1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A groups.xml GAP documentation Alexander Hulpke -->
<!-- %% -->
<!-- %% -->
<!-- %Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Groups">
<Heading>Groups</Heading>
This chapter explains how to create groups and defines operations for
groups, that is operations whose definition does not depend on the
representation used.
However methods for these operations in most cases will make use of the
representation.
<P/>
If not otherwise specified, in all examples in this chapter the group <C>g</C>
will be the symmetric group <M>S_4</M> acting on the letters
<M>\{ 1, \ldots, 4 \}</M>.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Group Elements">
<Heading>Group Elements</Heading>
Groups in &GAP; are written multiplicatively.
The elements from which a group can be generated must permit
multiplication and multiplicative inversion
(see <Ref Sect="Useful Categories of Elements"/>).
<P/>
<Example><![CDATA[
gap> a:=(1,2,3);;b:=(2,3,4);;
gap> One(a);
()
gap> Inverse(b);
(2,4,3)
gap> a*b;
(1,3)(2,4)
gap> Order(a*b);
2
gap> Order( [ [ 1, 1 ], [ 0, 1 ] ] );
infinity
]]></Example>
<P/>
The next example may run into an infinite loop
because the given matrix in fact has infinite order.
<P/>
<Log><![CDATA[
gap> Order( [ [ 1, 1 ], [ 0, 1 ] ] * Indeterminate( Rationals ) );
#I Order: warning, order of <mat> might be infinite
]]></Log>
<P/>
<Index Subkey="of a group">order</Index>
Since groups are domains, the recommended command to compute the order
of a group is <Ref Attr="Size"/>.
For convenience, group orders can also be computed with <Ref Attr="Order"/>.
<P/>
The operation <Ref Oper="Comm"/> can be used to compute the commutator of
two elements, the operation <Ref Oper="LeftQuotient"/> computes the
product <M>x^{{-1}} y</M>.
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Creating Groups">
<Heading>Creating Groups</Heading>
When groups are created from generators,
this means that the generators must be elements that can be multiplied
and inverted (see also <Ref Sect="Constructing Domains"/>).
For creating a free group on a set of symbols,
see <Ref Func="FreeGroup" Label="for given rank"/>.
<#Include Label="Group">
<#Include Label="GroupByGenerators">
<#Include Label="GroupWithGenerators">
<#Include Label="GeneratorsOfGroup">
<#Include Label="AsGroup">
<#Include Label="ConjugateGroup">
<#Include Label="IsGroup">
<#Include Label="InfoGroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroups">
<Heading>Subgroups</Heading>
For the general concept of parents and subdomains,
see <Ref Sect="Parents"/> and <Ref Sect="Constructing Subdomains"/>.
More functions that construct certain subgroups can be found
in the sections <Ref Sect="Normal Structure"/>, <Ref Sect="Specific and Parametrized Subgroups"/>,
<Ref Sect="Sylow Subgroups and Hall Subgroups"/>,
and <Ref Sect="Subgroups characterized by prime powers"/>.
<P/>
<#Include Label="[2]{grp}">
<#Include Label="Subgroup">
<#Include Label="Index">
<#Include Label="IndexInWholeGroup">
<Example><![CDATA[
gap> freegp:=FreeGroup(1);;
gap> freesub:=Subgroup(freegp,[freegp.1^5]);;
gap> IndexInWholeGroup(freesub);
5
]]></Example>
<#Include Label="AsSubgroup">
<#Include Label="IsSubgroup">
<#Include Label="IsNormal">
<#Include Label="IsCharacteristicSubgroup">
<#Include Label="ConjugateSubgroup">
<#Include Label="ConjugateSubgroups">
<#Include Label="IsSubnormal">
<#Include Label="SubgroupByProperty">
<#Include Label="SubgroupShell">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Closures of (Sub)groups">
<Heading>Closures of (Sub)groups</Heading>
<#Include Label="ClosureGroup">
<#Include Label="ClosureGroupAddElm">
<#Include Label="ClosureGroupDefault">
<#Include Label="ClosureSubgroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Expressing Group Elements as Words in Generators">
<Heading>Expressing Group Elements as Words in Generators</Heading>
<Index>factorization</Index>
<Index Subkey="in generators">words</Index>
Using homomorphisms (see chapter <Ref Chap="Group Homomorphisms"/>) it is possible to
express group elements as words in given generators: Create a free group
(see <Ref Func="FreeGroup" Label="for given rank"/>)
on the correct number of generators and create a
homomorphism from this free group onto the group <A>G</A> in whose generators you
want to factorize. Then the preimage of an element of <A>G</A> is a word in the
free generators, that will map on this element again.
