File: fldabnum.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (210 lines) | stat: -rw-r--r-- 7,012 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A  fldabnum.xml                 GAP documentation              Thomas Breuer -->
<!-- %% -->
<!-- %% -->
<!-- %Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y  Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Abelian Number Fields">
<Heading>Abelian Number Fields</Heading>

<#Include Label="[1]{fldabnum}">


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Construction of Abelian Number Fields">
<Heading>Construction of Abelian Number Fields</Heading>

Besides the usual construction using
<Ref Func="Field" Label="for several generators"/> or
<Ref Func="DefaultField" Label="for cyclotomics"/>
(see&nbsp;<Ref Func="DefaultField" Label="for cyclotomics"/>),
abelian number fields consisting of cyclotomics can be created with
<Ref Func="CyclotomicField" Label="for (subfield and) conductor"/>
and <Ref Func="AbelianNumberField"/>.

<#Include Label="CyclotomicField">
<#Include Label="AbelianNumberField">
<#Include Label="GaussianRationals">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Operations for Abelian Number Fields">
<Heading>Operations for Abelian Number Fields</Heading>

For operations for elements of abelian number fields, e.g.,
<Ref Attr="Conductor" Label="for a cyclotomic"/> or
<Ref Attr="ComplexConjugate"/>,
see Chapter&nbsp;<Ref Chap="Cyclotomic Numbers"/>.

<ManSection>
<Meth Name="Factors" Arg='F'
 Label="for polynomials over abelian number fields"/>

<Description>
Factoring of polynomials over abelian number fields consisting of cyclotomics
works in principle but is not very efficient if the degree of the field
extension is large.
<P/>
<Example><![CDATA[
gap> x:= Indeterminate( CF(5) );
x_1
gap> Factors( PolynomialRing( Rationals ), x^5-1 );
[ x_1-1, x_1^4+x_1^3+x_1^2+x_1+1 ]
gap> Factors( PolynomialRing( CF(5) ), x^5-1 );
[ x_1-1, x_1+(-E(5)), x_1+(-E(5)^2), x_1+(-E(5)^3), x_1+(-E(5)^4) ]
]]></Example>
</Description>
</ManSection>

<#Include Label="IsNumberField">
<#Include Label="IsAbelianNumberField">
<#Include Label="IsCyclotomicField">
<#Include Label="GaloisStabilizer">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Integral Bases of Abelian Number Fields">
<Heading>Integral Bases of Abelian Number Fields</Heading>

<#Include Label="[2]{fldabnum}">
<#Include Label="ZumbroichBase">
<#Include Label="LenstraBase">
<!-- %T missing: <C>IsIntegralBasis</C>, <C>NormalBasis</C>, <C>IsNormalBasis</C>, -->
<!-- %T rings of integers in abelian number fields -->

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Galois Groups of Abelian Number Fields">
<Heading>Galois Groups of Abelian Number Fields</Heading>

<Index Subkey="Galois group">abelian number fields</Index>
<Index Subkey="Galois group">number fields</Index>
<Index Subkey="of number fields">automorphism group</Index>
The field automorphisms of the cyclotomic field <M>&QQ;_n</M>
(see Chapter&nbsp;<Ref Chap="Cyclotomic Numbers"/>)
are given by the linear maps <M>*k</M> on <M>&QQ;_n</M>
that are defined by <C>E</C><M>(n)^{{*k}} = </M><C>E</C><M>(n)^k</M>,
where <M>1 \leq k &lt; n</M> and <C>Gcd</C><M>( n, k ) = 1</M> hold
(see&nbsp;<Ref Oper="GaloisCyc" Label="for a cyclotomic"/>).
Note that this action is <E>not</E> equal to exponentiation of cyclotomics,
i.e., for general cyclotomics <M>z</M>, <M>z^{{*k}}</M> is different from
<M>z^k</M>.
<P/>
(In &GAP;, the image of a cyclotomic <M>z</M> under <M>*k</M> can be
computed as <C>GaloisCyc( </C><M>z, k</M><C> )</C>.)
<P/>
<Example><![CDATA[
gap> ( E(5) + E(5)^4 )^2; GaloisCyc( E(5) + E(5)^4, 2 );
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(5)^2+E(5)^3
]]></Example>
<P/>
For <C>Gcd</C><M>( n, k ) \neq 1</M>,
the map <C>E</C><M>(n) \mapsto</M> <C>E</C><M>(n)^k</M> does <E>not</E>
define a field automorphism of <M>&QQ;_n</M>
but only a <M>&QQ;</M>-linear map.
<P/>
<Example><![CDATA[
gap> GaloisCyc( E(5)+E(5)^4, 5 ); GaloisCyc( ( E(5)+E(5)^4 )^2, 5 );
2
-6
]]></Example>

