjugate of a class function that is known to be a (virtual) character is again known to be a (virtual) character, and applying an arbitrary Galois automorphism to an ordinary (virtual) character yields a (virtual) character.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ComplexConjugate( lin[2] );</span>
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
 [ 1, 1, E(3)^2, E(3) ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GaloisCyc( lin[2], 5 );</span>
Character( CharacterTable( Alt( [ 1 .. 4 ] ) ),
 [ 1, 1, E(3)^2, E(3) ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Permuted( lin[2], (2,3,4) );</span>
ClassFunction( CharacterTable( Alt( [ 1 .. 4 ] ) ),
 [ 1, E(3)^2, 1, E(3) ] )
</pre></div>

<p><a id="X7BCE99B88285EB39" name="X7BCE99B88285EB39"></a></p>

<h5>72.4-3 Order</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Order</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>By definition of <code class="func">Order</code> (<a href="chap31.html#X84F59A2687C62763"><span class="RefLink">31.10-10</span></a>) for arbitrary monoid elements, the return value of <code class="func">Order</code> (<a href="chap31.html#X84F59A2687C62763"><span class="RefLink">31.10-10</span></a>) for a character must be its multiplicative order. The <em>determinantal order</em> (see <code class="func">DeterminantOfCharacter</code> (<a href="chap72.html#X7A292A58827B95B8"><span class="RefLink">72.8-18</span></a>)) of a character <var class="Arg">chi</var> can be computed as <code class="code">Order( Determinant( <var class="Arg">chi</var> ) )</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">det:= Determinant( irr[3] );</span>
Character( S4, [ 1, -1, 1, 1, -1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order( det );</span>
2
</pre></div>

<p><a id="X828AD0C57EA57C21" name="X828AD0C57EA57C21"></a></p>

<h4>72.5 <span class="Heading">Printing Class Functions</span></h4>

<p><a id="X7BDD2D4A7F7FB3B1" name="X7BDD2D4A7F7FB3B1"></a></p>

<h5>72.5-1 ViewObj</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ViewObj</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>The default <code class="func">ViewObj</code> (<a href="chap6.html#X815BF22186FD43C9"><span class="RefLink">6.3-5</span></a>) methods for class functions print one of the strings <code class="code">"ClassFunction"</code>, <code class="code">"VirtualCharacter"</code>, <code class="code">"Character"</code> (depending on whether the class function is known to be a character or virtual character, see <code class="func">IsCharacter</code> (<a href="chap72.html#X7FE3CD08794051F8"><span class="RefLink">72.8-1</span></a>), <code class="func">IsVirtualCharacter</code> (<a href="chap72.html#X788DD05C86CB7030"><span class="RefLink">72.8-2</span></a>)), followed by the <code class="func">ViewObj</code> (<a href="chap6.html#X815BF22186FD43C9"><span class="RefLink">6.3-5</span></a>) output for the underlying character table (see <a href="chap71.html#X7C1941F17BE9FC21"><span class="RefLink">71.13</span></a>), and the list of values. The table is chosen (and not the group) in order to distinguish class functions of different underlying characteristic (see <code class="func">UnderlyingCharacteristic</code> (<a href="chap71.html#X7F58A82F7D88000A"><span class="RefLink">71.9-5</span></a>)).</p>

<p><a id="X871160B98595D4BA" name="X871160B98595D4BA"></a></p>

<h5>72.5-2 PrintObj</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrintObj</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>The default <code class="func">PrintObj</code> (<a href="chap6.html#X815BF22186FD43C9"><span class="RefLink">6.3-5</span></a>) method for class functions does the same as <code class="func">ViewObj</code> (<a href="chap6.html#X815BF22186FD43C9"><span class="RefLink">6.3-5</span></a>), except that the character table is <code class="func">Print</code> (<a href="chap6.html#X7AFA64D97A1F39A3"><span class="RefLink">6.3-4</span></a>)-ed instead of <code class="func">View</code> (<a href="chap6.html#X851902C583B84CDC"><span class="RefLink">6.3-3</span></a>)-ed.</p>

<p><em>Note</em> that if a class function is shown only with one of the strings <code class="code">"ClassFunction"</code>, <code class="code">"VirtualCharacter"</code>, it may still be that it is in fact a character; just this was not known at the time when the class function was printed.</p>

<p>In order to reduce the space that is needed to print a class function, it may be useful to give a name (see <code class="func">Name</code> (<a href="chap12.html#X7F14EF9D81432113"><span class="RefLink">12.8-2</span></a>)) to the underlying character table.</p>

<p><a id="X8430D31B8163C230" name="X8430D31B8163C230"></a></p>

<h5>72.5-3 Display</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Display</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;method&nbsp;)</td></tr></table></div>
<p>The default <code class="func">Display</code> (<a href="chap6.html#X83A5C59278E13248"><span class="RefLink">6.3-6</span></a>) method for a class function <var class="Arg">chi</var> calls <code class="func">Display</code> (<a href="chap6.html#X83A5C59278E13248"><span class="RefLink">6.3-6</span></a>) for its underlying character table (see <a href="chap71.html#X7C1941F17BE9FC21"><span class="RefLink">71.13</span></a>), with <var class="Arg">chi</var> as the only entry in the <code class="code">chars</code> list of the options record.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= TrivialCharacter( CharacterTable( "A5" ) );</span>
Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( chi );</span>
A5

     2  2  2  .  .  .
     3  1  .  1  .  .
     5  1  .  .  1  1

       1a 2a 3a 5a 5b
    2P 1a 1a 3a 5b 5a
    3P 1a 2a 1a 5b 5a
    5P 1a 2a 3a 1a 1a

Y.1     1  1  1  1  1
</pre></div>

<p><a id="X7BB90A8F86FFA456" name="X7BB90A8F86FFA456"></a></p>

<h4>72.6 <span class="Heading">Creating Class Functions from Values Lists</span></h4>

<p><a id="X78F4E23985FCA259" name="X78F4E23985FCA259"></a></p>

<h5>72.6-1 ClassFunction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClassFunction</code>( <var class="Arg">tbl</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClassFunction</code>( <var class="Arg">G</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>In the first form, <code class="func">ClassFunction</code> returns the class function of the character table <var class="Arg">tbl</var> with values given by the list <var class="Arg">values</var> of cyclotomics. In the second form, <var class="Arg">G</var> must be a group, and the class function of its ordinary character table is returned.</p>

<p>Note that <var class="Arg">tbl</var> determines the underlying characteristic of the returned class function (see <code class="func">UnderlyingCharacteristic</code> (<a href="chap71.html#X7F58A82F7D88000A"><span class="RefLink">71.9-5</span></a>)).</p>

<p><a id="X7805AFF77EFC3306" name="X7805AFF77EFC3306"></a></p>

<h5>72.6-2 VirtualCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VirtualCharacter</code>( <var class="Arg">tbl</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VirtualCharacter</code>( <var class="Arg">G</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">VirtualCharacter</code> returns the virtual character (see <code class="func">IsVirtualCharacter</code> (<a href="chap72.html#X788DD05C86CB7030"><span class="RefLink">72.8-2</span></a>)) of the character table <var class="Arg">tbl</var> or the group <var class="Arg">G</var>, respectively, with values given by the list <var class="Arg">values</var>.</p>

<p>It is <em>not</em> checked whether the given values really describe a virtual character.</p>

<p><a id="X849DD34C7968206C" name="X849DD34C7968206C"></a></p>

<h5>72.6-3 Character</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Character</code>( <var class="Arg">tbl</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Character</code>( <var class="Arg">G</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">Character</code> returns the character (see <code class="func">IsCharacter</code> (<a href="chap72.html#X7FE3CD08794051F8"><span class="RefLink">72.8-1</span></a>)) of the character table <var class="Arg">tbl</var> or the group <var class="Arg">G</var>, respectively, with values given by the list <var class="Arg">values</var>.</p>

<p>It is <em>not</em> checked whether the given values really describe a character.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= DihedralGroup( 8 );  tbl:= CharacterTable( g );</span>
&lt;pc group of size 8 with 3 generators&gt;
CharacterTable( &lt;pc group of size 8 with 3 generators&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetName( tbl, "D8" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:= ClassFunction( g, [ 1, -1, 0, 2, -2 ] );</span>
ClassFunction( D8, [ 1, -1, 0, 2, -2 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= ClassFunction( tbl,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             List( Irr( g ), chi -&gt; ScalarProduct( chi, phi ) ) );</span>
ClassFunction( D8, [ -3/8, 9/8, 5/8, 1/8, -1/4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= VirtualCharacter( g, [ 0, 0, 8, 0, 0 ] );</span>
VirtualCharacter( D8, [ 0, 0, 8, 0, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">reg:= Character( tbl, [ 8, 0, 0, 0, 0 ] );</span>
Character( D8, [ 8, 0, 0, 0, 0 ] )
</pre></div>

<p><a id="X7B38035981D71B1B" name="X7B38035981D71B1B"></a></p>

<h5>72.6-4 ClassFunctionSameType</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClassFunctionSameType</code>( <var class="Arg">tbl</var>, <var class="Arg">chi</var>, <var class="Arg">values</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be a character table, <var class="Arg">chi</var> a class function object (<em>not</em> necessarily a class function of <var class="Arg">tbl</var>), and <var class="Arg">values</var> a list of cyclotomics. <code class="func">ClassFunctionSameType</code> returns the class function <span class="SimpleMath">ψ</span> of <var class="Arg">tbl</var> with values list <var class="Arg">values</var>, constructed with <code class="func">ClassFunction</code> (<a href="chap72.html#X78F4E23985FCA259"><span class="RefLink">72.6-1</span></a>).</p>

<p>If <var class="Arg">chi</var> is known to be a (virtual) character then <span class="SimpleMath">ψ</span> is also known to be a (virtual) character.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:= Centre( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">centbl:= CharacterTable( h );;  SetName( centbl, "C2" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassFunctionSameType( centbl, phi, [ 1, 1 ] );</span>
ClassFunction( C2, [ 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassFunctionSameType( centbl, chi, [ 1, 1 ] );</span>
VirtualCharacter( C2, [ 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ClassFunctionSameType( centbl, reg, [ 1, 1 ] );</span>
Character( C2, [ 1, 1 ] )
</pre></div>

<p><a id="X8727C2CB7ABEBC84" name="X8727C2CB7ABEBC84"></a></p>

<h4>72.7 <span class="Heading">Creating Class Functions using Groups</span></h4>

<p><a id="X86129DC37C55E4D6" name="X86129DC37C55E4D6"></a></p>

<h5>72.7-1 <span class="Heading">TrivialCharacter</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TrivialCharacter</code>( <var class="Arg">tbl</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TrivialCharacter</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>is the <em>trivial character</em> of the group <var class="Arg">G</var> or its character table <var class="Arg">tbl</var>, respectively. This is the class function with value equal to <span class="SimpleMath">1</span> for each class.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TrivialCharacter( CharacterTable( "A5" ) );</span>
Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TrivialCharacter( SymmetricGroup( 3 ) );</span>
Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 1, 1, 1 ] )
</pre></div>

<p><a id="X82C01DDB82D751A9" name="X82C01DDB82D751A9"></a></p>

<h5>72.7-2 NaturalCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalCharacter</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; NaturalCharacter</code>( <var class="Arg">hom</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>If the argument is a permutation group <var class="Arg">G</var> then <code class="func">NaturalCharacter</code> returns the (ordinary) character of the natural permutation representation of <var class="Arg">G</var> on the set of moved points (see <code class="func">MovedPoints</code> (<a href="chap42.html#X85E61B9C7A6B0CCA"><span class="RefLink">42.3-3</span></a>)), that is, the value on each class is the number of points among the moved points of <var class="Arg">G</var> that are fixed by any permutation in that class.</p>

<p>If the argument is a matrix group <var class="Arg">G</var> in characteristic zero then <code class="func">NaturalCharacter</code> returns the (ordinary) character of the natural matrix representation of <var class="Arg">G</var>, that is, the value on each class is the trace of any matrix in that class.</p>

<p>If the argument is a group homomorphism <var class="Arg">hom</var> whose image is a permutation group or a matrix group then <code class="func">NaturalCharacter</code> returns the restriction of the natural character of the image of <var class="Arg">hom</var> to the preimage of <var class="Arg">hom</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalCharacter( SymmetricGroup( 3 ) );</span>
Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 3, 1, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalCharacter( Group( [ [ 0, -1 ], [ 1, -1 ] ] ) );</span>
Character( CharacterTable( Group([ [ [ 0, -1 ], [ 1, -1 ] ] ]) ),
[ 2, -1, -1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">d8:= DihedralGroup( 8 );;  hom:= RegularActionHomomorphism( d8 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NaturalCharacter( hom );</span>
Character( CharacterTable( &lt;pc group of size 8 with 3 generators&gt; ),
[ 8, 0, 0, 0, 0 ] )
</pre></div>

<p><a id="X7938621F81B65E03" name="X7938621F81B65E03"></a></p>

<h5>72.7-3 <span class="Heading">PermutationCharacter</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutationCharacter</code>( <var class="Arg">G</var>, <var class="Arg">D</var>, <var class="Arg">opr</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermutationCharacter</code>( <var class="Arg">G</var>, <var class="Arg">U</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Called with a group <var class="Arg">G</var>, an action domain or proper set <var class="Arg">D</var>, and an action function <var class="Arg">opr</var> (see Chapter <a href="chap41.html#X87115591851FB7F4"><span class="RefLink">41</span></a>), <code class="func">PermutationCharacter</code> returns the <em>permutation character</em> of the action of <var class="Arg">G</var> on <var class="Arg">D</var> via <var class="Arg">opr</var>, that is, the value on each class is the number of points in <var class="Arg">D</var> that are fixed by an element in this class under the action <var class="Arg">opr</var>.</p>

<p>If the arguments are a group <var class="Arg">G</var> and a subgroup <var class="Arg">U</var> of <var class="Arg">G</var> then <code class="func">PermutationCharacter</code> returns the permutation character of the action of <var class="Arg">G</var> on the right cosets of <var class="Arg">U</var> via right multiplication.</p>

<p>To compute the permutation character of a <em>transitive permutation group</em> <var class="Arg">G</var> on the cosets of a point stabilizer <var class="Arg">U</var>, the attribute <code class="func">NaturalCharacter</code> (<a href="chap72.html#X82C01DDB82D751A9"><span class="RefLink">72.7-2</span></a>) of <var class="Arg">G</var> can be used instead of <code class="code">PermutationCharacter( <var class="Arg">G</var>, <var class="Arg">U</var> )</code>.</p>

<p>More facilities concerning permutation characters are the transitivity test (see Section <a href="chap72.html#X86DDB47A7C6B45D0"><span class="RefLink">72.8</span></a>) and several tools for computing possible permutation characters (see <a href="chap72.html#X7D6336857E6BDF46"><span class="RefLink">72.13</span></a>, <a href="chap72.html#X8330FDCE83D3DED3"><span class="RefLink">72.14</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationCharacter( GL(2,2), AsSSortedList( GF(2)^2 ), OnRight );</span>
Character( CharacterTable( SL(2,2) ), [ 4, 2, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s3:= SymmetricGroup( 3 );;  a3:= DerivedSubgroup( s3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermutationCharacter( s3, a3 );</span>
Character( CharacterTable( Sym( [ 1 .. 3 ] ) ), [ 2, 0, 2 ] )
</pre></div>

<p><a id="X86DDB47A7C6B45D0" name="X86DDB47A7C6B45D0"></a></p>

<h4>72.8 <span class="Heading">Operations for Class Functions</span></h4>

<p>In the description of the following operations, the optional first argument <var class="Arg">tbl</var> is needed only if the argument <var class="Arg">chi</var> is a plain list and not a class function object. In this case, <var class="Arg">tbl</var> must always be the character table of which <var class="Arg">chi</var> shall be regarded as a class function.</p>

<p><a id="X7FE3CD08794051F8" name="X7FE3CD08794051F8"></a></p>

<h5>72.8-1 IsCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>An <em>ordinary character</em> of a group <span class="SimpleMath">G</span> is a class function of <span class="SimpleMath">G</span> whose values are the traces of a complex matrix representation of <span class="SimpleMath">G</span>.</p>

<p>A <em>Brauer character</em> of <span class="SimpleMath">G</span> in characteristic <span class="SimpleMath">p</span> is a class function of <span class="SimpleMath">G</span> whose values are the complex lifts of a matrix representation of <span class="SimpleMath">G</span> with image a finite field of characteristic <span class="SimpleMath">p</span>.</p>

<p><a id="X788DD05C86CB7030" name="X788DD05C86CB7030"></a></p>

<h5>72.8-2 IsVirtualCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsVirtualCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>A <em>virtual character</em> is a class function that can be written as the difference of two proper characters (see <code class="func">IsCharacter</code> (<a href="chap72.html#X7FE3CD08794051F8"><span class="RefLink">72.8-1</span></a>)).</p>