<P/>
<#Include Label="EpimorphismFromFreeGroup">
<!-- % randomization effect is now gone. -->
<#Include Label="Factorization">
<#Include Label="GrowthFunctionOfGroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Structure Descriptions">
<Heading>Structure Descriptions</Heading>
<#Include Label="StructureDescription">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Cosets">
<Heading>Cosets</Heading>
<Index>right cosets</Index>
<Index>coset</Index>
<#Include Label="RightCoset">
<#Include Label="RightCosets">
<#Include Label="CanonicalRightCosetElement">
<#Include Label="IsRightCoset">
<#Include Label="IsBiCoset">
<#Include Label="CosetDecomposition">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Transversals">
<Heading>Transversals</Heading>
<#Include Label="RightTransversal">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Double Cosets">
<Heading>Double Cosets</Heading>
<#Include Label="DoubleCoset">
<#Include Label="RepresentativesContainedRightCosets">
<#Include Label="DoubleCosets">
<#Include Label="IsDoubleCoset">
<#Include Label="DoubleCosetRepsAndSizes">
<#Include Label="InfoCoset">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Conjugacy Classes">
<Heading>Conjugacy Classes</Heading>
<#Include Label="ConjugacyClass">
<#Include Label="ConjugacyClasses:grp">
<#Include Label="ConjugacyClassesByRandomSearch">
<#Include Label="ConjugacyClassesByOrbits">
<#Include Label="NrConjugacyClasses">
<#Include Label="RationalClass">
<#Include Label="RationalClasses">
<#Include Label="GaloisGroup:clas">
<#Include Label="IsConjugate">
<#Include Label="NthRootsInGroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Normal Structure">
<Heading>Normal Structure</Heading>
For the operations
<Ref Oper="Centralizer" Label="for a magma and a submagma"/> and
<Ref Attr="Centre"/>, see Chapter <Ref Chap="Magmas"/>.
<Index>normalizer</Index>
<#Include Label="Normalizer">
<#Include Label="Core">
<#Include Label="PCore">
<#Include Label="NormalClosure">
<#Include Label="NormalIntersection">
<#Include Label="ComplementClassesRepresentatives">
<#Include Label="InfoComplement">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Specific and Parametrized Subgroups">
<Heading>Specific and Parametrized Subgroups</Heading>
The centre of a group (the subgroup of those elements that commute with all
other elements of the group) can be computed by the operation
<Ref Attr="Centre"/>.
<#Include Label="TrivialSubgroup">
<#Include Label="CommutatorSubgroup">
<#Include Label="DerivedSubgroup">
<#Include Label="CommutatorLength">
<#Include Label="FittingSubgroup">
<#Include Label="FrattiniSubgroup">
<#Include Label="PrefrattiniSubgroup">
<#Include Label="PerfectResiduum">
<#Include Label="SolvableRadical">
<#Include Label="Socle">
<#Include Label="SupersolvableResiduum">
<#Include Label="PRump">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Sylow Subgroups and Hall Subgroups">
<Heading>Sylow Subgroups and Hall Subgroups</Heading>
With respect to the following &GAP; functions,
please note that by theorems of P. Hall,
a group <M>G</M> is solvable if and only if one of the following conditions holds.
<Enum>
<Item>
For each prime <M>p</M> dividing the order of <M>G</M>,
there exists a <M>p</M>-complement (see <Ref Oper="SylowComplement"/>).
</Item>
<Item>
For each set <M>P</M> of primes dividing the order of <M>G</M>,
there exists a <M>P</M>-Hall subgroup (see <Ref Oper="HallSubgroup"/>).
</Item>
<Item>
<M>G</M> has a Sylow system (see <Ref Attr="SylowSystem"/>).
</Item>
<Item>
<M>G</M> has a complement system (see <Ref Attr="ComplementSystem"/>).
