1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A fldabnum.xml GAP documentation Thomas Breuer -->
<!-- %% -->
<!-- %% -->
<!-- %Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Abelian Number Fields">
<Heading>Abelian Number Fields</Heading>
<#Include Label="[1]{fldabnum}">
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Construction of Abelian Number Fields">
<Heading>Construction of Abelian Number Fields</Heading>
Besides the usual construction using
<Ref Func="Field" Label="for several generators"/> or
<Ref Func="DefaultField" Label="for cyclotomics"/>
(see <Ref Func="DefaultField" Label="for cyclotomics"/>),
abelian number fields consisting of cyclotomics can be created with
<Ref Func="CyclotomicField" Label="for (subfield and) conductor"/>
and <Ref Func="AbelianNumberField"/>.
<#Include Label="CyclotomicField">
<#Include Label="AbelianNumberField">
<#Include Label="GaussianRationals">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Operations for Abelian Number Fields">
<Heading>Operations for Abelian Number Fields</Heading>
For operations for elements of abelian number fields, e.g.,
<Ref Attr="Conductor" Label="for a cyclotomic"/> or
<Ref Attr="ComplexConjugate"/>,
see Chapter <Ref Chap="Cyclotomic Numbers"/>.
<ManSection>
<Meth Name="Factors" Arg='F'
Label="for polynomials over abelian number fields"/>
<Description>
Factoring of polynomials over abelian number fields consisting of cyclotomics
works in principle but is not very efficient if the degree of the field
extension is large.
<P/>
<Example><![CDATA[
gap> x:= Indeterminate( CF(5) );
x_1
gap> Factors( PolynomialRing( Rationals ), x^5-1 );
[ x_1-1, x_1^4+x_1^3+x_1^2+x_1+1 ]
gap> Factors( PolynomialRing( CF(5) ), x^5-1 );
[ x_1-1, x_1+(-E(5)), x_1+(-E(5)^2), x_1+(-E(5)^3), x_1+(-E(5)^4) ]
]]></Example>
</Description>
</ManSection>
<#Include Label="IsNumberField">
<#Include Label="IsAbelianNumberField">
<#Include Label="IsCyclotomicField">
<#Include Label="GaloisStabilizer">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Integral Bases of Abelian Number Fields">
<Heading>Integral Bases of Abelian Number Fields</Heading>
<#Include Label="[2]{fldabnum}">
<#Include Label="ZumbroichBase">
<#Include Label="LenstraBase">
<!-- %T missing: <C>IsIntegralBasis</C>, <C>NormalBasis</C>, <C>IsNormalBasis</C>, -->
<!-- %T rings of integers in abelian number fields -->
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Galois Groups of Abelian Number Fields">
<Heading>Galois Groups of Abelian Number Fields</Heading>
<Index Subkey="Galois group">abelian number fields</Index>
<Index Subkey="Galois group">number fields</Index>
<Index Subkey="of number fields">automorphism group</Index>
The field automorphisms of the cyclotomic field <M>&QQ;_n</M>
(see Chapter <Ref Chap="Cyclotomic Numbers"/>)
are given by the linear maps <M>*k</M> on <M>&QQ;_n</M>
that are defined by <C>E</C><M>(n)^{{*k}} = </M><C>E</C><M>(n)^k</M>,
where <M>1 \leq k < n</M> and <C>Gcd</C><M>( n, k ) = 1</M> hold
(see <Ref Oper="GaloisCyc" Label="for a cyclotomic"/>).
Note that this action is <E>not</E> equal to exponentiation of cyclotomics,
i.e., for general cyclotomics <M>z</M>, <M>z^{{*k}}</M> is different from
<M>z^k</M>.
<P/>
(In &GAP;, the image of a cyclotomic <M>z</M> under <M>*k</M> can be
computed as <C>GaloisCyc( </C><M>z, k</M><C> )</C>.)
<P/>
<Example><![CDATA[
gap> ( E(5) + E(5)^4 )^2; GaloisCyc( E(5) + E(5)^4, 2 );
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(5)^2+E(5)^3
]]></Example>
<P/>
For <C>Gcd</C><M>( n, k ) \neq 1</M>,
the map <C>E</C><M>(n) \mapsto</M> <C>E</C><M>(n)^k</M> does <E>not</E>
define a field automorphism of <M>&QQ;_n</M>
but only a <M>&QQ;</M>-linear map.