<p><a id="X79A4B1D3870C8807" name="X79A4B1D3870C8807"></a></p>

<h5>72.8-3 IsIrreducibleCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsIrreducibleCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>A character is <em>irreducible</em> if it cannot be written as the sum of two characters. For ordinary characters this can be checked using the scalar product of class functions (see <code class="func">ScalarProduct</code> (<a href="chap72.html#X855FD9F983D275CD"><span class="RefLink">72.8-5</span></a>)). For Brauer characters there is no generic method for checking irreducibility.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S4:= SymmetricGroup( 4 );;  SetName( S4, "S4" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= ClassFunction( S4, [ 1, 1, 1, -2, 1 ] );</span>
ClassFunction( CharacterTable( S4 ), [ 1, 1, 1, -2, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsVirtualCharacter( psi );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsCharacter( psi );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= ClassFunction( S4, SizesCentralizers( CharacterTable( S4 ) ) );</span>
ClassFunction( CharacterTable( S4 ), [ 24, 4, 8, 3, 4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsCharacter( chi );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIrreducibleCharacter( chi );</span>
false
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIrreducibleCharacter( TrivialCharacter( S4 ) );</span>
true
</pre></div>

<p><a id="X7802BC157C69DD75" name="X7802BC157C69DD75"></a></p>

<h5>72.8-4 DegreeOfCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DegreeOfCharacter</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>is the value of the character <var class="Arg">chi</var> on the identity element. This can also be obtained as <var class="Arg">chi</var><code class="code">[1]</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( S4 ), DegreeOfCharacter );</span>
[ 1, 3, 2, 3, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nat:= NaturalCharacter( S4 );</span>
Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nat[1];</span>
4
</pre></div>

<p><a id="X855FD9F983D275CD" name="X855FD9F983D275CD"></a></p>

<h5>72.8-5 ScalarProduct</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ScalarProduct</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var>, <var class="Arg">psi</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Returns: the scalar product of the class functions <var class="Arg">chi</var> and <var class="Arg">psi</var>, which belong to the same character table <var class="Arg">tbl</var>.</p>

<p>If <var class="Arg">chi</var> and <var class="Arg">psi</var> are class function objects, the argument <var class="Arg">tbl</var> is not needed, but <var class="Arg">tbl</var> is necessary if at least one of <var class="Arg">chi</var>, <var class="Arg">psi</var> is just a plain list.</p>

<p>The scalar product of two <em>ordinary</em> class functions <span class="SimpleMath">χ</span>, <span class="SimpleMath">ψ</span> of a group <span class="SimpleMath">G</span> is defined as</p>

<p><span class="SimpleMath">( ∑_{g ∈ G} χ(g) ψ(g^{-1}) ) / |G|</span>.</p>

<p>For two <em><span class="SimpleMath">p</span>-modular</em> class functions, the scalar product is defined as <span class="SimpleMath">( ∑_{g ∈ S} χ(g) ψ(g^{-1}) ) / |G|</span>, where <span class="SimpleMath">S</span> is the set of <span class="SimpleMath">p</span>-regular elements in <span class="SimpleMath">G</span>.</p>

<p><a id="X858DF4E67EBB99DA" name="X858DF4E67EBB99DA"></a></p>

<h5>72.8-6 MatScalarProducts</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MatScalarProducts</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">list</var>[, <var class="Arg">list2</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Called with two lists <var class="Arg">list</var>, <var class="Arg">list2</var> of class functions of the same character table (which may be given as the argument <var class="Arg">tbl</var>), <code class="func">MatScalarProducts</code> returns the matrix of scalar products (see <code class="func">ScalarProduct</code> (<a href="chap72.html#X855FD9F983D275CD"><span class="RefLink">72.8-5</span></a>)) More precisely, this matrix contains in the <span class="SimpleMath">i</span>-th row the list of scalar products of <span class="SimpleMath"><var class="Arg">list2</var>[i]</span> with the entries of <var class="Arg">list</var>.</p>

<p>If only one list <var class="Arg">list</var> of class functions is given then a lower triangular matrix of scalar products is returned, containing (for <span class="SimpleMath">j ≤ i</span>) in the <span class="SimpleMath">i</span>-th row in column <span class="SimpleMath">j</span> the value <code class="code">ScalarProduct</code><span class="SimpleMath">( <var class="Arg">tbl</var>, <var class="Arg">list</var>[j], <var class="Arg">list</var>[i] )</span>.</p>

<p><a id="X8572B18A7BAED73E" name="X8572B18A7BAED73E"></a></p>

<h5>72.8-7 Norm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Norm</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>For an ordinary class function <var class="Arg">chi</var> of a group <span class="SimpleMath">G</span> we have <span class="SimpleMath"><var class="Arg">chi</var> = ∑_{χ ∈ Irr(G)} a_χ χ</span>, with complex coefficients <span class="SimpleMath">a_χ</span>. The <em>norm</em> of <var class="Arg">chi</var> is defined as <span class="SimpleMath">∑_{χ ∈ Irr(G)} a_χ overline{a_χ}</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ScalarProduct( TrivialCharacter( tbl ), Sum( Irr( tbl ) ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ScalarProduct( tbl, [ 1, 1, 1, 1, 1 ], Sum( Irr( tbl ) ) );</span>
1
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl2:= tbl mod 2;</span>
BrauerTable( "A5", 2 )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= Irr( tbl2 )[1];</span>
Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ScalarProduct( chi, chi );</span>
3/4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ScalarProduct( tbl2, [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ] );</span>
3/4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chars:= Irr( tbl ){ [ 2 .. 4 ] };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chars:= Set( Tensored( chars, chars ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MatScalarProducts( Irr( tbl ), chars );</span>
[ [ 0, 0, 0, 1, 1 ], [ 1, 1, 0, 0, 1 ], [ 1, 0, 1, 0, 1 ],
  [ 0, 1, 0, 1, 1 ], [ 0, 0, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MatScalarProducts( tbl, chars );</span>
[ [ 2 ], [ 1, 3 ], [ 1, 2, 3 ], [ 2, 2, 1, 3 ], [ 2, 1, 2, 2, 3 ],
  [ 2, 3, 3, 3, 3, 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( chars, Norm );</span>
[ 2, 3, 3, 3, 3, 5 ]
</pre></div>

<p><a id="X78550D7087DB1181" name="X78550D7087DB1181"></a></p>

<h5>72.8-8 ConstituentsOfCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConstituentsOfCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">chi</var> be an ordinary or modular (virtual) character. If an ordinary or modular character table <var class="Arg">tbl</var> is given then <var class="Arg">chi</var> may also be a list of character values.</p>

<p><code class="func">ConstituentsOfCharacter</code> returns the set of those irreducible characters that occur in the decomposition of <var class="Arg">chi</var> with nonzero coefficient.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nat:= NaturalCharacter( S4 );</span>
Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ConstituentsOfCharacter( nat );</span>
[ Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( S4 ), [ 3, 1, -1, 0, -1 ] ) ]
</pre></div>

<p><a id="X7E0A24498710F12B" name="X7E0A24498710F12B"></a></p>

<h5>72.8-9 KernelOfCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KernelOfCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>For a class function <var class="Arg">chi</var> of a group <span class="SimpleMath">G</span>, <code class="func">KernelOfCharacter</code> returns the normal subgroup of <span class="SimpleMath">G</span> that is formed by those conjugacy classes for which the value of <var class="Arg">chi</var> equals the degree of <var class="Arg">chi</var>. If the underlying character table of <var class="Arg">chi</var> does not store the group <span class="SimpleMath">G</span> then an error is signalled. (See <code class="func">ClassPositionsOfKernel</code> (<a href="chap72.html#X7B4708B47D9C05B3"><span class="RefLink">72.8-10</span></a>) for a way to handle the kernel implicitly, by listing the positions of conjugacy classes in the kernel.)</p>

<p>The returned group is the kernel of any representation of <span class="SimpleMath">G</span> that affords <var class="Arg">chi</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( S4 ), chi -&gt; StructureDescription(KernelOfCharacter(chi)) );</span>
[ "A4", "1", "C2 x C2", "1", "S4" ]
</pre></div>

<p><a id="X7B4708B47D9C05B3" name="X7B4708B47D9C05B3"></a></p>

<h5>72.8-10 ClassPositionsOfKernel</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClassPositionsOfKernel</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>is the list of positions of those conjugacy classes that form the kernel of the character <var class="Arg">chi</var>, that is, those positions with character value equal to the character degree.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( S4 ), ClassPositionsOfKernel );</span>
[ [ 1, 3, 4 ], [ 1 ], [ 1, 3 ], [ 1 ], [ 1, 2, 3, 4, 5 ] ]
</pre></div>

<p><a id="X7E77D4147A0836D3" name="X7E77D4147A0836D3"></a></p>

<h5>72.8-11 CentreOfCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CentreOfCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>For a character <var class="Arg">chi</var> of a group <span class="SimpleMath">G</span>, <code class="func">CentreOfCharacter</code> returns the <em>centre</em> of <var class="Arg">chi</var>, that is, the normal subgroup of all those elements of <span class="SimpleMath">G</span> for which the quotient of the value of <var class="Arg">chi</var> by the degree of <var class="Arg">chi</var> is a root of unity.</p>

<p>If the underlying character table of <var class="Arg">psi</var> does not store the group <span class="SimpleMath">G</span> then an error is signalled. (See <code class="func">ClassPositionsOfCentre</code> (<a href="chap72.html#X7CE5B4137B399274"><span class="RefLink">72.8-12</span></a>) for a way to handle the centre implicitly, by listing the positions of conjugacy classes in the centre.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( S4 ), chi -&gt; StructureDescription(CentreOfCharacter(chi)) );</span>
[ "S4", "1", "C2 x C2", "1", "S4" ]
</pre></div>

<p><a id="X7CE5B4137B399274" name="X7CE5B4137B399274"></a></p>

<h5>72.8-12 ClassPositionsOfCentre</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ClassPositionsOfCentre</code>( <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>is the list of positions of classes forming the centre of the character <var class="Arg">chi</var> (see <code class="func">CentreOfCharacter</code> (<a href="chap72.html#X7E77D4147A0836D3"><span class="RefLink">72.8-11</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( S4 ), ClassPositionsOfCentre );</span>
[ [ 1, 2, 3, 4, 5 ], [ 1 ], [ 1, 3 ], [ 1 ], [ 1, 2, 3, 4, 5 ] ]
</pre></div>

<p><a id="X7C3187387C2D9938" name="X7C3187387C2D9938"></a></p>

<h5>72.8-13 InertiaSubgroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InertiaSubgroup</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">G</var>, <var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">chi</var> be a character of a group <span class="SimpleMath">H</span> and <var class="Arg">tbl</var> the character table of <span class="SimpleMath">H</span>; if the argument <var class="Arg">tbl</var> is not given then the underlying character table of <var class="Arg">chi</var> (see <code class="func">UnderlyingCharacterTable</code> (<a href="chap72.html#X81B55C067D123B76"><span class="RefLink">72.2-1</span></a>)) is used instead. Furthermore, let <var class="Arg">G</var> be a group that contains <span class="SimpleMath">H</span> as a normal subgroup.</p>

<p><code class="func">InertiaSubgroup</code> returns the stabilizer in <var class="Arg">G</var> of <var class="Arg">chi</var>, w.r.t. the action of <var class="Arg">G</var> on the classes of <span class="SimpleMath">H</span> via conjugation. In other words, <code class="func">InertiaSubgroup</code> returns the group of all those elements <span class="SimpleMath">g ∈ <var class="Arg">G</var></span> that satisfy <span class="SimpleMath"><var class="Arg">chi</var>^g = <var class="Arg">chi</var></span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">der:= DerivedSubgroup( S4 );</span>
Alt( [ 1 .. 4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( der ), chi -&gt; InertiaSubgroup( S4, chi ) );</span>
[ S4, S4, Alt( [ 1 .. 4 ] ), Alt( [ 1 .. 4 ] ) ]
</pre></div>

<p><a id="X8269BE0079A64D43" name="X8269BE0079A64D43"></a></p>

<h5>72.8-14 CycleStructureClass</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CycleStructureClass</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var>, <var class="Arg">class</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">permchar</var> be a permutation character, and <var class="Arg">class</var> be the position of a conjugacy class of the character table of <var class="Arg">permchar</var>. <code class="func">CycleStructureClass</code> returns a list describing the cycle structure of each element in class <var class="Arg">class</var> in the underlying permutation representation, in the same format as the result of <code class="func">CycleStructurePerm</code> (<a href="chap42.html#X7944D1447804A69A"><span class="RefLink">42.4-2</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nat:= NaturalCharacter( S4 );</span>
Character( CharacterTable( S4 ), [ 4, 2, 0, 1, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 1 .. 5 ], i -&gt; CycleStructureClass( nat, i ) );</span>
[ [  ], [ 1 ], [ 2 ], [ , 1 ], [ ,, 1 ] ]
</pre></div>

<p><a id="X86EDB4047C5AD6E7" name="X86EDB4047C5AD6E7"></a></p>

<h5>72.8-15 IsTransitive</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsTransitive</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;property&nbsp;)</td></tr></table></div>
<p>For a permutation character <var class="Arg">chi</var> of the group <span class="SimpleMath">G</span> that corresponds to an action on the <span class="SimpleMath">G</span>-set <span class="SimpleMath">Ω</span> (see <code class="func">PermutationCharacter</code> (<a href="chap72.html#X7938621F81B65E03"><span class="RefLink">72.7-3</span></a>)), <code class="func">IsTransitive</code> (<a href="chap41.html#X79B15750851828CB"><span class="RefLink">41.10-1</span></a>) returns <code class="keyw">true</code> if the action of <span class="SimpleMath">G</span> on <span class="SimpleMath">Ω</span> is transitive, and <code class="keyw">false</code> otherwise.</p>

<p><a id="X801DC07B8029841B" name="X801DC07B8029841B"></a></p>

<h5>72.8-16 Transitivity</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Transitivity</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>For a permutation character <var class="Arg">chi</var> of the group <span class="SimpleMath">G</span> that corresponds to an action on the <span class="SimpleMath">G</span>-set <span class="SimpleMath">Ω</span> (see <code class="func">PermutationCharacter</code> (<a href="chap72.html#X7938621F81B65E03"><span class="RefLink">72.7-3</span></a>)), <code class="func">Transitivity</code> returns the maximal nonnegative integer <span class="SimpleMath">k</span> such that the action of <span class="SimpleMath">G</span> on <span class="SimpleMath">Ω</span> is <span class="SimpleMath">k</span>-transitive.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsTransitive( nat );  Transitivity( nat );</span>
true
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Transitivity( 2 * TrivialCharacter( S4 ) );</span>
0
</pre></div>

<p><a id="X7DD8FDCF7FB7834A" name="X7DD8FDCF7FB7834A"></a></p>

<h5>72.8-17 CentralCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CentralCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>For a character <var class="Arg">chi</var> of a group <span class="SimpleMath">G</span>, <code class="func">CentralCharacter</code> returns the <em>central character</em> of <var class="Arg">chi</var>.</p>

<p>The central character of <span class="SimpleMath">χ</span> is the class function <span class="SimpleMath">ω_χ</span> defined by <span class="SimpleMath">ω_χ(g) = |g^G| ⋅ χ(g)/χ(1)</span> for each <span class="SimpleMath">g ∈ G</span>.</p>

<p><a id="X7A292A58827B95B8" name="X7A292A58827B95B8"></a></p>

<h5>72.8-18 DeterminantOfCharacter</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DeterminantOfCharacter</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p><code class="func">DeterminantOfCharacter</code> returns the <em>determinant character</em> of the character <var class="Arg">chi</var>. This is defined to be the character obtained by taking the determinant of representing matrices of any representation affording <var class="Arg">chi</var>; the determinant can be computed using <code class="func">EigenvaluesChar</code> (<a href="chap72.html#X861B435C7F68AE7D"><span class="RefLink">72.8-19</span></a>).</p>

<p>It is also possible to call <code class="func">Determinant</code> (<a href="chap24.html#X8488D69A7ADDB4E2"><span class="RefLink">24.4-4</span></a>) instead of <code class="func">DeterminantOfCharacter</code>.</p>

<p>Note that the determinant character is well-defined for virtual characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CentralCharacter( TrivialCharacter( S4 ) );</span>
ClassFunction( CharacterTable( S4 ), [ 1, 6, 3, 8, 6 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DeterminantOfCharacter( Irr( S4 )[3] );</span>
Character( CharacterTable( S4 ), [ 1, -1, 1, 1, -1 ] )
</pre></div>

<p><a id="X861B435C7F68AE7D" name="X861B435C7F68AE7D"></a></p>

<h5>72.8-19 EigenvaluesChar</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EigenvaluesChar</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var>, <var class="Arg">class</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">chi</var> be a character of a group <span class="SimpleMath">G</span>. For an element <span class="SimpleMath">g ∈ G</span> in the <var class="Arg">class</var>-th conjugacy class, of order <span class="SimpleMath">n</span>, let <span class="SimpleMath">M</span> be a matrix of a representation affording <var class="Arg">chi</var>.</p>

<p><code class="func">EigenvaluesChar</code> returns the list of length <span class="SimpleMath">n</span> where at position <span class="SimpleMath">k</span> the multiplicity of <code class="code">E</code><span class="SimpleMath">(n)^k = exp(2 π i k / n)</span> as an eigenvalue of <span class="SimpleMath">M</span> is stored.</p>

<p>We have <code class="code"><var class="Arg">chi</var>[ <var class="Arg">class</var> ] = List( [ 1 .. n ], k -&gt; E(n)^k ) * EigenvaluesChar( <var class="Arg">tbl</var>, <var class="Arg">chi</var>, <var class="Arg">class</var> )</code>.</p>