</Item>
</Enum>
<#Include Label="SylowSubgroup">
<#Include Label="SylowComplement">
<#Include Label="HallSubgroup">
<#Include Label="SylowSystem">
<#Include Label="ComplementSystem">
<#Include Label="HallSystem">
<!-- %% The methods for Sylow subgroups in polycyclic groups and for Hall -->
<!-- %% Systems are due to Bettina Eick. -->
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroups characterized by prime powers">
<Heading>Subgroups characterized by prime powers</Heading>
<#Include Label="Omega">
<#Include Label="Agemo">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Group Properties">
<Heading>Group Properties</Heading>
Some properties of groups can be defined not only for groups but also for
other structures.
For example, nilpotency and solvability make sense also for algebras.
Note that these names refer to different definitions for groups and
algebras, contrary to the situation with finiteness or commutativity.
In such cases, the name of the function for groups got a suffix <C>Group</C>
to distinguish different meanings for different structures.
<P/>
Some functions, such as <Ref Oper="IsPSolvable"/> and
<Ref Oper="IsPNilpotent"/>, although they are mathematical
properties, are not properties in the sense of &GAP;
(see <Ref Sect="Attributes"/> and <Ref Sect="Properties"/>),
as they depend on a parameter.
<#Include Label="IsCyclic">
<#Include Label="IsElementaryAbelian">
<#Include Label="IsNilpotentGroup">
<#Include Label="NilpotencyClassOfGroup">
<#Include Label="IsPerfectGroup">
<#Include Label="IsSolvableGroup">
<#Include Label="IsPolycyclicGroup">
<#Include Label="IsSupersolvableGroup">
<#Include Label="IsMonomialGroup">
<#Include Label="IsSimpleGroup">
<#Include Label="IsAlmostSimpleGroup">
<#Include Label="IsQuasisimpleGroup">
<#Include Label="IsomorphismTypeInfoFiniteSimpleGroup">
<#Include Label="SimpleGroup">
<#Include Label="SimpleGroupsIterator">
<#Include Label="SmallSimpleGroup">
<#Include Label="AllSmallNonabelianSimpleGroups">
<#Include Label="IsFinitelyGeneratedGroup">
<#Include Label="IsSubsetLocallyFiniteGroup">
<#Include Label="IsPGroup">
<#Include Label="IsPowerfulPGroup">
<#Include Label="IsRegularPGroup">
<#Include Label="PrimePGroup">
<#Include Label="PClassPGroup">
<#Include Label="RankPGroup">
<#Include Label="IsPSolvable">
<#Include Label="IsPNilpotent">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Numerical Group Attributes">
<Heading>Numerical Group Attributes</Heading>
This section gives only some examples of numerical group attributes, so
it should not serve as a collection of all numerical group attributes.
The manual contains more such attributes documented in this manual, for
example, <Ref Attr="NrConjugacyClasses"/>,
<Ref Attr="NilpotencyClassOfGroup"/> and others.
<P/>
Note also that some functions, such as <Ref Oper="EulerianFunction"/>,
are mathematical attributes, but not &GAP; attributes
(see <Ref Sect="Attributes"/>) as they are depending on a parameter.
<#Include Label="AbelianInvariants:grp">
<#Include Label="Exponent">
<#Include Label="EulerianFunction">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroup Series">
<Heading>Subgroup Series</Heading>
In group theory many subgroup series are considered,
and &GAP; provides commands to compute them.
In the following sections, there is always a series
<M>G = U_1 > U_2 > \cdots > U_m = \langle 1 \rangle</M> of subgroups considered.
A series also may stop without reaching <M>G</M> or <M>\langle 1 \rangle</M>.
<P/>
A series is called <E>subnormal</E> if every <M>U_{{i+1}}</M> is normal in
<M>U_i</M>.
<P/>
A series is called <E>normal</E> if every <M>U_i</M> is normal in <M>G</M>.
<P/>
A series of normal subgroups is called <E>central</E> if <M>U_i/U_{{i+1}}</M>
is central in <M>G / U_{{i+1}}</M>.
<P/>
We call a series <E>refinable</E> if intermediate subgroups can be added to
the series without destroying the properties of the series.