<ManSection>
<Meth Name="GaloisGroup" Arg='F' Label="for abelian number fields"/>

<Description>
The Galois group <M>Gal( &QQ;_n, &QQ; )</M> of the field extension
<M>&QQ;_n / &QQ;</M> is isomorphic to the group
<M>(&ZZ; / n &ZZ;)^{*}</M>
of prime residues modulo <M>n</M>, via the isomorphism
<M>(&ZZ; / n &ZZ;)^{*} \rightarrow Gal( &QQ;_n, &QQ; )</M>
that is defined by
<M>k + n &ZZ; \mapsto ( z \mapsto z^{*k} )</M>.
<P/>
The Galois group of the field extension <M>&QQ;_n / L</M> with
any abelian number field <M>L \subseteq &QQ;_n</M> is simply the
factor group of <M>Gal( &QQ;_n, &QQ; )</M> modulo the stabilizer of <M>L</M>,
and the Galois group of <M>L / L'</M>, with <M>L'</M> an abelian
number field contained in <M>L</M>, is the subgroup in this group that stabilizes
<M>L'</M>.
These groups are easily described in terms of <M>(&ZZ; / n &ZZ;)^{*}</M>.
Generators of <M>(&ZZ; / n &ZZ;)^{*}</M> can be computed using
<Ref Func="GeneratorsPrimeResidues"/>.
<P/>
In &GAP;, a field extension <M>L / L'</M> is given by the field
object <M>L</M> with <Ref Attr="LeftActingDomain"/> value <M>L'</M>
(see&nbsp;<Ref Sect="Integral Bases of Abelian Number Fields"/>).
<P/>
<Example><![CDATA[
gap> f:= CF(15);
CF(15)
gap> g:= GaloisGroup( f );
<group with 2 generators>
gap> Size( g ); IsCyclic( g ); IsAbelian( g );
8
false
true
gap> Action( g, NormalBase( f ), OnPoints );
Group([ (1,6)(2,4)(3,8)(5,7), (1,4,3,7)(2,8,5,6) ])
]]></Example>
<P/>
The following example shows Galois groups of a cyclotomic field
and of a proper subfield that is not a cyclotomic field.
<P/>
<Example><![CDATA[
gap> gens1:= GeneratorsOfGroup( GaloisGroup( CF(5) ) );
[ ANFAutomorphism( CF(5), 2 ) ]
gap> gens2:= GeneratorsOfGroup( GaloisGroup( Field( Sqrt(5) ) ) );
[ ANFAutomorphism( NF(5,[ 1, 4 ]), 2 ) ]
gap> Order( gens1[1] );  Order( gens2[1] );
4
2
gap> Sqrt(5)^gens1[1] = Sqrt(5)^gens2[1];
true
]]></Example>
<P/>
The following example shows the Galois group of a cyclotomic field
over a non-cyclotomic field.
<P/>
<Example><![CDATA[
gap> g:= GaloisGroup( AsField( Field( [ Sqrt(5) ] ), CF(5) ) );
<group of size 2 with 1 generator>
gap> gens:= GeneratorsOfGroup( g );
[ ANFAutomorphism( AsField( NF(5,[ 1, 4 ]), CF(5) ), 4 ) ]
gap> x:= last[1];;  x^2;
IdentityMapping( AsField( NF(5,[ 1, 4 ]), CF(5) ) )
]]></Example>
</Description>
</ManSection>

<#Include Label="ANFAutomorphism">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Gaussians">
<Heading>Gaussians</Heading>

<#Include Label="GaussianIntegers">
<#Include Label="IsGaussianIntegers">

<!-- % Gcd and Euclidean... for the rings of integers in CF(4) and CF(3) ! -->

</Section>
</Chapter>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->