<p>It is also possible to call <code class="func">Eigenvalues</code> (<a href="chap24.html#X8413C6FB7CEE9D59"><span class="RefLink">24.8-3</span></a>) instead of <code class="func">EigenvaluesChar</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= Irr( CharacterTable( "A5" ) )[2];</span>
Character( CharacterTable( "A5" ),
[ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 1 .. 5 ], i -&gt; Eigenvalues( chi, i ) );</span>
[ [ 3 ], [ 2, 1 ], [ 1, 1, 1 ], [ 0, 1, 1, 0, 1 ], [ 1, 0, 0, 1, 1 ] ]
</pre></div>

<p><a id="X7A106BE281EFD953" name="X7A106BE281EFD953"></a></p>

<h5>72.8-20 Tensored</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Tensored</code>( <var class="Arg">chars1</var>, <var class="Arg">chars2</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">chars1</var> and <var class="Arg">chars2</var> be lists of (values lists of) class functions of the same character table. <code class="func">Tensored</code> returns the list of tensor products of all entries in <var class="Arg">chars1</var> with all entries in <var class="Arg">chars2</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irra5:= Irr( CharacterTable( "A5" ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chars1:= irra5{ [ 1 .. 3 ] };;  chars2:= irra5{ [ 2, 3 ] };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Tensored( chars1, chars2 );</span>
[ Character( CharacterTable( "A5" ),
    [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
  Character( CharacterTable( "A5" ),
    [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ),
  Character( CharacterTable( "A5" ),
    [ 9, 1, 0, -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4,
      -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4 ] ),
  Character( CharacterTable( "A5" ), [ 9, 1, 0, -1, -1 ] ),
  Character( CharacterTable( "A5" ), [ 9, 1, 0, -1, -1 ] ),
  Character( CharacterTable( "A5" ),
    [ 9, 1, 0, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4,
      -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4 ] ) ]
</pre></div>

<p><a id="X7B83B4108490FD06" name="X7B83B4108490FD06"></a></p>

<h5>72.8-21 TensorProduct</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorProduct</code>( <var class="Arg">chi</var>, <var class="Arg">psi</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>For two characters <var class="Arg">chi</var> and <var class="Arg">psi</var> afforded by the modules <span class="SimpleMath">V</span> and <span class="SimpleMath">W</span>, <code class="func">TensorProduct</code> returns the character that is afforded by the tensor product of <span class="SimpleMath">V</span> and <span class="SimpleMath">W</span>.</p>

<p>The result can also be computed as <var class="Arg">chi</var><code class="code">*</code><var class="Arg">psi</var>, see also <code class="func">Tensored</code> (<a href="chap72.html#X7A106BE281EFD953"><span class="RefLink">72.8-20</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chi:= Irr( t )[2];</span>
Character( CharacterTable( "A5" ),
 [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= Irr( t )[3];</span>
Character( CharacterTable( "A5" ),
 [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TensorProduct( chi, psi );</span>
Character( CharacterTable( "A5" ), [ 9, 1, 0, -1, -1 ] )
</pre></div>

<p><a id="X854A4E3A85C5F89B" name="X854A4E3A85C5F89B"></a></p>

<h4>72.9 <span class="Heading">Restricted and Induced Class Functions</span></h4>

<p>For restricting a class function of a group <span class="SimpleMath">G</span> to a subgroup <span class="SimpleMath">H</span> and for inducing a class function of <span class="SimpleMath">H</span> to <span class="SimpleMath">G</span>, the <em>class fusion</em> from <span class="SimpleMath">H</span> to <span class="SimpleMath">G</span> must be known (see <a href="chap73.html#X806975FE81534444"><span class="RefLink">73.3</span></a>).</p>

<p>If <span class="SimpleMath">F</span> is the factor group of <span class="SimpleMath">G</span> by the normal subgroup <span class="SimpleMath">N</span> then each class function of <span class="SimpleMath">F</span> can be naturally regarded as a class function of <span class="SimpleMath">G</span>, with <span class="SimpleMath">N</span> in its kernel. For a class function of <span class="SimpleMath">F</span>, the corresponding class function of <span class="SimpleMath">G</span> is called the <em>inflated</em> class function. Restriction and inflation are in principle the same, namely indirection of a class function by the appropriate fusion map, and thus no extra operation is needed for this process. But note that contrary to the case of a subgroup fusion, the factor fusion can in general not be computed from the groups <span class="SimpleMath">G</span> and <span class="SimpleMath">F</span>; either one needs the natural homomorphism, or the factor fusion to the character table of <span class="SimpleMath">F</span> must be stored on the table of <span class="SimpleMath">G</span>. This explains the different syntax for computing restricted and inflated class functions.</p>

<p>In the following, the meaning of the optional first argument <var class="Arg">tbl</var> is the same as in Section <a href="chap72.html#X86DDB47A7C6B45D0"><span class="RefLink">72.8</span></a>.</p>

<p><a id="X86BABEA6841A40CF" name="X86BABEA6841A40CF"></a></p>

<h5>72.9-1 RestrictedClassFunction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedClassFunction</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var>, <var class="Arg">target</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">chi</var> be a class function of a group <span class="SimpleMath">G</span> and let <var class="Arg">target</var> be either a subgroup <span class="SimpleMath">H</span> of <span class="SimpleMath">G</span> or an injective homomorphism from <span class="SimpleMath">H</span> to <span class="SimpleMath">G</span> or the character table of <var class="Arg">H</var>. Then <code class="func">RestrictedClassFunction</code> returns the class function of <span class="SimpleMath">H</span> obtained by restricting <var class="Arg">chi</var> to <span class="SimpleMath">H</span>.</p>

<p>If <var class="Arg">chi</var> is a class function of a <em>factor group</em> <span class="SimpleMath">G</span> of <span class="SimpleMath">H</span>, where <var class="Arg">target</var> is either the group <span class="SimpleMath">H</span> or a homomorphism from <span class="SimpleMath">H</span> to <span class="SimpleMath">G</span> or the character table of <span class="SimpleMath">H</span> then the restriction can be computed in the case of the homomorphism; in the other cases, this is possible only if the factor fusion from <span class="SimpleMath">H</span> to <span class="SimpleMath">G</span> is stored on the character table of <span class="SimpleMath">H</span>.</p>

<p><a id="X86DB64F08035D219" name="X86DB64F08035D219"></a></p>

<h5>72.9-2 RestrictedClassFunctions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedClassFunctions</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chars</var>, <var class="Arg">target</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">RestrictedClassFunctions</code> is similar to <code class="func">RestrictedClassFunction</code> (<a href="chap72.html#X86BABEA6841A40CF"><span class="RefLink">72.9-1</span></a>), the only difference is that it takes a list <var class="Arg">chars</var> of class functions instead of one class function, and returns the list of restricted class functions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a5:= CharacterTable( "A5" );;  s5:= CharacterTable( "S5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedClassFunction( Irr( s5 )[2], a5 );</span>
Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedClassFunctions( Irr( s5 ), a5 );</span>
[ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 6, -2, 0, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
  Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
  Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">hom:= NaturalHomomorphismByNormalSubgroup( S4, der );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RestrictedClassFunctions( Irr( Image( hom ) ), hom );</span>
[ Character( CharacterTable( S4 ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( S4 ), [ 1, -1, 1, 1, -1 ] ) ]
</pre></div>

<p><a id="X7FE39D3D78855D3B" name="X7FE39D3D78855D3B"></a></p>

<h5>72.9-3 <span class="Heading">InducedClassFunction</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InducedClassFunction</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var>, <var class="Arg">H</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InducedClassFunction</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var>, <var class="Arg">hom</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InducedClassFunction</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chi</var>, <var class="Arg">suptbl</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">chi</var> be a class function of a group <span class="SimpleMath">G</span> and let <var class="Arg">target</var> be either a supergroup <span class="SimpleMath">H</span> of <span class="SimpleMath">G</span> or an injective homomorphism from <span class="SimpleMath">H</span> to <span class="SimpleMath">G</span> or the character table of <var class="Arg">H</var>. Then <code class="func">InducedClassFunction</code> returns the class function of <span class="SimpleMath">H</span> obtained by inducing <var class="Arg">chi</var> to <span class="SimpleMath">H</span>.</p>

<p><a id="X8484C0F985AD2D28" name="X8484C0F985AD2D28"></a></p>

<h5>72.9-4 InducedClassFunctions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InducedClassFunctions</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">chars</var>, <var class="Arg">target</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">InducedClassFunctions</code> is similar to <code class="func">InducedClassFunction</code> (<a href="chap72.html#X7FE39D3D78855D3B"><span class="RefLink">72.9-3</span></a>), the only difference is that it takes a list <var class="Arg">chars</var> of class functions instead of one class function, and returns the list of induced class functions.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">InducedClassFunctions( Irr( a5 ), s5 );</span>
[ Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 8, 0, 2, -2, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 10, 2, -2, 0, 0, 0, 0 ] ) ]
</pre></div>

<p><a id="X7C72003880743D28" name="X7C72003880743D28"></a></p>

<h5>72.9-5 InducedClassFunctionsByFusionMap</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InducedClassFunctionsByFusionMap</code>( <var class="Arg">subtbl</var>, <var class="Arg">tbl</var>, <var class="Arg">chars</var>, <var class="Arg">fusionmap</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">subtbl</var> and <var class="Arg">tbl</var> be two character tables of groups <span class="SimpleMath">H</span> and <span class="SimpleMath">G</span>, such that <span class="SimpleMath">H</span> is a subgroup of <span class="SimpleMath">G</span>, let <var class="Arg">chars</var> be a list of class functions of <var class="Arg">subtbl</var>, and let <var class="Arg">fusionmap</var> be a fusion map from <var class="Arg">subtbl</var> to <var class="Arg">tbl</var>. The function returns the list of induced class functions of <var class="Arg">tbl</var> that correspond to <var class="Arg">chars</var>, w.r.t. the given fusion map.</p>

<p><code class="func">InducedClassFunctionsByFusionMap</code> is the function that does the work for <code class="func">InducedClassFunction</code> (<a href="chap72.html#X7FE39D3D78855D3B"><span class="RefLink">72.9-3</span></a>) and <code class="func">InducedClassFunctions</code> (<a href="chap72.html#X8484C0F985AD2D28"><span class="RefLink">72.9-4</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fus:= PossibleClassFusions( a5, s5 );</span>
[ [ 1, 2, 3, 4, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">InducedClassFunctionsByFusionMap( a5, s5, Irr( a5 ), fus[1] );</span>
[ Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 6, -2, 0, 1, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 8, 0, 2, -2, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 10, 2, -2, 0, 0, 0, 0 ] ) ]
</pre></div>

<p><a id="X7C055F327C99CE71" name="X7C055F327C99CE71"></a></p>

<h5>72.9-6 InducedCyclic</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; InducedCyclic</code>( <var class="Arg">tbl</var>[, <var class="Arg">classes</var>][, <var class="Arg">"all"</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">InducedCyclic</code> calculates characters induced up from cyclic subgroups of the ordinary character table <var class="Arg">tbl</var> to <var class="Arg">tbl</var>, and returns the strictly sorted list of the induced characters.</p>

<p>If the string <code class="code">"all"</code> is specified then all irreducible characters of these subgroups are induced, otherwise only the permutation characters are calculated.</p>

<p>If a list <var class="Arg">classes</var> is specified then only those cyclic subgroups generated by these classes are considered, otherwise all classes of <var class="Arg">tbl</var> are considered.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">InducedCyclic( a5, "all" );</span>
[ Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ),
  Character( CharacterTable( "A5" ),
    [ 12, 0, 0, E(5)^2+E(5)^3, E(5)+E(5)^4 ] ),
  Character( CharacterTable( "A5" ),
    [ 12, 0, 0, E(5)+E(5)^4, E(5)^2+E(5)^3 ] ),
  Character( CharacterTable( "A5" ), [ 20, 0, -1, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 30, -2, 0, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ) ]
</pre></div>

<p><a id="X7C95F7937B752F48" name="X7C95F7937B752F48"></a></p>

<h4>72.10 <span class="Heading">Reducing Virtual Characters</span></h4>

<p>The following operations are intended for the situation that one is given a list of virtual characters of a character table and is interested in the irreducible characters of this table. The idea is to compute virtual characters of small norm from the given ones, hoping to get eventually virtual characters of norm <span class="SimpleMath">1</span>.</p>

<p><a id="X86F360D983343C2A" name="X86F360D983343C2A"></a></p>

<h5>72.10-1 ReducedClassFunctions</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReducedClassFunctions</code>( [<var class="Arg">tbl</var>, ][<var class="Arg">constituents</var>, ]<var class="Arg">reducibles</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">reducibles</var> be a list of ordinary virtual characters of a group <span class="SimpleMath">G</span>. If <var class="Arg">constituents</var> is given then it must also be a list of ordinary virtual characters of <span class="SimpleMath">G</span>, otherwise we have <var class="Arg">constituents</var> equal to <var class="Arg">reducibles</var> in the following.</p>

<p><code class="func">ReducedClassFunctions</code> returns a record with the components <code class="code">remainders</code> and <code class="code">irreducibles</code>, both lists of virtual characters of <span class="SimpleMath">G</span>. These virtual characters are computed as follows.</p>

<p>Let <code class="code">rems</code> be the set of nonzero class functions obtained by subtraction of</p>

<p class="pcenter">∑_χ ( [<var class="Arg">reducibles</var>[i], χ] / [χ, χ] ) ⋅ χ</p>

<p>from <span class="SimpleMath"><var class="Arg">reducibles</var>[i]</span>, where the summation runs over <var class="Arg">constituents</var> and <span class="SimpleMath">[χ, ψ]</span> denotes the scalar product of <span class="SimpleMath">G</span>-class functions. Let <code class="code">irrs</code> be the list of irreducible characters in <code class="code">rems</code>.</p>

<p>We project <code class="code">rems</code> into the orthogonal space of <code class="code">irrs</code> and all those irreducibles found this way until no new irreducibles arise. Then the <code class="code">irreducibles</code> list is the set of all found irreducible characters, and the <code class="code">remainders</code> list is the set of all nonzero remainders.</p>

<p><a id="X7B7138ED8586F09E" name="X7B7138ED8586F09E"></a></p>

<h5>72.10-2 ReducedCharacters</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReducedCharacters</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">constituents</var>, <var class="Arg">reducibles</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">ReducedCharacters</code> is similar to <code class="func">ReducedClassFunctions</code> (<a href="chap72.html#X86F360D983343C2A"><span class="RefLink">72.10-1</span></a>), the only difference is that <var class="Arg">constituents</var> and <var class="Arg">reducibles</var> are assumed to be lists of characters. This means that only those scalar products must be formed where the degree of the character in <var class="Arg">constituents</var> does not exceed the degree of the character in <var class="Arg">reducibles</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chars:= Irr( tbl ){ [ 2 .. 4 ] };;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chars:= Set( Tensored( chars, chars ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">red:= ReducedClassFunctions( chars );</span>
rec(
  irreducibles :=
    [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
      Character( CharacterTable( "A5" ),
        [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
      Character( CharacterTable( "A5" ),
        [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ),
      Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
      Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ],
  remainders := [  ] )
</pre></div>

<p><a id="X7D3289BB865BCF98" name="X7D3289BB865BCF98"></a></p>

<h5>72.10-3 IrreducibleDifferences</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IrreducibleDifferences</code>( <var class="Arg">tbl</var>, <var class="Arg">reducibles</var>, <var class="Arg">reducibles2</var>[, <var class="Arg">scprmat</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">IrreducibleDifferences</code> returns the list of irreducible characters which occur as difference of an element of <var class="Arg">reducibles</var> and an element of <var class="Arg">reducibles2</var>, where these two arguments are lists of class functions of the character table <var class="Arg">tbl</var>.</p>

<p>If <var class="Arg">reducibles2</var> is the string <code class="code">"triangle"</code> then the differences of elements in <var class="Arg">reducibles</var> are considered.</p>

<p>If <var class="Arg">scprmat</var> is not specified then it will be calculated, otherwise we must have <code class="code"><var class="Arg">scprmat</var> = MatScalarProducts( <var class="Arg">tbl</var>, <var class="Arg">reducibles</var>, <var class="Arg">reducibles2</var> )</code> or <code class="code"><var class="Arg">scprmat</var> = MatScalarProducts( <var class="Arg">tbl</var>, <var class="Arg">reducibles</var> )</code>, respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IrreducibleDifferences( a5, chars, "triangle" );</span>
[ Character( CharacterTable( "A5" ),
    [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
  Character( CharacterTable( "A5" ),
    [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ) ]
</pre></div>

<p><a id="X85B360C085B360C0" name="X85B360C085B360C0"></a></p>

<h5>72.10-4 LLL</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LLL</code>( <var class="Arg">tbl</var>, <var class="Arg">characters</var>[, <var class="Arg">y</var>][, <var class="Arg">"sort"</var>][, <var class="Arg">"linearcomb"</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">LLL</code> calls the LLL algorithm (see <code class="func">LLLReducedBasis</code> (<a href="chap25.html#X7D0FCEF8859E8637"><span class="RefLink">25.5-1</span></a>)) in the case of lattices spanned by the virtual characters <var class="Arg">characters</var> of the ordinary character table <var class="Arg">tbl</var> (see <code class="func">ScalarProduct</code> (<a href="chap72.html#X855FD9F983D275CD"><span class="RefLink">72.8-5</span></a>)). By finding shorter vectors in the lattice spanned by <var class="Arg">characters</var>, i.e., virtual characters of smaller norm, in some cases <code class="func">LLL</code> is able to find irreducible characters.</p>

