File: fields.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (103 lines) | stat: -rw-r--r-- 2,885 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A  fields.xml                   GAP documentation              Thomas Breuer -->
<!-- %% -->
<!-- %% -->
<!-- %Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y  Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Fields and Division Rings">
<Heading>Fields and Division Rings</Heading>

<#Include Label="[1]{field}">


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Generating Fields">
<Heading>Generating Fields</Heading>

<#Include Label="IsDivisionRing">
<#Include Label="IsField">
<#Include Label="Field">
<#Include Label="DefaultField">
<#Include Label="DefaultFieldByGenerators">
<#Include Label="GeneratorsOfDivisionRing">
<#Include Label="GeneratorsOfField">
<#Include Label="DivisionRingByGenerators">
<#Include Label="AsDivisionRing">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subfields of Fields">
<Heading>Subfields of Fields</Heading>

<#Include Label="Subfield">
<#Include Label="FieldOverItselfByGenerators">
<#Include Label="PrimitiveElement">
<#Include Label="PrimeField">
<#Include Label="IsPrimeField">
<#Include Label="DegreeOverPrimeField">
<#Include Label="DefiningPolynomial">
<#Include Label="RootOfDefiningPolynomial">
<#Include Label="FieldExtension">
<#Include Label="Subfields">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Galois Action">
<Heading>Galois Action</Heading>

<#Include Label="[2]{field}">
<P/>
<#Include Label="[3]{field}">

<Index Key="IsFieldControlledByGaloisGroup"><C>IsFieldControlledByGaloisGroup</C></Index>
<#Include Label="GaloisGroup:field">

<ManSection>
<Oper Name="MinimalPolynomial" Arg='F, z[, ind]' Label="over a field"/>

<Description>
returns the minimal polynomial of <A>z</A> over the field <A>F</A>.
This is a generator of the ideal in <M><A>F</A>[x]</M> of all polynomials
which vanish on <A>z</A>.
(This definition is consistent with the general definition of
<Ref Oper="MinimalPolynomial"/> for rings.)
<P/>
<Example><![CDATA[
gap> MinimalPolynomial( Rationals, E(8) );
x_1^4+1
gap> MinimalPolynomial( CF(4), E(8) );
x_1^2+(-E(4))
gap> MinimalPolynomial( CF(8), E(8) );
x_1+(-E(8))
]]></Example>
</Description>
</ManSection>


<#Include Label="TracePolynomial">
<#Include Label="Norm">
<#Include Label="Trace">
<#Include Label="Conjugates">
<#Include Label="NormalBase">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- <Section Label="Field Homomorphisms"> -->
<!-- <Heading>Field Homomorphisms</Heading> -->
<!-- </Section> -->

</Chapter>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->