<P/>
<Example><![CDATA[
gap> GaloisCyc( E(5)+E(5)^4, 5 ); GaloisCyc( ( E(5)+E(5)^4 )^2, 5 );
2
-6
]]></Example>
<ManSection>
<Meth Name="GaloisGroup" Arg='F' Label="for abelian number fields"/>
<Description>
The Galois group <M>Gal( &QQ;_n, &QQ; )</M> of the field extension
<M>&QQ;_n / &QQ;</M> is isomorphic to the group
<M>(&ZZ; / n &ZZ;)^{*}</M>
of prime residues modulo <M>n</M>, via the isomorphism
<M>(&ZZ; / n &ZZ;)^{*} \rightarrow Gal( &QQ;_n, &QQ; )</M>
that is defined by
<M>k + n &ZZ; \mapsto ( z \mapsto z^{*k} )</M>.
<P/>
The Galois group of the field extension <M>&QQ;_n / L</M> with
any abelian number field <M>L \subseteq &QQ;_n</M> is simply the
factor group of <M>Gal( &QQ;_n, &QQ; )</M> modulo the stabilizer of <M>L</M>,
and the Galois group of <M>L / L'</M>, with <M>L'</M> an abelian
number field contained in <M>L</M>, is the subgroup in this group that stabilizes
<M>L'</M>.
These groups are easily described in terms of <M>(&ZZ; / n &ZZ;)^{*}</M>.
Generators of <M>(&ZZ; / n &ZZ;)^{*}</M> can be computed using
<Ref Func="GeneratorsPrimeResidues"/>.
<P/>
In &GAP;, a field extension <M>L / L'</M> is given by the field
object <M>L</M> with <Ref Attr="LeftActingDomain"/> value <M>L'</M>
(see <Ref Sect="Integral Bases of Abelian Number Fields"/>).
<P/>
<Example><![CDATA[
gap> f:= CF(15);
CF(15)
gap> g:= GaloisGroup( f );
<group with 2 generators>
gap> Size( g ); IsCyclic( g ); IsAbelian( g );
8
false
true
gap> Action( g, NormalBase( f ), OnPoints );
Group([ (1,6)(2,4)(3,8)(5,7), (1,4,3,7)(2,8,5,6) ])
]]></Example>
<P/>
The following example shows Galois groups of a cyclotomic field
and of a proper subfield that is not a cyclotomic field.
<P/>
<Example><![CDATA[
gap> gens1:= GeneratorsOfGroup( GaloisGroup( CF(5) ) );
[ ANFAutomorphism( CF(5), 2 ) ]
gap> gens2:= GeneratorsOfGroup( GaloisGroup( Field( Sqrt(5) ) ) );
[ ANFAutomorphism( NF(5,[ 1, 4 ]), 2 ) ]
gap> Order( gens1[1] ); Order( gens2[1] );
4
2
gap> Sqrt(5)^gens1[1] = Sqrt(5)^gens2[1];
true
]]></Example>
<P/>
The following example shows the Galois group of a cyclotomic field
over a non-cyclotomic field.
<P/>
<Example><![CDATA[
gap> g:= GaloisGroup( AsField( Field( [ Sqrt(5) ] ), CF(5) ) );
<group of size 2 with 1 generator>
gap> gens:= GeneratorsOfGroup( g );
[ ANFAutomorphism( AsField( NF(5,[ 1, 4 ]), CF(5) ), 4 ) ]
gap> x:= last[1];; x^2;
IdentityMapping( AsField( NF(5,[ 1, 4 ]), CF(5) ) )
]]></Example>
</Description>
</ManSection>
<#Include Label="ANFAutomorphism">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Gaussians">
<Heading>Gaussians</Heading>
<#Include Label="GaussianIntegers">
<#Include Label="IsGaussianIntegers">
<!-- % Gcd and Euclidean... for the rings of integers in CF(4) and CF(3) ! -->
</Section>
</Chapter>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->
|