<p><code class="func">LLL</code> returns a record with at least components <code class="code">irreducibles</code> (the list of found irreducible characters), <code class="code">remainders</code> (a list of reducible virtual characters), and <code class="code">norms</code> (the list of norms of the vectors in <code class="code">remainders</code>). <code class="code">irreducibles</code> together with <code class="code">remainders</code> form a basis of the <span class="SimpleMath">ℤ</span>-lattice spanned by <var class="Arg">characters</var>.</p>

<p>Note that the vectors in the <code class="code">remainders</code> list are in general <em>not</em> orthogonal (see <code class="func">ReducedClassFunctions</code> (<a href="chap72.html#X86F360D983343C2A"><span class="RefLink">72.10-1</span></a>)) to the irreducible characters in <code class="code">irreducibles</code>.</p>

<p>Optional arguments of <code class="func">LLL</code> are</p>


<dl>
<dt><strong class="Mark"><var class="Arg">y</var></strong></dt>
<dd><p>controls the sensitivity of the algorithm, see <code class="func">LLLReducedBasis</code> (<a href="chap25.html#X7D0FCEF8859E8637"><span class="RefLink">25.5-1</span></a>),</p>

</dd>
<dt><strong class="Mark"><var class="Arg">"sort"</var></strong></dt>
<dd><p><code class="func">LLL</code> sorts <var class="Arg">characters</var> and the <code class="code">remainders</code> component of the result according to the degrees,</p>

</dd>
<dt><strong class="Mark"><var class="Arg">"linearcomb"</var></strong></dt>
<dd><p>the returned record contains components <code class="code">irreddecomp</code> and <code class="code">reddecomp</code>, which are decomposition matrices of <code class="code">irreducibles</code> and <code class="code">remainders</code>, with respect to <var class="Arg">characters</var>.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s4:= CharacterTable( "Symmetric", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">chars:= [ [ 8, 0, 0, -1, 0 ], [ 6, 0, 2, 0, 2 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    [ 12, 0, -4, 0, 0 ], [ 6, 0, -2, 0, 0 ], [ 24, 0, 0, 0, 0 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    [ 12, 0, 4, 0, 0 ], [ 6, 0, 2, 0, -2 ], [ 12, -2, 0, 0, 0 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">    [ 8, 0, 0, 2, 0 ], [ 12, 2, 0, 0, 0 ], [ 1, 1, 1, 1, 1 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LLL( s4, chars );</span>
rec(
  irreducibles :=
    [ Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 3, 1, -1, 0, -1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ) ],
  norms := [  ], remainders := [  ] )
</pre></div>

<p><a id="X808D71A57D104ED7" name="X808D71A57D104ED7"></a></p>

<h5>72.10-5 Extract</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Extract</code>( <var class="Arg">tbl</var>, <var class="Arg">reducibles</var>, <var class="Arg">grammat</var>[, <var class="Arg">missing</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be an ordinary character table, <var class="Arg">reducibles</var> a list of characters of <var class="Arg">tbl</var>, and <var class="Arg">grammat</var> the matrix of scalar products of <var class="Arg">reducibles</var> (see <code class="func">MatScalarProducts</code> (<a href="chap72.html#X858DF4E67EBB99DA"><span class="RefLink">72.8-6</span></a>)). <code class="func">Extract</code> tries to find irreducible characters by drawing conclusions out of the scalar products, using combinatorial and backtrack means.</p>

<p>The optional argument <var class="Arg">missing</var> is the maximal number of irreducible characters that occur as constituents of <var class="Arg">reducibles</var>. Specification of <var class="Arg">missing</var> may accelerate <code class="func">Extract</code>.</p>

<p><code class="func">Extract</code> returns a record <var class="Arg">ext</var> with the components <code class="code">solution</code> and <code class="code">choice</code>, where the value of <code class="code">solution</code> is a list <span class="SimpleMath">[ M_1, ..., M_n ]</span> of decomposition matrices <span class="SimpleMath">M_i</span> (up to permutations of rows) with the property that <span class="SimpleMath">M_i^tr ⋅ X</span> is equal to the sublist at the positions <var class="Arg">ext</var><code class="code">.choice[i]</code> of <var class="Arg">reducibles</var>, for a matrix <span class="SimpleMath">X</span> of irreducible characters; the value of <code class="code">choice</code> is a list of length <span class="SimpleMath">n</span> whose entries are lists of indices.</p>

<p>So the <span class="SimpleMath">j</span>-th column in each matrix <span class="SimpleMath">M_i</span> corresponds to <span class="SimpleMath"><var class="Arg">reducibles</var>[j]</span>, and each row in <span class="SimpleMath">M_i</span> corresponds to an irreducible character. <code class="func">Decreased</code> (<a href="chap72.html#X8799AB967C58C0E9"><span class="RefLink">72.10-7</span></a>) can be used to examine the solution for computable irreducibles.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s4:= CharacterTable( "Symmetric", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">red:= [ [ 5, 1, 5, 2, 1 ], [ 2, 0, 2, 2, 0 ], [ 3, -1, 3, 0, -1 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           [ 6, 0, -2, 0, 0 ], [ 4, 0, 0, 1, 2 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gram:= MatScalarProducts( s4, red, red );</span>
[ [ 6, 3, 2, 0, 2 ], [ 3, 2, 1, 0, 1 ], [ 2, 1, 2, 0, 0 ],
  [ 0, 0, 0, 2, 1 ], [ 2, 1, 0, 1, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ext:= Extract( s4, red, gram, 5 );</span>
rec( choice := [ [ 2, 5, 3, 4, 1 ] ],
  solution :=
    [
      [ [ 1, 1, 0, 0, 2 ], [ 1, 0, 1, 0, 1 ], [ 0, 1, 0, 1, 0 ],
          [ 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0 ] ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dec:= Decreased( s4, red, ext.solution[1], ext.choice[1] );</span>
rec(
  irreducibles :=
    [ Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 3, 1, -1, 0, -1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ) ],
  matrix := [  ], remainders := [  ] )
</pre></div>

<p><a id="X7F97B34A879D11BA" name="X7F97B34A879D11BA"></a></p>

<h5>72.10-6 OrthogonalEmbeddingsSpecialDimension</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrthogonalEmbeddingsSpecialDimension</code>( <var class="Arg">tbl</var>, <var class="Arg">reducibles</var>, <var class="Arg">grammat</var>[, <var class="Arg">"positive"</var>], <var class="Arg">dim</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">OrthogonalEmbeddingsSpecialDimension</code> is a variant of <code class="func">OrthogonalEmbeddings</code> (<a href="chap25.html#X842280C2808FF05D"><span class="RefLink">25.6-1</span></a>) for the situation that <var class="Arg">tbl</var> is an ordinary character table, <var class="Arg">reducibles</var> is a list of virtual characters of <var class="Arg">tbl</var>, <var class="Arg">grammat</var> is the matrix of scalar products (see <code class="func">MatScalarProducts</code> (<a href="chap72.html#X858DF4E67EBB99DA"><span class="RefLink">72.8-6</span></a>)), and <var class="Arg">dim</var> is an upper bound for the number of irreducible characters of <var class="Arg">tbl</var> that occur as constituents of <var class="Arg">reducibles</var>; if the vectors in <var class="Arg">reducibles</var> are known to be proper characters then the string <code class="code">"positive"</code> may be entered as fourth argument. (See <code class="func">OrthogonalEmbeddings</code> (<a href="chap25.html#X842280C2808FF05D"><span class="RefLink">25.6-1</span></a>) for information why this may help.)</p>

<p><code class="func">OrthogonalEmbeddingsSpecialDimension</code> first uses <code class="func">OrthogonalEmbeddings</code> (<a href="chap25.html#X842280C2808FF05D"><span class="RefLink">25.6-1</span></a>) to compute all orthogonal embeddings of <var class="Arg">grammat</var> into a standard lattice of dimension up to <var class="Arg">dim</var>, and then calls <code class="func">Decreased</code> (<a href="chap72.html#X8799AB967C58C0E9"><span class="RefLink">72.10-7</span></a>) in order to find irreducible characters of <var class="Arg">tbl</var>.</p>

<p><code class="func">OrthogonalEmbeddingsSpecialDimension</code> returns a record with the following components.</p>


<dl>
<dt><strong class="Mark"><code class="code">irreducibles</code></strong></dt>
<dd><p>a list of found irreducibles, the intersection of all lists of irreducibles found by <code class="func">Decreased</code> (<a href="chap72.html#X8799AB967C58C0E9"><span class="RefLink">72.10-7</span></a>), for all possible embeddings, and</p>

</dd>
<dt><strong class="Mark"><code class="code">remainders</code></strong></dt>
<dd><p>a list of remaining reducible virtual characters.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s6:= CharacterTable( "S6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">red:= InducedCyclic( s6, "all" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Add( red, TrivialCharacter( s6 ) );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lll:= LLL( s6, red );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irred:= lll.irreducibles;</span>
[ Character( CharacterTable( "A6.2_1" ),
    [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A6.2_1" ),
    [ 9, 1, 0, 0, 1, -1, -3, -3, 1, 0, 0 ] ),
  Character( CharacterTable( "A6.2_1" ),
    [ 16, 0, -2, -2, 0, 1, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( Flat( MatScalarProducts( s6, irred, lll.remainders ) ) );</span>
[ 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dim:= NrConjugacyClasses( s6 ) - Length( lll.irreducibles );</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rem:= lll.remainders;;  Length( rem );</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gram:= MatScalarProducts( s6, rem, rem );;  RankMat( gram );</span>
8
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">emb1:= OrthogonalEmbeddings( gram, 8 );</span>
rec( norms := [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
  solutions := [ [ 1, 2, 3, 7, 11, 12, 13, 15 ],
      [ 1, 2, 4, 8, 10, 12, 13, 14 ], [ 1, 2, 5, 6, 9, 12, 13, 16 ] ],
  vectors :=
    [ [ -1, 0, 1, 0, 1, 0, 1, 0 ], [ 1, 0, 0, 1, 0, 1, 0, 0 ],
      [ 0, 1, 1, 0, 0, 0, 1, 1 ], [ 0, 1, 1, 0, 0, 0, 1, 0 ],
      [ 0, 1, 1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 1, 0 ],
      [ 0, -1, 0, 0, 0, 0, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ],
      [ 0, 0, 1, 0, 0, 0, 1, 1 ], [ 0, 0, 1, 0, 0, 0, 0, 1 ],
      [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, -1, 1, 0, 0, 0 ],
      [ 0, 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, 1 ],
      [ 0, 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1 ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">emb2:= OrthogonalEmbeddingsSpecialDimension( s6, rem, gram, 8 );</span>
rec(
  irreducibles :=
    [ Character( CharacterTable( "A6.2_1" ),
        [ 5, 1, -1, 2, -1, 0, 1, -3, -1, 1, 0 ] ),
      Character( CharacterTable( "A6.2_1" ),
        [ 5, 1, 2, -1, -1, 0, -3, 1, -1, 0, 1 ] ),
      Character( CharacterTable( "A6.2_1" ),
        [ 10, -2, 1, 1, 0, 0, -2, 2, 0, 1, -1 ] ),
      Character( CharacterTable( "A6.2_1" ),
        [ 10, -2, 1, 1, 0, 0, 2, -2, 0, -1, 1 ] ) ],
  remainders :=
    [ VirtualCharacter( CharacterTable( "A6.2_1" ),
        [ 0, 0, 3, -3, 0, 0, 4, -4, 0, 1, -1 ] ),
      VirtualCharacter( CharacterTable( "A6.2_1" ),
        [ 6, 2, 3, 0, 0, 1, 2, -2, 0, -1, -2 ] ),
      VirtualCharacter( CharacterTable( "A6.2_1" ),
        [ 10, 2, 1, 1, 2, 0, 2, 2, -2, -1, -1 ] ),
      VirtualCharacter( CharacterTable( "A6.2_1" ),
        [ 14, 2, 2, -1, 0, -1, 6, 2, 0, 0, -1 ] ) ] )
</pre></div>

<p><a id="X8799AB967C58C0E9" name="X8799AB967C58C0E9"></a></p>

<h5>72.10-7 Decreased</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Decreased</code>( <var class="Arg">tbl</var>, <var class="Arg">chars</var>, <var class="Arg">decompmat</var>[, <var class="Arg">choice</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be an ordinary character table, <var class="Arg">chars</var> a list of virtual characters of <var class="Arg">tbl</var>, and <var class="Arg">decompmat</var> a decomposition matrix, that is, a matrix <span class="SimpleMath">M</span> with the property that <span class="SimpleMath">M^tr ⋅ X = <var class="Arg">chars</var></span> holds, where <span class="SimpleMath">X</span> is a list of irreducible characters of <var class="Arg">tbl</var>. <code class="func">Decreased</code> tries to compute the irreducibles in <span class="SimpleMath">X</span> or at least some of them.</p>

<p>Usually <code class="func">Decreased</code> is applied to the output of <code class="func">Extract</code> (<a href="chap72.html#X808D71A57D104ED7"><span class="RefLink">72.10-5</span></a>) or <code class="func">OrthogonalEmbeddings</code> (<a href="chap25.html#X842280C2808FF05D"><span class="RefLink">25.6-1</span></a>) or <code class="func">OrthogonalEmbeddingsSpecialDimension</code> (<a href="chap72.html#X7F97B34A879D11BA"><span class="RefLink">72.10-6</span></a>). In the case of <code class="func">Extract</code> (<a href="chap72.html#X808D71A57D104ED7"><span class="RefLink">72.10-5</span></a>), the choice component corresponding to the decomposition matrix must be entered as argument <var class="Arg">choice</var> of <code class="func">Decreased</code>.</p>

<p><code class="func">Decreased</code> returns <code class="keyw">fail</code> if it can prove that no list <span class="SimpleMath">X</span> of irreducible characters corresponding to the arguments exists; otherwise <code class="func">Decreased</code> returns a record with the following components.</p>


<dl>
<dt><strong class="Mark"><code class="code">irreducibles</code></strong></dt>
<dd><p>the list of found irreducible characters,</p>

</dd>
<dt><strong class="Mark"><code class="code">remainders</code></strong></dt>
<dd><p>the remaining reducible characters, and</p>

</dd>
<dt><strong class="Mark"><code class="code">matrix</code></strong></dt>
<dd><p>the decomposition matrix of the characters in the <code class="code">remainders</code> component.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s4:= CharacterTable( "Symmetric", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:= Irr( s4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">red:= [ x[1]+x[2], -x[1]-x[3], -x[1]+x[3], -x[2]-x[4] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mat:= MatScalarProducts( s4, red, red );</span>
[ [ 2, -1, -1, -1 ], [ -1, 2, 0, 0 ], [ -1, 0, 2, 0 ],
  [ -1, 0, 0, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">emb:= OrthogonalEmbeddings( mat );</span>
rec( norms := [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
  solutions := [ [ 1, 6, 7, 12 ], [ 2, 5, 8, 11 ], [ 3, 4, 9, 10 ] ],
  vectors := [ [ -1, 1, 1, 0 ], [ -1, 1, 0, 1 ], [ 1, -1, 0, 0 ],
      [ -1, 0, 1, 1 ], [ -1, 0, 1, 0 ], [ -1, 0, 0, 1 ],
      [ 0, -1, 1, 0 ], [ 0, -1, 0, 1 ], [ 0, 1, 0, 0 ],
      [ 0, 0, -1, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dec:= Decreased( s4, red, emb.vectors{ emb.solutions[1] } );</span>
rec(
  irreducibles :=
    [ Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 3, 1, -1, 0, -1 ] ) ],
  matrix := [  ], remainders := [  ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Decreased( s4, red, emb.vectors{ emb.solutions[2] } );</span>
fail
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Decreased( s4, red, emb.vectors{ emb.solutions[3] } );</span>
fail
</pre></div>

<p><a id="X85D510DC873A99B4" name="X85D510DC873A99B4"></a></p>

<h5>72.10-8 DnLattice</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DnLattice</code>( <var class="Arg">tbl</var>, <var class="Arg">grammat</var>, <var class="Arg">reducibles</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be an ordinary character table, and <var class="Arg">reducibles</var> a list of virtual characters of <var class="Arg">tbl</var>.</p>

<p><code class="func">DnLattice</code> searches for sublattices isomorphic to root lattices of type <span class="SimpleMath">D_n</span>, for <span class="SimpleMath">n ≥ 4</span>, in the lattice that is generated by <var class="Arg">reducibles</var>; each vector in <var class="Arg">reducibles</var> must have norm <span class="SimpleMath">2</span>, and the matrix of scalar products (see <code class="func">MatScalarProducts</code> (<a href="chap72.html#X858DF4E67EBB99DA"><span class="RefLink">72.8-6</span></a>)) of <var class="Arg">reducibles</var> must be entered as argument <var class="Arg">grammat</var>.</p>

<p><code class="func">DnLattice</code> is able to find irreducible characters if there is a lattice of type <span class="SimpleMath">D_n</span> with <span class="SimpleMath">n &gt; 4</span>. In the case <span class="SimpleMath">n = 4</span>, <code class="func">DnLattice</code> may fail to determine irreducibles.</p>

<p><code class="func">DnLattice</code> returns a record with components</p>


<dl>
<dt><strong class="Mark"><code class="code">irreducibles</code></strong></dt>
<dd><p>the list of found irreducible characters,</p>

</dd>
<dt><strong class="Mark"><code class="code">remainders</code></strong></dt>
<dd><p>the list of remaining reducible virtual characters, and</p>

</dd>
<dt><strong class="Mark"><code class="code">gram</code></strong></dt>
<dd><p>the Gram matrix of the vectors in <code class="code">remainders</code>.</p>

</dd>
</dl>
<p>The <code class="code">remainders</code> list is transformed in such a way that the <code class="code">gram</code> matrix is a block diagonal matrix that exhibits the structure of the lattice generated by the vectors in <code class="code">remainders</code>. So <code class="func">DnLattice</code> might be useful even if it fails to find irreducible characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s4:= CharacterTable( "Symmetric", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">red:= [ [ 2, 0, 2, 2, 0 ], [ 4, 0, 0, 1, 2 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           [ 5, -1, 1, -1, 1 ], [ -1, 1, 3, -1, -1 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gram:= MatScalarProducts( s4, red, red );</span>
[ [ 2, 1, 0, 0 ], [ 1, 2, 1, -1 ], [ 0, 1, 2, 0 ], [ 0, -1, 0, 2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dn:= DnLattice( s4, gram, red );</span>
rec( gram := [  ],
  irreducibles :=
    [ Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ) ],
  remainders := [  ] )
</pre></div>

<p><a id="X78754D007F3572A7" name="X78754D007F3572A7"></a></p>

<h5>72.10-9 DnLatticeIterative</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DnLatticeIterative</code>( <var class="Arg">tbl</var>, <var class="Arg">reducibles</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be an ordinary character table, and <var class="Arg">reducibles</var> either a list of virtual characters of <var class="Arg">tbl</var> or a record with components <code class="code">remainders</code> and <code class="code">norms</code>, for example a record returned by <code class="func">LLL</code> (<a href="chap72.html#X85B360C085B360C0"><span class="RefLink">72.10-4</span></a>).</p>

<p><code class="func">DnLatticeIterative</code> was designed for iterative use of <code class="func">DnLattice</code> (<a href="chap72.html#X85D510DC873A99B4"><span class="RefLink">72.10-8</span></a>). <code class="func">DnLatticeIterative</code> selects the vectors of norm <span class="SimpleMath">2</span> among the given virtual character, calls <code class="func">DnLattice</code> (<a href="chap72.html#X85D510DC873A99B4"><span class="RefLink">72.10-8</span></a>) for them, reduces the virtual characters with found irreducibles, calls <code class="func">DnLattice</code> (<a href="chap72.html#X85D510DC873A99B4"><span class="RefLink">72.10-8</span></a>) again for the remaining virtual characters, and so on, until no new irreducibles are found.</p>

<p><code class="func">DnLatticeIterative</code> returns a record with the same components and meaning of components as <code class="func">LLL</code> (<a href="chap72.html#X85B360C085B360C0"><span class="RefLink">72.10-4</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s4:= CharacterTable( "Symmetric", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">red:= [ [ 2, 0, 2, 2, 0 ], [ 4, 0, 0, 1, 2 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">           [ 5, -1, 1, -1, 1 ], [ -1, 1, 3, -1, -1 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">dn:= DnLatticeIterative( s4, red );</span>
rec(
  irreducibles :=
    [ Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
      Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ) ],
  norms := [  ], remainders := [  ] )
</pre></div>

<p><a id="X87ED98F385B00D34" name="X87ED98F385B00D34"></a></p>

<h4>72.11 <span class="Heading">Symmetrizations of Class Functions</span></h4>

<p><a id="X7E220413823330EC" name="X7E220413823330EC"></a></p>

<h5>72.11-1 Symmetrizations</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Symmetrizations</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">characters</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p><code class="func">Symmetrizations</code> returns the list of symmetrizations of the characters <var class="Arg">characters</var> of the ordinary character table <var class="Arg">tbl</var> with the ordinary irreducible characters of the symmetric group of degree <var class="Arg">n</var>; instead of the integer <var class="Arg">n</var>, the character table of the symmetric group can be entered.</p>

<p>The symmetrization <span class="SimpleMath">χ^[λ]</span> of the character <span class="SimpleMath">χ</span> of <var class="Arg">tbl</var> with the character <span class="SimpleMath">λ</span> of the symmetric group <span class="SimpleMath">S_n</span> of degree <span class="SimpleMath">n</span> is defined by</p>

<p class="pcenter">χ^[λ](g) = ( ∑_{ρ ∈ S_n} λ(ρ) ∏_{k=1}^n χ(g^k)^{a_k(ρ)} ) / n! ,</p>

<p>where <span class="SimpleMath">a_k(ρ)</span> is the number of cycles of length <span class="SimpleMath">k</span> in <span class="SimpleMath">ρ</span>.</p>

<p><em>Note</em> that the returned list may contain zero class functions, and duplicates are not deleted.</p>

<p>For special kinds of symmetrizations, see <code class="func">SymmetricParts</code> (<a href="chap72.html#X85CE68CA87CA383A"><span class="RefLink">72.11-2</span></a>), <code class="func">AntiSymmetricParts</code> (<a href="chap72.html#X8329E934829FE965"><span class="RefLink">72.11-3</span></a>), <code class="func">MinusCharacter</code> (<a href="chap73.html#X805B6C1C78AA5DB6"><span class="RefLink">73.6-5</span></a>) and <code class="func">OrthogonalComponents</code> (<a href="chap72.html#X78648E367C65B1F1"><span class="RefLink">72.11-6</span></a>), <code class="func">SymplecticComponents</code> (<a href="chap72.html#X788B9AA17DD9418C"><span class="RefLink">72.11-7</span></a>), <code class="func">ExteriorPower</code> (<a href="chap72.html#X87BA59597CA21B3E"><span class="RefLink">72.11-4</span></a>), <code class="func">SymmetricPower</code> (<a href="chap72.html#X855A7ECF80FCF0BA"><span class="RefLink">72.11-5</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Symmetrizations( Irr( tbl ){ [ 1 .. 3 ] }, 3 );</span>
[ VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ),
  VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ),
    [ 8, 0, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ),
    [ 8, 0, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ) ]
</pre></div>

<p><a id="X85CE68CA87CA383A" name="X85CE68CA87CA383A"></a></p>

<h5>72.11-2 SymmetricParts</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricParts</code>( <var class="Arg">tbl</var>, <var class="Arg">characters</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>is the list of symmetrizations of the characters <var class="Arg">characters</var> of the character table <var class="Arg">tbl</var> with the trivial character of the symmetric group of degree <var class="Arg">n</var> (see <code class="func">Symmetrizations</code> (<a href="chap72.html#X7E220413823330EC"><span class="RefLink">72.11-1</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SymmetricParts( tbl, Irr( tbl ), 3 );</span>
[ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 35, 3, 2, 0, 0 ] ) ]
</pre></div>

<p><a id="X8329E934829FE965" name="X8329E934829FE965"></a></p>

<h5>72.11-3 AntiSymmetricParts</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AntiSymmetricParts</code>( <var class="Arg">tbl</var>, <var class="Arg">characters</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>is the list of symmetrizations of the characters <var class="Arg">characters</var> of the character table <var class="Arg">tbl</var> with the sign character of the symmetric group of degree <var class="Arg">n</var> (see <code class="func">Symmetrizations</code> (<a href="chap72.html#X7E220413823330EC"><span class="RefLink">72.11-1</span></a>)).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AntiSymmetricParts( tbl, Irr( tbl ), 3 );</span>
[ VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ) ]
</pre></div>

<p><a id="X87BA59597CA21B3E" name="X87BA59597CA21B3E"></a></p>

<h5>72.11-4 ExteriorPower</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ExteriorPower</code>( <var class="Arg">chi</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>For a character <var class="Arg">chi</var> afforded by the module <span class="SimpleMath">V</span> and a positive integer <var class="Arg">n</var>, <code class="func">ExteriorPower</code> returns the class function that is afforded by the <var class="Arg">n</var>-th exterior power of <span class="SimpleMath">V</span>.</p>

<p>This exterior power is the symmetrization of <var class="Arg">chi</var> with the sign character of the symmetric group of degree <var class="Arg">n</var>, see also <code class="func">Symmetrizations</code> (<a href="chap72.html#X7E220413823330EC"><span class="RefLink">72.11-1</span></a>) and <code class="func">AntiSymmetricParts</code> (<a href="chap72.html#X8329E934829FE965"><span class="RefLink">72.11-3</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( t ), chi -&gt; ExteriorPower( chi, 3 ) );</span>
[ VirtualCharacter( CharacterTable( "A5" ), [ 0, 0, 0, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ) ]
</pre></div>

<p><a id="X855A7ECF80FCF0BA" name="X855A7ECF80FCF0BA"></a></p>

<h5>72.11-5 SymmetricPower</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricPower</code>( <var class="Arg">chi</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>For a character <var class="Arg">chi</var> afforded by the module <span class="SimpleMath">V</span> and a positive integer <var class="Arg">n</var>, <code class="func">SymmetricPower</code> returns the class function that is afforded by the <var class="Arg">n</var>-th symmetric power of <span class="SimpleMath">V</span>.</p>

<p>This symmetric power is the symmetrization of <var class="Arg">chi</var> with the trivial character of the symmetric group of degree <var class="Arg">n</var>, see also <code class="func">Symmetrizations</code> (<a href="chap72.html#X7E220413823330EC"><span class="RefLink">72.11-1</span></a>) and <code class="func">SymmetricParts</code> (<a href="chap72.html#X85CE68CA87CA383A"><span class="RefLink">72.11-2</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( t ), chi -&gt; SymmetricPower( chi, 3 ) );</span>
[ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 10, -2, 1, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
  Character( CharacterTable( "A5" ), [ 35, 3, 2, 0, 0 ] ) ]
</pre></div>

<p><a id="X78648E367C65B1F1" name="X78648E367C65B1F1"></a></p>

<h5>72.11-6 OrthogonalComponents</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrthogonalComponents</code>( <var class="Arg">tbl</var>, <var class="Arg">chars</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>If <span class="SimpleMath">χ</span> is a nonlinear character with indicator <span class="SimpleMath">+1</span>, a splitting of the tensor power <span class="SimpleMath">χ^m</span> is given by the so-called Murnaghan functions (see <a href="chapBib.html#biBMur58">[Mur58]</a>). These components in general have fewer irreducible constituents than the symmetrizations with the symmetric group of degree <var class="Arg">m</var> (see <code class="func">Symmetrizations</code> (<a href="chap72.html#X7E220413823330EC"><span class="RefLink">72.11-1</span></a>)).</p>

<p><code class="func">OrthogonalComponents</code> returns the Murnaghan components of the nonlinear characters of the character table <var class="Arg">tbl</var> in the list <var class="Arg">chars</var> up to the power <var class="Arg">m</var>, where <var class="Arg">m</var> is an integer between 2 and 6.</p>

<p>The Murnaghan functions are implemented as in <a href="chapBib.html#biBFra82">[Fra82]</a>.</p>

<p><em>Note</em>: If <var class="Arg">chars</var> is a list of character objects (see <code class="func">IsCharacter</code> (<a href="chap72.html#X7FE3CD08794051F8"><span class="RefLink">72.8-1</span></a>)) then also the result consists of class function objects. It is not checked whether all characters in <var class="Arg">chars</var> do really have indicator <span class="SimpleMath">+1</span>; if there are characters with indicator <span class="SimpleMath">0</span> or <span class="SimpleMath">-1</span>, the result might contain virtual characters (see also <code class="func">SymplecticComponents</code> (<a href="chap72.html#X788B9AA17DD9418C"><span class="RefLink">72.11-7</span></a>)), therefore the entries of the result do in general not know that they are characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A8" );;  chi:= Irr( tbl )[2];</span>
Character( CharacterTable( "A8" ), [ 7, -1, 3, 4, 1, -1, 1, 2, 0, -1,
  0, 0, -1, -1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrthogonalComponents( tbl, [ chi ], 3 );</span>
[ ClassFunction( CharacterTable( "A8" ),
    [ 21, -3, 1, 6, 0, 1, -1, 1, -2, 0, 0, 0, 1, 1 ] ),
  ClassFunction( CharacterTable( "A8" ),
    [ 27, 3, 7, 9, 0, -1, 1, 2, 1, 0, -1, -1, -1, -1 ] ),
  ClassFunction( CharacterTable( "A8" ),
    [ 105, 1, 5, 15, -3, 1, -1, 0, -1, 1, 0, 0, 0, 0 ] ),
  ClassFunction( CharacterTable( "A8" ),
    [ 35, 3, -5, 5, 2, -1, -1, 0, 1, 0, 0, 0, 0, 0 ] ),
  ClassFunction( CharacterTable( "A8" ),
    [ 77, -3, 13, 17, 2, 1, 1, 2, 1, 0, 0, 0, 2, 2 ] ) ]
</pre></div>

<p><a id="X788B9AA17DD9418C" name="X788B9AA17DD9418C"></a></p>

<h5>72.11-7 SymplecticComponents</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymplecticComponents</code>( <var class="Arg">tbl</var>, <var class="Arg">chars</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>If <span class="SimpleMath">χ</span> is a (nonlinear) character with indicator <span class="SimpleMath">-1</span>, a splitting of the tensor power <span class="SimpleMath">χ^m</span> is given in terms of the so-called Murnaghan functions (see <a href="chapBib.html#biBMur58">[Mur58]</a>). These components in general have fewer irreducible constituents than the symmetrizations with the symmetric group of degree <var class="Arg">m</var> (see <code class="func">Symmetrizations</code> (<a href="chap72.html#X7E220413823330EC"><span class="RefLink">72.11-1</span></a>)).</p>

<p><code class="func">SymplecticComponents</code> returns the symplectic symmetrizations of the nonlinear characters of the character table <var class="Arg">tbl</var> in the list <var class="Arg">chars</var> up to the power <var class="Arg">m</var>, where <var class="Arg">m</var> is an integer between <span class="SimpleMath">2</span> and <span class="SimpleMath">5</span>.</p>

<p><em>Note</em>: If <var class="Arg">chars</var> is a list of character objects (see <code class="func">IsCharacter</code> (<a href="chap72.html#X7FE3CD08794051F8"><span class="RefLink">72.8-1</span></a>)) then also the result consists of class function objects. It is not checked whether all characters in <var class="Arg">chars</var> do really have indicator <span class="SimpleMath">-1</span>; if there are characters with indicator <span class="SimpleMath">0</span> or <span class="SimpleMath">+1</span>, the result might contain virtual characters (see also <code class="func">OrthogonalComponents</code> (<a href="chap72.html#X78648E367C65B1F1"><span class="RefLink">72.11-6</span></a>)), therefore the entries of the result do in general not know that they are characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "U3(3)" );;  chi:= Irr( tbl )[2];</span>
Character( CharacterTable( "U3(3)" ),
[ 6, -2, -3, 0, -2, -2, 2, 1, -1, -1, 0, 0, 1, 1 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SymplecticComponents( tbl, [ chi ], 3 );</span>
[ ClassFunction( CharacterTable( "U3(3)" ),
    [ 14, -2, 5, -1, 2, 2, 2, 1, 0, 0, 0, 0, -1, -1 ] ),
  ClassFunction( CharacterTable( "U3(3)" ),
    [ 21, 5, 3, 0, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1 ] ),
  ClassFunction( CharacterTable( "U3(3)" ),
    [ 64, 0, -8, -2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 ] ),
  ClassFunction( CharacterTable( "U3(3)" ),
    [ 14, 6, -4, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2 ] ),
  ClassFunction( CharacterTable( "U3(3)" ),
    [ 56, -8, 2, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0 ] ) ]
</pre></div>

<p><a id="X87B86B427A88CD25" name="X87B86B427A88CD25"></a></p>

<h4>72.12 <span class="Heading">Molien Series</span></h4>

<p><a id="X7D7F94D2820B1177" name="X7D7F94D2820B1177"></a></p>

<h5>72.12-1 MolienSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MolienSeries</code>( [<var class="Arg">tbl</var>, ]<var class="Arg">psi</var>[, <var class="Arg">chi</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The <em>Molien series</em> of the character <span class="SimpleMath">ψ</span>, relative to the character <span class="SimpleMath">χ</span>, is the rational function given by the series <span class="SimpleMath">M_{ψ,χ}(z) = ∑_{d = 0}^∞ [χ,ψ^[d]] z^d</span>, where <span class="SimpleMath">ψ^[d]</span> denotes the symmetrization of <span class="SimpleMath">ψ</span> with the trivial character of the symmetric group <span class="SimpleMath">S_d</span> (see <code class="func">SymmetricParts</code> (<a href="chap72.html#X85CE68CA87CA383A"><span class="RefLink">72.11-2</span></a>)).</p>

<p><code class="func">MolienSeries</code> returns the Molien series of <var class="Arg">psi</var>, relative to <var class="Arg">chi</var>, where <var class="Arg">psi</var> and <var class="Arg">chi</var> must be characters of the same character table; this table must be entered as <var class="Arg">tbl</var> if <var class="Arg">chi</var> and <var class="Arg">psi</var> are only lists of character values. The default for <var class="Arg">chi</var> is the trivial character of <var class="Arg">tbl</var>.</p>

<p>The return value of <code class="func">MolienSeries</code> stores a value for the attribute <code class="func">MolienSeriesInfo</code> (<a href="chap72.html#X82AC06A880EAA0AB"><span class="RefLink">72.12-2</span></a>). This admits the computation of coefficients of the series with <code class="func">ValueMolienSeries</code> (<a href="chap72.html#X87083C4E7D11A02E"><span class="RefLink">72.12-3</span></a>). Furthermore, this attribute gives access to numerator and denominator of the Molien series viewed as rational function, where the denominator is a product of polynomials of the form <span class="SimpleMath">(1-z^r)^k</span>; the Molien series is also displayed in this form. Note that such a representation is not unique, one can use <code class="func">MolienSeriesWithGivenDenominator</code> (<a href="chap72.html#X86BAA3C487CE86D2"><span class="RefLink">72.12-4</span></a>) to obtain the series with a prescribed denominator.</p>

<p>For more information about Molien series, see <a href="chapBib.html#biBNPP84">[NPP84]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( AlternatingGroup( 5 ) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= First( Irr( t ), x -&gt; Degree( x ) = 3 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">mol:= MolienSeries( psi );</span>
( 1-z^2-z^3+z^6+z^7-z^9 ) / ( (1-z^5)*(1-z^3)*(1-z^2)^2 )
</pre></div>

<p><a id="X82AC06A880EAA0AB" name="X82AC06A880EAA0AB"></a></p>

<h5>72.12-2 MolienSeriesInfo</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MolienSeriesInfo</code>( <var class="Arg">ratfun</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>If the rational function <var class="Arg">ratfun</var> was constructed by <code class="func">MolienSeries</code> (<a href="chap72.html#X7D7F94D2820B1177"><span class="RefLink">72.12-1</span></a>), a representation as quotient of polynomials is known such that the denominator is a product of terms of the form <span class="SimpleMath">(1-z^r)^k</span>. This information is encoded as value of <code class="func">MolienSeriesInfo</code>. Additionally, there is a special <code class="func">PrintObj</code> (<a href="chap6.html#X815BF22186FD43C9"><span class="RefLink">6.3-5</span></a>) method for Molien series based on this.</p>

<p><code class="func">MolienSeriesInfo</code> returns a record that describes the rational function <var class="Arg">ratfun</var> as a Molien series. The components of this record are</p>


<dl>
<dt><strong class="Mark"><code class="code">numer</code></strong></dt>
<dd><p>numerator of <var class="Arg">ratfun</var> (in general a multiple of the numerator one gets by <code class="func">NumeratorOfRationalFunction</code> (<a href="chap66.html#X7D7D2667803D8D8A"><span class="RefLink">66.4-2</span></a>)),</p>

</dd>
<dt><strong class="Mark"><code class="code">denom</code></strong></dt>
<dd><p>denominator of <var class="Arg">ratfun</var> (in general a multiple of the denominator one gets by <code class="func">NumeratorOfRationalFunction</code> (<a href="chap66.html#X7D7D2667803D8D8A"><span class="RefLink">66.4-2</span></a>)),</p>

</dd>
<dt><strong class="Mark"><code class="code">ratfun</code></strong></dt>
<dd><p>the rational function <var class="Arg">ratfun</var> itself,</p>

</dd>
<dt><strong class="Mark"><code class="code">numerstring</code></strong></dt>
<dd><p>string corresponding to the polynomial <code class="code">numer</code>, expressed in terms of <code class="code">z</code>,</p>

</dd>
<dt><strong class="Mark"><code class="code">denomstring</code></strong></dt>
<dd><p>string corresponding to the polynomial <code class="code">denom</code>, expressed in terms of <code class="code">z</code>,</p>

</dd>
<dt><strong class="Mark"><code class="code">denominfo</code></strong></dt>
<dd><p>a list of the form <span class="SimpleMath">[ [ r_1, k_1 ], ..., [ r_n, k_n ] ]</span> such that <code class="code">denom</code> is <span class="SimpleMath">∏_{i = 1}^n (1-z^{r_i})^{k_i}</span>.</p>

</dd>
<dt><strong class="Mark"><code class="code">summands</code></strong></dt>
<dd><p>a list of records, each with the components <code class="code">numer</code>, <code class="code">r</code>, and <code class="code">k</code>, describing the summand <code class="code">numer</code><span class="SimpleMath">/ (1-z^r)^k</span>,</p>

</dd>
<dt><strong class="Mark"><code class="code">pol</code></strong></dt>
<dd><p>a list of coefficients, describing a final polynomial which is added to those described by <code class="code">summands</code>,</p>

</dd>
<dt><strong class="Mark"><code class="code">size</code></strong></dt>
<dd><p>the order of the underlying matrix group,</p>

</dd>
<dt><strong class="Mark"><code class="code">degree</code></strong></dt>
<dd><p>the degree of the underlying matrix representation.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HasMolienSeriesInfo( mol );</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MolienSeriesInfo( mol );</span>
rec( degree := 3,
  denom := x_1^12-2*x_1^10-x_1^9+x_1^8+x_1^7+x_1^5+x_1^4-x_1^3-2*x_1^2\
+1, denominfo := [ 5, 1, 3, 1, 2, 2 ],
  denomstring := "(1-z^5)*(1-z^3)*(1-z^2)^2",
  numer := -x_1^9+x_1^7+x_1^6-x_1^3-x_1^2+1,
  numerstring := "1-z^2-z^3+z^6+z^7-z^9", pol := [  ],
  ratfun := ( 1-z^2-z^3+z^6+z^7-z^9 ) / ( (1-z^5)*(1-z^3)*(1-z^2)^2 ),
  size := 60,
  summands := [ rec( k := 1, numer := [ -24, -12, -24 ], r := 5 ),
      rec( k := 1, numer := [ -20 ], r := 3 ),
      rec( k := 2, numer := [ -45/4, 75/4, -15/4, -15/4 ], r := 2 ),
      rec( k := 3, numer := [ -1 ], r := 1 ),
      rec( k := 1, numer := [ -15/4 ], r := 1 ) ] )
</pre></div>

<p><a id="X87083C4E7D11A02E" name="X87083C4E7D11A02E"></a></p>

<h5>72.12-3 ValueMolienSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ValueMolienSeries</code>( <var class="Arg">molser</var>, <var class="Arg">i</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>is the <var class="Arg">i</var>-th coefficient of the Molien series <var class="Arg">series</var> computed by <code class="func">MolienSeries</code> (<a href="chap72.html#X7D7F94D2820B1177"><span class="RefLink">72.12-1</span></a>).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( [ 0 .. 20 ], i -&gt; ValueMolienSeries( mol, i ) );</span>
[ 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1, 7 ]
</pre></div>

<p><a id="X86BAA3C487CE86D2" name="X86BAA3C487CE86D2"></a></p>

<h5>72.12-4 MolienSeriesWithGivenDenominator</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MolienSeriesWithGivenDenominator</code>( <var class="Arg">molser</var>, <var class="Arg">list</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>is a Molien series equal to <var class="Arg">molser</var> as rational function, but viewed as quotient with denominator <span class="SimpleMath">∏_{i = 1}^n (1-z^{r_i})</span>, where <span class="SimpleMath"><var class="Arg">list</var> = [ r_1, r_2, ..., r_n ]</span>. If <var class="Arg">molser</var> cannot be represented this way, <code class="keyw">fail</code> is returned.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">MolienSeriesWithGivenDenominator( mol, [ 2, 6, 10 ] );</span>
( 1+z^15 ) / ( (1-z^10)*(1-z^6)*(1-z^2) )
</pre></div>

<p><a id="X7D6336857E6BDF46" name="X7D6336857E6BDF46"></a></p>

<h4>72.13 <span class="Heading">Possible Permutation Characters</span></h4>

<p>For groups <span class="SimpleMath">H</span> and <span class="SimpleMath">G</span> with <span class="SimpleMath">H ≤ G</span>, the induced character <span class="SimpleMath">(1_G)^H</span> is called the <em>permutation character</em> of the operation of <span class="SimpleMath">G</span> on the right cosets of <span class="SimpleMath">H</span>. If only the character table of <span class="SimpleMath">G</span> is available and not the group <span class="SimpleMath">G</span> itself, one can try to get information about possible subgroups of <span class="SimpleMath">G</span> by inspection of those <span class="SimpleMath">G</span>-class functions that might be permutation characters, using that such a class function <span class="SimpleMath">π</span> must have at least the following properties. (For details, see <a href="chapBib.html#biBIsa76">[Isa76, Theorem 5.18.]</a>),</p>


<dl>
<dt><strong class="Mark">(a)</strong></dt>
<dd><p><span class="SimpleMath">π</span> is a character of <span class="SimpleMath">G</span>,</p>

</dd>
<dt><strong class="Mark">(b)</strong></dt>
<dd><p><span class="SimpleMath">π(g)</span> is a nonnegative integer for all <span class="SimpleMath">g ∈ G</span>,</p>

</dd>
<dt><strong class="Mark">(c)</strong></dt>
<dd><p><span class="SimpleMath">π(1)</span> divides <span class="SimpleMath">|G|</span>,</p>

</dd>
<dt><strong class="Mark">(d)</strong></dt>
<dd><p><span class="SimpleMath">π(g^n) ≥ π(g)</span> for <span class="SimpleMath">g ∈ G</span> and integers <span class="SimpleMath">n</span>,</p>

</dd>
<dt><strong class="Mark">(e)</strong></dt>
<dd><p><span class="SimpleMath">[π, 1_G] = 1</span>,</p>

</dd>
<dt><strong class="Mark">(f)</strong></dt>
<dd><p>the multiplicity of any rational irreducible <span class="SimpleMath">G</span>-character <span class="SimpleMath">ψ</span> as a constituent of <span class="SimpleMath">π</span> is at most <span class="SimpleMath">ψ(1)/[ψ, ψ]</span>,</p>

</dd>
<dt><strong class="Mark">(g)</strong></dt>
<dd><p><span class="SimpleMath">π(g) = 0</span> if the order of <span class="SimpleMath">g</span> does not divide <span class="SimpleMath">|G|/π(1)</span>,</p>

</dd>
<dt><strong class="Mark">(h)</strong></dt>
<dd><p><span class="SimpleMath">π(1) |N_G(g)|</span> divides <span class="SimpleMath">π(g) |G|</span> for all <span class="SimpleMath">g ∈ G</span>,</p>

</dd>
<dt><strong class="Mark">(i)</strong></dt>
<dd><p><span class="SimpleMath">π(g) ≤ (|G| - π(1)) / (|g^G| |Gal_G(g)|)</span> for all nonidentity <span class="SimpleMath">g ∈ G</span>, where <span class="SimpleMath">|Gal_G(g)|</span> denotes the number of conjugacy classes of <span class="SimpleMath">G</span> that contain generators of the group <span class="SimpleMath">⟨ g ⟩</span>,</p>

</dd>
<dt><strong class="Mark">(j)</strong></dt>
<dd><p>if <span class="SimpleMath">p</span> is a prime that divides <span class="SimpleMath">|G|/π(1)</span> only once then <span class="SimpleMath">s/(p-1)</span> divides <span class="SimpleMath">|G|/π(1)</span> and is congruent to <span class="SimpleMath">1</span> modulo <span class="SimpleMath">p</span>, where <span class="SimpleMath">s</span> is the number of elements of order <span class="SimpleMath">p</span> in the (hypothetical) subgroup <span class="SimpleMath">H</span> for which <span class="SimpleMath">π = (1_H)^G</span> holds. (Note that <span class="SimpleMath">s/(p-1)</span> equals the number of Sylow <span class="SimpleMath">p</span> subgroups in <span class="SimpleMath">H</span>.)</p>

</dd>
</dl>
<p>Any <span class="SimpleMath">G</span>-class function with these properties is called a <em>possible permutation character</em> in <strong class="pkg">GAP</strong>.</p>

<p>(Condition (d) is checked only for those power maps that are stored in the character table of <span class="SimpleMath">G</span>; clearly (d) holds for all integers if it holds for all prime divisors of the group order <span class="SimpleMath">|G|</span>.)</p>

<p><strong class="pkg">GAP</strong> provides some algorithms to compute possible permutation characters (see <code class="func">PermChars</code> (<a href="chap72.html#X7D02541482C196A6"><span class="RefLink">72.14-1</span></a>)), and also provides functions to check a few more criteria whether a given character can be a transitive permutation character (see <code class="func">TestPerm1</code> (<a href="chap72.html#X8127771D7EAB6EA7"><span class="RefLink">72.14-2</span></a>)).</p>

<p>Some information about the subgroup <span class="SimpleMath">U</span> can be computed from the permutation character <span class="SimpleMath">(1_U)^G</span> using <code class="func">PermCharInfo</code> (<a href="chap72.html#X8477004C7A31D28C"><span class="RefLink">72.13-1</span></a>).</p>

<p><a id="X8477004C7A31D28C" name="X8477004C7A31D28C"></a></p>

<h5>72.13-1 PermCharInfo</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermCharInfo</code>( <var class="Arg">tbl</var>, <var class="Arg">permchars</var>[, <var class="Arg">format</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be the ordinary character table of the group <span class="SimpleMath">G</span>, and <var class="Arg">permchars</var> either the permutation character <span class="SimpleMath">(1_U)^G</span>, for a subgroup <span class="SimpleMath">U</span> of <span class="SimpleMath">G</span>, or a list of such permutation characters. <code class="func">PermCharInfo</code> returns a record with the following components.</p>


<dl>
<dt><strong class="Mark"><code class="code">contained</code>:</strong></dt>
<dd><p>a list containing, for each character <span class="SimpleMath">ψ = (1_U)^G</span> in <var class="Arg">permchars</var>, a list containing at position <span class="SimpleMath">i</span> the number <span class="SimpleMath">ψ[i] |U| /</span> <code class="code">SizesCentralizers( </code><var class="Arg">tbl</var><code class="code"> )</code><span class="SimpleMath">[i]</span>, which equals the number of those elements of <span class="SimpleMath">U</span> that are contained in class <span class="SimpleMath">i</span> of <var class="Arg">tbl</var>,</p>

</dd>
<dt><strong class="Mark"><code class="code">bound</code>:</strong></dt>
<dd><p>a list containing, for each character <span class="SimpleMath">ψ = (1_U)^G</span> in <var class="Arg">permchars</var>, a list containing at position <span class="SimpleMath">i</span> the number <span class="SimpleMath">|U| / gcd( |U|,</span> <code class="code">SizesCentralizers( <var class="Arg">tbl</var> )</code><span class="SimpleMath">[i] )</span>, which divides the class length in <span class="SimpleMath">U</span> of an element in class <span class="SimpleMath">i</span> of <var class="Arg">tbl</var>,</p>

</dd>
<dt><strong class="Mark"><code class="code">display</code>:</strong></dt>
<dd><p>a record that can be used as second argument of <code class="func">Display</code> (<a href="chap6.html#X83A5C59278E13248"><span class="RefLink">6.3-6</span></a>) to display each permutation character in <var class="Arg">permchars</var> and the corresponding components <code class="code">contained</code> and <code class="code">bound</code>, for those classes where at least one character of <var class="Arg">permchars</var> is nonzero,</p>

</dd>
<dt><strong class="Mark"><code class="code">ATLAS</code>:</strong></dt>
<dd><p>a list of strings describing the decomposition of the permutation characters in <var class="Arg">permchars</var> into the irreducible characters of <var class="Arg">tbl</var>, given in an <strong class="pkg">Atlas</strong>-like notation. This means that the irreducible constituents are indicated by their degrees followed by lower case letters <code class="code">a</code>, <code class="code">b</code>, <code class="code">c</code>, <span class="SimpleMath">...</span>, which indicate the successive irreducible characters of <var class="Arg">tbl</var> of that degree, in the order in which they appear in <code class="code">Irr( </code><var class="Arg">tbl</var><code class="code"> )</code>. A sequence of small letters (not necessarily distinct) after a single number indicates a sum of irreducible constituents all of the same degree, an exponent <var class="Arg">n</var> for the letter <var class="Arg">lett</var> means that <var class="Arg">lett</var> is repeated <var class="Arg">n</var> times. The default notation for exponentiation is <code class="code"><var class="Arg">lett</var>^{<var class="Arg">n</var>}</code>, this is also chosen if the optional third argument <var class="Arg">format</var> is the string <code class="code">"LaTeX"</code>; if the third argument is the string <code class="code">"HTML"</code> then exponentiation is denoted by <code class="code"><var class="Arg">lett</var>&lt;sup&gt;<var class="Arg">n</var>&lt;/sup&gt;</code>.</p>

</dd>
</dl>

<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A6" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= Sum( Irr( t ){ [ 1, 3, 6 ] } );</span>
Character( CharacterTable( "A6" ), [ 15, 3, 0, 3, 1, 0, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= PermCharInfo( t, psi );</span>
rec( ATLAS := [ "1a+5b+9a" ], bound := [ [ 1, 3, 8, 8, 6, 24, 24 ] ],
  contained := [ [ 1, 9, 0, 8, 6, 0, 0 ] ],
  display :=
    rec(
      chars := [ [ 15, 3, 0, 3, 1, 0, 0 ], [ 1, 9, 0, 8, 6, 0, 0 ],
          [ 1, 3, 8, 8, 6, 24, 24 ] ], classes := [ 1, 2, 4, 5 ],
      letter := "I" ) )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display( t, info.display );</span>
A6

     2  3  3  .  2
     3  2  .  2  .
     5  1  .  .  .

       1a 2a 3b 4a
    2P 1a 1a 3b 2a
    3P 1a 2a 1a 4a
    5P 1a 2a 3b 4a

I.1    15  3  3  1
I.2     1  9  8  6
I.3     1  3  8  6
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">j1:= CharacterTable( "J1" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:= TrivialCharacter( CharacterTable( "7:6" ) )^j1;</span>
Character( CharacterTable( "J1" ), [ 4180, 20, 10, 0, 0, 2, 1, 0, 0,
  0, 0, 0, 0, 0, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermCharInfo( j1, psi ).ATLAS;</span>
[ "1a+56aabb+76aaab+77aabbcc+120aaabbbccc+133a^{4}bbcc+209a^{5}" ]
</pre></div>

<p><a id="X7A8CB0298730D808" name="X7A8CB0298730D808"></a></p>

<h5>72.13-2 PermCharInfoRelative</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermCharInfoRelative</code>( <var class="Arg">tbl</var>, <var class="Arg">tbl2</var>, <var class="Arg">permchars</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> and <var class="Arg">tbl2</var> be the ordinary character tables of two groups <span class="SimpleMath">H</span> and <span class="SimpleMath">G</span>, respectively, where <span class="SimpleMath">H</span> is of index two in <span class="SimpleMath">G</span>, and <var class="Arg">permchars</var> either the permutation character <span class="SimpleMath">(1_U)^G</span>, for a subgroup <span class="SimpleMath">U</span> of <span class="SimpleMath">G</span>, or a list of such permutation characters. <code class="func">PermCharInfoRelative</code> returns a record with the same components as <code class="func">PermCharInfo</code> (<a href="chap72.html#X8477004C7A31D28C"><span class="RefLink">72.13-1</span></a>), the only exception is that the entries of the <code class="code">ATLAS</code> component are names relative to <var class="Arg">tbl</var>.</p>

<p>More precisely, the <span class="SimpleMath">i</span>-th entry of the <code class="code">ATLAS</code> component is a string describing the decomposition of the <span class="SimpleMath">i</span>-th entry in <var class="Arg">permchars</var>. The degrees and distinguishing letters of the constituents refer to the irreducibles of <var class="Arg">tbl</var>, as follows. The two irreducible characters of <var class="Arg">tbl2</var> of degree <span class="SimpleMath">N</span> that extend the irreducible character <span class="SimpleMath">N</span> <code class="code">a</code> of <var class="Arg">tbl</var> are denoted by <span class="SimpleMath">N</span> <code class="code">a</code><span class="SimpleMath">^+</span> and <span class="SimpleMath">N</span><code class="code">a</code><span class="SimpleMath">^-</span>. The irreducible character of <var class="Arg">tbl2</var> of degree <span class="SimpleMath">2N</span> whose restriction to <var class="Arg">tbl</var> is the sum of the irreducible characters <span class="SimpleMath">N</span> <code class="code">a</code> and <span class="SimpleMath">N</span> <code class="code">b</code> is denoted as <span class="SimpleMath">N</span> <code class="code">ab</code>. Multiplicities larger than <span class="SimpleMath">1</span> of constituents are denoted by exponents.</p>

<p>(This format is useful mainly for multiplicity free permutation characters.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t2:= CharacterTable( "A5.2" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( t2 ), x -&gt; x[1] );</span>
[ 1, 1, 6, 4, 4, 5, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( Irr( t ), x -&gt; x[1] );</span>
[ 1, 3, 3, 4, 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">permchars:= List( [ [1], [1,2], [1,7], [1,3,4,4,6,6,7] ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                     l -&gt; Sum( Irr( t2 ){ l } ) );</span>
[ Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 6, 2, 0, 1, 0, 2, 0 ] ),
  Character( CharacterTable( "A5.2" ), [ 30, 2, 0, 0, 6, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info:= PermCharInfoRelative( t, t2, permchars );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">info.ATLAS;</span>
[ "1a^+", "1a^{\\pm}", "1a^++5a^-",
  "1a^++3ab+4(a^+)^{2}+5a^+a^{\\pm}" ]
</pre></div>

<p><a id="X8330FDCE83D3DED3" name="X8330FDCE83D3DED3"></a></p>

<h4>72.14 <span class="Heading">Computing Possible Permutation Characters</span></h4>

<p><a id="X7D02541482C196A6" name="X7D02541482C196A6"></a></p>

<h5>72.14-1 PermChars</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermChars</code>( <var class="Arg">tbl</var>[, <var class="Arg">cond</var>] )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><strong class="pkg">GAP</strong> provides several algorithms to determine possible permutation characters from a given character table. They are described in detail in <a href="chapBib.html#biBBP98">[BP98]</a>. The algorithm is selected from the choice of the optional argument <var class="Arg">cond</var>. The user is encouraged to try different approaches, especially if one choice fails to come to an end.</p>

<p>Regardless of the algorithm used in a specific case, <code class="func">PermChars</code> returns a list of <em>all</em> possible permutation characters with the properties described by <var class="Arg">cond</var>. There is no guarantee that a character of this list is in fact a permutation character. But an empty list always means there is no permutation character with these properties (e.g., of a certain degree).</p>

<p>Called with only one argument, a character table <var class="Arg">tbl</var>, <code class="func">PermChars</code> returns the list of all possible permutation characters of the group with this character table. This list might be rather long for big groups, and its computation might take much time. The algorithm is described in <a href="chapBib.html#biBBP98">[BP98, Section 3.2]</a>; it depends on a preprocessing step, where the inequalities arising from the condition <span class="SimpleMath">π(g) ≥ 0</span> are transformed into a system of inequalities that guides the search (see <code class="func">Inequalities</code> (<a href="chap72.html#X866942167802E036"><span class="RefLink">72.14-5</span></a>)). So the following commands compute the list of 39 possible permutation characters of the Mathieu group <span class="SimpleMath">M_11</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">m11:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetName( m11, "m11" );</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">perms:= PermChars( m11 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length( perms );</span>
39
</pre></div>

<p>There are two different search strategies for this algorithm. The default strategy simply constructs all characters with nonnegative values and then tests for each such character whether its degree is a divisor of the order of the group. The other strategy uses the inequalities to predict whether a character of a certain degree can lie in the currently searched part of the search tree. To choose this strategy, enter a record as the second argument of <code class="func">PermChars</code>, and set its component <code class="code">degree</code> to the range of degrees (which might also be a range containing all divisors of the group order) you want to look for; additionally, the record component <code class="code">ineq</code> can take the inequalities computed by <code class="func">Inequalities</code> (<a href="chap72.html#X866942167802E036"><span class="RefLink">72.14-5</span></a>) if they are needed more than once.</p>

<p>If a positive integer is given as the second argument <var class="Arg">cond</var>, <code class="func">PermChars</code> returns the list of all possible permutation characters of <var class="Arg">tbl</var> that have degree <var class="Arg">cond</var>. For that purpose, a preprocessing step is performed where essentially the rational character table is inverted in order to determine boundary points for the simplex in which the possible permutation characters of the given degree must lie (see <code class="func">PermBounds</code> (<a href="chap72.html#X879D2A127BE366A5"><span class="RefLink">72.14-3</span></a>)). The algorithm is described at the end of <a href="chapBib.html#biBBP98">[BP98, Section 3.2]</a>. Note that inverting big integer matrices needs a lot of time and space. So this preprocessing is restricted to groups with less than 100 classes, say.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">deg220:= PermChars( m11, 220 );</span>
[ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ),
  Character( m11, [ 220, 12, 4, 4, 0, 0, 0, 0, 0, 0 ] ),
  Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ) ]
</pre></div>

<p>If a record is given as the second argument <var class="Arg">cond</var>, <code class="func">PermChars</code> returns the list of all possible permutation characters that have the properties described by the components of this record. One such situation has been mentioned above. If <var class="Arg">cond</var> contains a degree as value of the record component <code class="code">degree</code> then <code class="func">PermChars</code> will behave exactly as if this degree was entered as <var class="Arg">cond</var>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">deg220 = PermChars( m11, rec( degree:= 220 ) );</span>
true
</pre></div>

<p>For the meaning of additional components of <var class="Arg">cond</var> besides <code class="code">degree</code>, see <code class="func">PermComb</code> (<a href="chap72.html#X7F11AFB783352903"><span class="RefLink">72.14-4</span></a>).</p>

<p>Instead of <code class="code">degree</code>, <var class="Arg">cond</var> may have the component <code class="code">torso</code> bound to a list that contains some known values of the required characters at the right positions; at least the degree <var class="Arg">cond</var><code class="code">.torso[1]</code> must be an integer. In this case, the algorithm described in <a href="chapBib.html#biBBP98">[BP98, Section 3.3]</a> is chosen. The component <code class="code">chars</code>, if present, holds a list of all those <em>rational</em> irreducible characters of <var class="Arg">tbl</var> that might be constituents of the required characters.</p>

<p>(<em>Note</em>: If <var class="Arg">cond</var><code class="code">.chars</code> is bound and does not contain <em>all</em> rational irreducible characters of <var class="Arg">tbl</var>, <strong class="pkg">GAP</strong> checks whether the scalar products of all class functions in the result list with the omitted rational irreducible characters of <var class="Arg">tbl</var> are nonnegative; so there should be nontrivial reasons for excluding a character that is known to be not a constituent of the desired possible permutation characters.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermChars( m11, rec( torso:= [ 220 ] ) );</span>
[ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ),
  Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ),
  Character( m11, [ 220, 12, 4, 4, 0, 0, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermChars( m11, rec( torso:= [ 220,,,,, 2 ] ) );</span>
[ Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ) ]
</pre></div>

<p>An additional restriction on the possible permutation characters computed can be forced if <var class="Arg">con</var> contains, in addition to <code class="code">torso</code>, the components <code class="code">normalsubgroup</code> and <code class="code">nonfaithful</code>, with values a list of class positions of a normal subgroup <span class="SimpleMath">N</span> of the group <span class="SimpleMath">G</span> of <var class="Arg">tbl</var> and a possible permutation character <span class="SimpleMath">π</span> of <span class="SimpleMath">G</span>, respectively, such that <span class="SimpleMath">N</span> is contained in the kernel of <span class="SimpleMath">π</span>. In this case, <code class="func">PermChars</code> returns the list of those possible permutation characters <span class="SimpleMath">ψ</span> of <var class="Arg">tbl</var> coinciding with <code class="code">torso</code> wherever its values are bound and having the property that no irreducible constituent of <span class="SimpleMath">ψ - π</span> has <span class="SimpleMath">N</span> in its kernel. If the component <code class="code">chars</code> is bound in <var class="Arg">cond</var> then the above statements apply. An interpretation of the computed characters is the following. Suppose there exists a subgroup <span class="SimpleMath">V</span> of <span class="SimpleMath">G</span> such that <span class="SimpleMath">π = (1_V)^G</span>; Then <span class="SimpleMath">N ≤ V</span>, and if a computed character is of the form <span class="SimpleMath">(1_U)^G</span>, for a subgroup <span class="SimpleMath">U</span> of <span class="SimpleMath">G</span>, then <span class="SimpleMath">V = UN</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">s4:= CharacterTable( "Symmetric", 4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">nsg:= ClassPositionsOfDerivedSubgroup( s4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= TrivialCharacter( s4 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermChars( s4, rec( torso:= [ 12 ], normalsubgroup:= nsg,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       nonfaithful:= pi ) );</span>
[ Character( CharacterTable( "Sym(4)" ), [ 12, 2, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:= Sum( Filtered( Irr( s4 ),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">             chi -&gt; IsSubset( ClassPositionsOfKernel( chi ), nsg ) ) );</span>
Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, 2, 0 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermChars( s4, rec( torso:= [ 12 ], normalsubgroup:= nsg,</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">                       nonfaithful:= pi ) );</span>
[ Character( CharacterTable( "Sym(4)" ), [ 12, 0, 4, 0, 0 ] ) ]
</pre></div>

<p>The class functions returned by <code class="func">PermChars</code> have the properties tested by <code class="func">TestPerm1</code> (<a href="chap72.html#X8127771D7EAB6EA7"><span class="RefLink">72.14-2</span></a>), <code class="func">TestPerm2</code> (<a href="chap72.html#X8127771D7EAB6EA7"><span class="RefLink">72.14-2</span></a>), and <code class="func">TestPerm3</code> (<a href="chap72.html#X8127771D7EAB6EA7"><span class="RefLink">72.14-2</span></a>). So they are possible permutation characters. See <code class="func">TestPerm1</code> (<a href="chap72.html#X8127771D7EAB6EA7"><span class="RefLink">72.14-2</span></a>) for criteria whether a possible permutation character can in fact be a permutation character.</p>

<p><a id="X8127771D7EAB6EA7" name="X8127771D7EAB6EA7"></a></p>

<h5>72.14-2 <span class="Heading">TestPerm1, ..., TestPerm5</span></h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TestPerm1</code>( <var class="Arg">tbl</var>, <var class="Arg">char</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TestPerm2</code>( <var class="Arg">tbl</var>, <var class="Arg">char</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TestPerm3</code>( <var class="Arg">tbl</var>, <var class="Arg">chars</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TestPerm4</code>( <var class="Arg">tbl</var>, <var class="Arg">chars</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TestPerm5</code>( <var class="Arg">tbl</var>, <var class="Arg">chars</var>, <var class="Arg">modtbl</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>The first three of these functions implement tests of the properties of possible permutation characters listed in Section <a href="chap72.html#X7D6336857E6BDF46"><span class="RefLink">72.13</span></a>, The other two implement test of additional properties. Let <var class="Arg">tbl</var> be the ordinary character table of a group <span class="SimpleMath">G</span>, <var class="Arg">char</var> a rational character of <var class="Arg">tbl</var>, and <var class="Arg">chars</var> a list of rational characters of <var class="Arg">tbl</var>. For applying <code class="func">TestPerm5</code>, the knowledge of a <span class="SimpleMath">p</span>-modular Brauer table <var class="Arg">modtbl</var> of <span class="SimpleMath">G</span> is required. <code class="func">TestPerm4</code> and <code class="func">TestPerm5</code> expect the characters in <var class="Arg">chars</var> to satisfy the conditions checked by <code class="func">TestPerm1</code> and <code class="func">TestPerm2</code> (see below).</p>

<p>The return values of the functions were chosen parallel to the tests listed in <a href="chapBib.html#biBNPP84">[NPP84]</a>.</p>

<p><code class="func">TestPerm1</code> return <code class="code">1</code> or <code class="code">2</code> if <var class="Arg">char</var> fails because of (T1) or (T2), respectively; this corresponds to the criteria (b) and (d). Note that only those power maps are considered that are stored on <var class="Arg">tbl</var>. If <var class="Arg">char</var> satisfies the conditions, <code class="code">0</code> is returned.</p>

<p><code class="func">TestPerm2</code> returns <code class="code">1</code> if <var class="Arg">char</var> fails because of the criterion (c), it returns <code class="code">3</code>, <code class="code">4</code>, or <code class="code">5</code> if <var class="Arg">char</var> fails because of (T3), (T4), or (T5), respectively; these tests correspond to (g), a weaker form of (h), and (j). If <var class="Arg">char</var> satisfies the conditions, <code class="code">0</code> is returned.</p>

<p><code class="func">TestPerm3</code> returns the list of all those class functions in the list <var class="Arg">chars</var> that satisfy criterion (h); this is a stronger version of (T6).</p>

<p><code class="func">TestPerm4</code> returns the list of all those class functions in the list <var class="Arg">chars</var> that satisfy (T8) and (T9) for each prime divisor <span class="SimpleMath">p</span> of the order of <span class="SimpleMath">G</span>; these tests use modular representation theory but do not require the knowledge of decomposition matrices (cf. <code class="func">TestPerm5</code> below).</p>

<p>(T8) implements the test of the fact that in the case that <span class="SimpleMath">p</span> divides <span class="SimpleMath">|G|</span> and the degree of a transitive permutation character <span class="SimpleMath">π</span> exactly once, the projective cover of the trivial character is a summand of <span class="SimpleMath">π</span>. (This test is omitted if the projective cover cannot be identified.)</p>

<p>Given a permutation character <span class="SimpleMath">π</span> of a group <span class="SimpleMath">G</span> and a prime integer <span class="SimpleMath">p</span>, the restriction <span class="SimpleMath">π_B</span> to a <span class="SimpleMath">p</span>-block <span class="SimpleMath">B</span> of <span class="SimpleMath">G</span> has the following property, which is checked by (T9). For each <span class="SimpleMath">g ∈ G</span> such that <span class="SimpleMath">g^n</span> is a <span class="SimpleMath">p</span>-element of <span class="SimpleMath">G</span>, <span class="SimpleMath">π_B(g^n)</span> is a nonnegative integer that satisfies <span class="SimpleMath">|π_B(g)| ≤ π_B(g^n) ≤ π(g^n)</span>. (This is <a href="chapBib.html#biBSco73">[Sco73, Corollary A on p. 113]</a>.)</p>

<p><code class="func">TestPerm5</code> requires the <span class="SimpleMath">p</span>-modular Brauer table <var class="Arg">modtbl</var> of <span class="SimpleMath">G</span>, for some prime <span class="SimpleMath">p</span> dividing the order of <span class="SimpleMath">G</span>, and checks whether those characters in the list <var class="Arg">chars</var> whose degree is divisible by the <span class="SimpleMath">p</span>-part of the order of <span class="SimpleMath">G</span> can be decomposed into projective indecomposable characters; <code class="func">TestPerm5</code> returns the sublist of all those characters in <var class="Arg">chars</var> that either satisfy this condition or to which the test does not apply.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A5" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rat:= RationalizedMat( Irr( tbl ) );</span>
[ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 6, -2, 0, 1, 1 ] ),
  Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
  Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tup:= Filtered( Tuples( [ 0, 1 ], 4 ), x -&gt; not IsZero( x ) );</span>
[ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 1, 1 ], [ 0, 1, 0, 0 ],
  [ 0, 1, 0, 1 ], [ 0, 1, 1, 0 ], [ 0, 1, 1, 1 ], [ 1, 0, 0, 0 ],
  [ 1, 0, 0, 1 ], [ 1, 0, 1, 0 ], [ 1, 0, 1, 1 ], [ 1, 1, 0, 0 ],
  [ 1, 1, 0, 1 ], [ 1, 1, 1, 0 ], [ 1, 1, 1, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">lincomb:= List( tup, coeff -&gt; coeff * rat );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( lincomb, psi -&gt; TestPerm1( tbl, psi ) );</span>
[ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( lincomb, psi -&gt; TestPerm2( tbl, psi ) );</span>
[ 0, 5, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Set( TestPerm3(tbl, lincomb), x -&gt; Position(lincomb, x) );</span>
[ 1, 4, 6, 7, 8, 9, 10, 11, 13 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "A7" );</span>
CharacterTable( "A7" )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">perms:= PermChars( tbl, rec( degree:= 315 ) );</span>
[ Character( CharacterTable( "A7" ), [ 315, 3, 0, 0, 3, 0, 0, 0, 0 ] )
    , Character( CharacterTable( "A7" ),
    [ 315, 15, 0, 0, 1, 0, 0, 0, 0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TestPerm4( tbl, perms );</span>
[ Character( CharacterTable( "A7" ), [ 315, 15, 0, 0, 1, 0, 0, 0, 0
     ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">perms:= PermChars( tbl, rec( degree:= 15 ) );</span>
[ Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
  Character( CharacterTable( "A7" ), [ 15, 3, 3, 0, 1, 0, 3, 1, 1 ] )
 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TestPerm5( tbl, perms, tbl mod 5 );</span>
[ Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] )
 ]
</pre></div>

<p><a id="X879D2A127BE366A5" name="X879D2A127BE366A5"></a></p>

<h5>72.14-3 PermBounds</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermBounds</code>( <var class="Arg">tbl</var>, <var class="Arg">d</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be the ordinary character table of the group <span class="SimpleMath">G</span>. All <span class="SimpleMath">G</span>-characters <span class="SimpleMath">π</span> satisfying <span class="SimpleMath">π(g) &gt; 0</span> and <span class="SimpleMath">π(1) = <var class="Arg">d</var></span>, for a given degree <var class="Arg">d</var>, lie in a simplex described by these conditions. <code class="func">PermBounds</code> computes the boundary points of this simplex for <span class="SimpleMath">d = 0</span>, from which the boundary points for any other <var class="Arg">d</var> are easily derived. (Some conditions from the power maps of <var class="Arg">tbl</var> are also involved.) For this purpose, a matrix similar to the rational character table of <span class="SimpleMath">G</span> has to be inverted. These boundary points are used by <code class="func">PermChars</code> (<a href="chap72.html#X7D02541482C196A6"><span class="RefLink">72.14-1</span></a>) to construct all possible permutation characters (see <a href="chap72.html#X7D6336857E6BDF46"><span class="RefLink">72.13</span></a>) of a given degree. <code class="func">PermChars</code> (<a href="chap72.html#X7D02541482C196A6"><span class="RefLink">72.14-1</span></a>) either calls <code class="func">PermBounds</code> or takes this information from the <code class="code">bounds</code> component of its argument record.</p>

<p><a id="X7F11AFB783352903" name="X7F11AFB783352903"></a></p>

<h5>72.14-4 PermComb</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PermComb</code>( <var class="Arg">tbl</var>, <var class="Arg">arec</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p><code class="func">PermComb</code> computes possible permutation characters of the character table <var class="Arg">tbl</var> by the improved combinatorial approach described at the end of <a href="chapBib.html#biBBP98">[BP98, Section 3.2]</a>.</p>

<p>For computing the possible linear combinations <em>without</em> prescribing better bounds (i.e., when the computation of bounds shall be suppressed), enter</p>

<p><code class="code"><var class="Arg">arec</var>:= rec( degree := <var class="Arg">degree</var>, bounds := false )</code>,</p>

<p>where <var class="Arg">degree</var> is the character degree; this is useful if the multiplicities are expected to be small, and if this is forced by high irreducible degrees.</p>

<p>A list of upper bounds on the multiplicities of the rational irreducibles characters can be explicitly prescribed as a <code class="code">maxmult</code> component in <var class="Arg">arec</var>.</p>

<p><a id="X866942167802E036" name="X866942167802E036"></a></p>

<h5>72.14-5 Inequalities</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Inequalities</code>( <var class="Arg">tbl</var>, <var class="Arg">chars</var>[, <var class="Arg">option</var>] )</td><td class="tdright">(&nbsp;operation&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">tbl</var> be the ordinary character table of a group <span class="SimpleMath">G</span>. The condition <span class="SimpleMath">π(g) ≥ 0</span> for every possible permutation character <span class="SimpleMath">π</span> of <span class="SimpleMath">G</span> places restrictions on the multiplicities <span class="SimpleMath">a_i</span> of the irreducible constituents <span class="SimpleMath">χ_i</span> of <span class="SimpleMath">π = ∑_{i = 1}^r a_i χ_i</span>. For every element <span class="SimpleMath">g ∈ G</span>, we have <span class="SimpleMath">∑_{i = 1}^r a_i χ_i(g) ≥ 0</span>. The power maps provide even stronger conditions.</p>

<p>This system of inequalities is kind of diagonalized, resulting in a system of inequalities restricting <span class="SimpleMath">a_i</span> in terms of <span class="SimpleMath">a_j</span>, <span class="SimpleMath">j &lt; i</span>. These inequalities are used to construct characters with nonnegative values (see <code class="func">PermChars</code> (<a href="chap72.html#X7D02541482C196A6"><span class="RefLink">72.14-1</span></a>)). <code class="func">PermChars</code> (<a href="chap72.html#X7D02541482C196A6"><span class="RefLink">72.14-1</span></a>) either calls <code class="func">Inequalities</code> or takes this information from the <code class="code">ineq</code> component of its argument record.</p>

<p>The number of inequalities arising in the process of diagonalization may grow very strongly.</p>

<p>There are two ways to organize the projection. The first, which is chosen if no <var class="Arg">option</var> argument is present, is the straight approach which takes the rational irreducible characters in their original order and by this guarantees the character with the smallest degree to be considered first. The other way, which is chosen if the string <code class="code">"small"</code> is entered as third argument <var class="Arg">option</var>, tries to keep the number of intermediate inequalities small by eventually changing the order of characters.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tbl:= CharacterTable( "M11" );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermComb( tbl, rec( degree:= 110 ) );</span>
[ Character( CharacterTable( "M11" ),
    [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ),
  Character( CharacterTable( "M11" ),
    [ 110, 6, 2, 6, 0, 0, 0, 0, 0, 0 ] ),
  Character( CharacterTable( "M11" ), [ 110, 14, 2, 2, 0, 2, 0, 0, 0,
      0 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"># Now compute only multiplicity free permutation characters.</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bounds:= List( RationalizedMat( Irr( tbl ) ), x -&gt; 1 );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PermComb( tbl, rec( degree:= 110, maxmult:= bounds ) );</span>
[ Character( CharacterTable( "M11" ),
    [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ]
</pre></div>

<p><a id="X8204FB9F847340C8" name="X8204FB9F847340C8"></a></p>

<h4>72.15 <span class="Heading">Operations for Brauer Characters</span></h4>

<p><a id="X79BACBC47B4C413E" name="X79BACBC47B4C413E"></a></p>

<h5>72.15-1 FrobeniusCharacterValue</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FrobeniusCharacterValue</code>( <var class="Arg">value</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Let <var class="Arg">value</var> be a cyclotomic whose coefficients over the rationals are in the ring <span class="SimpleMath">ℤ_<var class="Arg">p</var></span> of <var class="Arg">p</var>-local numbers, where <var class="Arg">p</var> is a prime integer. Assume that <var class="Arg">value</var> lies in <span class="SimpleMath">ℤ_<var class="Arg">p</var>[ζ]</span> for <span class="SimpleMath">ζ = exp(<var class="Arg">p</var>^n-1)</span>, for some positive integer <span class="SimpleMath">n</span>.</p>

<p><code class="func">FrobeniusCharacterValue</code> returns the image of <var class="Arg">value</var> under the ring homomorphism from <span class="SimpleMath">ℤ_<var class="Arg">p</var>[ζ]</span> to the field with <span class="SimpleMath"><var class="Arg">p</var>^n</span> elements that is defined with the help of Conway polynomials (see <code class="func">ConwayPolynomial</code> (<a href="chap59.html#X7C2425A786F09054"><span class="RefLink">59.5-1</span></a>)), more information can be found in <a href="chapBib.html#biBJLPW95">[JLPW95, Sections 2-5]</a>.</p>

<p>If <var class="Arg">value</var> is a Brauer character value in characteristic <var class="Arg">p</var> then the result can be described as the corresponding value of the Frobenius character, that is, as the trace of a representing matrix with the given Brauer character value.</p>

<p>If the result of <code class="func">FrobeniusCharacterValue</code> cannot be expressed as an element of a finite field in <strong class="pkg">GAP</strong> (see Chapter <a href="chap59.html#X7893ABF67A028802"><span class="RefLink">59</span></a>) then <code class="func">FrobeniusCharacterValue</code> returns <code class="keyw">fail</code>.</p>

<p>If the Conway polynomial of degree <span class="SimpleMath">n</span> is required for the computation then it is computed only if <code class="func">IsCheapConwayPolynomial</code> (<a href="chap59.html#X78A7C1247E129AD9"><span class="RefLink">59.5-2</span></a>) returns <code class="keyw">true</code> when it is called with <var class="Arg">p</var> and <span class="SimpleMath">n</span>, otherwise <code class="keyw">fail</code> is returned.</p>

<p><a id="X8304B68E84511685" name="X8304B68E84511685"></a></p>

<h5>72.15-2 BrauerCharacterValue</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BrauerCharacterValue</code>( <var class="Arg">mat</var> )</td><td class="tdright">(&nbsp;attribute&nbsp;)</td></tr></table></div>
<p>For an invertible matrix <var class="Arg">mat</var> over a finite field <span class="SimpleMath">F</span>, <code class="func">BrauerCharacterValue</code> returns the Brauer character value of <var class="Arg">mat</var> if the order of <var class="Arg">mat</var> is coprime to the characteristic of <span class="SimpleMath">F</span>, and <code class="keyw">fail</code> otherwise.</p>

<p>The <em>Brauer character value</em> of a matrix is the sum of complex lifts of its eigenvalues.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:= SL(2,4);;           # 2-dim. irreducible representation of A5</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ccl:= ConjugacyClasses( g );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rep:= List( ccl, Representative );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( rep, Order );</span>
[ 1, 2, 5, 5, 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:= List( rep, BrauerCharacterValue );</span>
[ 2, fail, E(5)^2+E(5)^3, E(5)+E(5)^4, -1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( phi{ [ 1, 3, 4, 5 ] }, x -&gt; FrobeniusCharacterValue( x, 2 ) );</span>
[ 0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( rep{ [ 1, 3, 4, 5 ] }, TraceMat );</span>
[ 0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0 ]
</pre></div>

<p><a id="X8038FA0480B78243" name="X8038FA0480B78243"></a></p>

<h5>72.15-3 SizeOfFieldOfDefinition</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SizeOfFieldOfDefinition</code>( <var class="Arg">val</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>For a cyclotomic or a list of cyclotomics <var class="Arg">val</var>, and a prime integer <var class="Arg">p</var>, <code class="func">SizeOfFieldOfDefinition</code> returns the size of the smallest finite field in characteristic <var class="Arg">p</var> that contains the <var class="Arg">p</var>-modular reduction of <var class="Arg">val</var> if this can be determined, and <code class="keyw">fail</code> otherwise.</p>

<p>The latter happens if <var class="Arg">val</var> is not closed under Galois conjugacy and if the <var class="Arg">p</var>-modular reduction of some value cannot be determined via the function <code class="func">FrobeniusCharacterValue</code> (<a href="chap72.html#X79BACBC47B4C413E"><span class="RefLink">72.15-1</span></a>). Note that the reduction map is defined as in <a href="chapBib.html#biBJLPW95">[JLPW95]</a>, that is, the complex <span class="SimpleMath">(<var class="Arg">p</var>^d-1)</span>-th root of unity <span class="SimpleMath">exp(<var class="Arg">p</var>^d-1)</span> is mapped to the residue class of the indeterminate, modulo the ideal spanned by the Conway polynomial (see <code class="func">ConwayPolynomial</code> (<a href="chap59.html#X7C2425A786F09054"><span class="RefLink">59.5-1</span></a>)) of degree <span class="SimpleMath">d</span> over the field with <span class="SimpleMath">p</span> elements.</p>

<p>If <var class="Arg">val</var> is closed under Galois conjugacy then the result can be determined without explicitly computing the <var class="Arg">p</var>-modular reduction of <var class="Arg">val</var>. This happens for example if <var class="Arg">val</var> is a Brauer character.</p>

<p>If <var class="Arg">val</var> is an irreducible Brauer character then the value returned is the size of the smallest finite field in characteristic <var class="Arg">p</var> over which the corresponding representation lives.</p>

<p><a id="X782400277F6316A4" name="X782400277F6316A4"></a></p>

<h5>72.15-4 RealizableBrauerCharacters</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RealizableBrauerCharacters</code>( <var class="Arg">matrix</var>, <var class="Arg">q</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>For a list <var class="Arg">matrix</var> of absolutely irreducible Brauer characters in characteristic <span class="SimpleMath">p</span>, and a power <var class="Arg">q</var> of <span class="SimpleMath">p</span>, <code class="func">RealizableBrauerCharacters</code> returns a duplicate-free list of sums of Frobenius conjugates of the rows of <var class="Arg">matrix</var>, each irreducible over the field with <var class="Arg">q</var> elements.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">irr:= Irr( CharacterTable( "A5" ) mod 2 );</span>
[ Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] ),
  Character( BrauerTable( "A5", 2 ),
    [ 2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3 ] ),
  Character( BrauerTable( "A5", 2 ),
    [ 2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4 ] ),
  Character( BrauerTable( "A5", 2 ), [ 4, 1, -1, -1 ] ) ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List( irr, phi -&gt; SizeOfFieldOfDefinition( phi, 2 ) );</span>
[ 2, 4, 4, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RealizableBrauerCharacters( irr, 2 );</span>
[ Character( BrauerTable( "A5", 2 ), [ 1, 1, 1, 1 ] ),
  ClassFunction( BrauerTable( "A5", 2 ), [ 4, -2, -1, -1 ] ),
  Character( BrauerTable( "A5", 2 ), [ 4, 1, -1, -1 ] ) ]
</pre></div>

<p><a id="X7FEEDC0981A22850" name="X7FEEDC0981A22850"></a></p>

<h4>72.16 <span class="Heading">Domains Generated by Class Functions</span></h4>

<p><strong class="pkg">GAP</strong> supports groups, vector spaces, and algebras generated by class functions.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap71.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap73.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chap41.html">41</a>  <a href="chap42.html">42</a>  <a href="chap43.html">43</a>  <a href="chap44.html">44</a>  <a href="chap45.html">45</a>  <a href="chap46.html">46</a>  <a href="chap47.html">47</a>  <a href="chap48.html">48</a>  <a href="chap49.html">49</a>  <a href="chap50.html">50</a>  <a href="chap51.html">51</a>  <a href="chap52.html">52</a>  <a href="chap53.html">53</a>  <a href="chap54.html">54</a>  <a href="chap55.html">55</a>  <a href="chap56.html">56</a>  <a href="chap57.html">57</a>  <a href="chap58.html">58</a>  <a href="chap59.html">59</a>  <a href="chap60.html">60</a>  <a href="chap61.html">61</a>  <a href="chap62.html">62</a>  <a href="chap63.html">63</a>  <a href="chap64.html">64</a>  <a href="chap65.html">65</a>  <a href="chap66.html">66</a>  <a href="chap67.html">67</a>  <a href="chap68.html">68</a>  <a href="chap69.html">69</a>  <a href="chap70.html">70</a>  <a href="chap71.html">71</a>  <a href="chap72.html">72</a>  <a href="chap73.html">73</a>  <a href="chap74.html">74</a>  <a href="chap75.html">75</a>  <a href="chap76.html">76</a>  <a href="chap77.html">77</a>  <a href="chap78.html">78</a>  <a href="chap79.html">79</a>  <a href="chap80.html">80</a>  <a href="chap81.html">81</a>  <a href="chap82.html">82</a>  <a href="chap83.html">83</a>  <a href="chap84.html">84</a>  <a href="chap85.html">85</a>  <a href="chap86.html">86</a>  <a href="chap87.html">87</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>