<P/>
<#Include Label="[1]{grp}">
<#Include Label="ChiefSeries">
<#Include Label="ChiefSeriesThrough">
<#Include Label="ChiefSeriesUnderAction">
<#Include Label="SubnormalSeries">
<#Include Label="CompositionSeries">
<#Include Label="DisplayCompositionSeries">
<#Include Label="DerivedSeriesOfGroup">
<#Include Label="DerivedLength">
<#Include Label="ElementaryAbelianSeries">
<#Include Label="InvariantElementaryAbelianSeries">
<#Include Label="LowerCentralSeriesOfGroup">
<#Include Label="UpperCentralSeriesOfGroup">
<#Include Label="PCentralSeries">
<#Include Label="JenningsSeries">
<#Include Label="DimensionsLoewyFactors">
<#Include Label="AscendingChain">
<#Include Label="IntermediateGroup">
<#Include Label="IntermediateSubgroups">
<#Include Label="StructuralSeriesOfGroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Factor Groups">
<Heading>Factor Groups</Heading>
<#Include Label="NaturalHomomorphismByNormalSubgroup">
<#Include Label="FactorGroup">
<#Include Label="CommutatorFactorGroup">
<#Include Label="MaximalAbelianQuotient">
<#Include Label="HasAbelianFactorGroup">
<#Include Label="HasElementaryAbelianFactorGroup">
<#Include Label="CentralizerModulo">
<!-- %% The code for factor groups is due to Alexander Hulpke and Heiko Theißen. -->
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Sets of Subgroups">
<Heading>Sets of Subgroups</Heading>
<#Include Label="ConjugacyClassSubgroups">
<#Include Label="IsConjugacyClassSubgroupsRep">
<#Include Label="ConjugacyClassesSubgroups">
<#Include Label="ConjugacyClassesMaximalSubgroups">
<#Include Label="MaximalSubgroupClassReps">
<#Include Label="LowIndexSubgroups">
<#Include Label="AllSubgroups">
<#Include Label="MaximalSubgroups">
<#Include Label="NormalSubgroups">
<#Include Label="MaximalNormalSubgroups">
<#Include Label="MinimalNormalSubgroups">
<#Include Label="CharacteristicSubgroups">
<!-- %% Bettina Eick designed and wrote the code for maximal subgroups of a solvable -->
<!-- %% group. The code for normal subgroups <Cite Key="Hulpke98"/> and for subgroups of a -->
<!-- %% solvable group is due to Alexander Hulpke. -->
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Subgroup Lattice">
<Heading>Subgroup Lattice</Heading>
<#Include Label="LatticeSubgroups">
<#Include Label="ClassElementLattice">
<#Include Label="DotFileLatticeSubgroups">
<#Include Label="MaximalSubgroupsLattice">
<#Include Label="MinimalSupergroupsLattice">
<#Include Label="LowLayerSubgroups">
<#Include Label="ContainedConjugates">
<#Include Label="ContainingConjugates">
<#Include Label="MinimalFaithfulPermutationDegree">
<#Include Label="RepresentativesPerfectSubgroups">
<#Include Label="ConjugacyClassesPerfectSubgroups">
<#Include Label="Zuppos">
<#Include Label="InfoLattice">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Specific Methods for Subgroup Lattice Computations">
<Heading>Specific Methods for Subgroup Lattice Computations</Heading>
<#Include Label="LatticeByCyclicExtension">
<#Include Label="InvariantSubgroupsElementaryAbelianGroup">
<#Include Label="SubgroupsSolvableGroup">
<#Include Label="SizeConsiderFunction">
<#Include Label="ExactSizeConsiderFunction">
<#Include Label="InfoPcSubgroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Special Generating Sets">
<Heading>Special Generating Sets</Heading>
<#Include Label="GeneratorsSmallest">
<#Include Label="LargestElementGroup">
<#Include Label="MinimalGeneratingSet">
<#Include Label="SmallGeneratingSet">
<#Include Label="IndependentGeneratorsOfAbelianGroup">
<#Include Label="IndependentGeneratorExponents">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="1-Cohomology">
<Heading>1-Cohomology</Heading>
<Index>one cohomology</Index>
<Index>cohomology</Index>
<Index>cocycles</Index>
Let <M>G</M> be a finite group and <M>M</M> an elementary abelian normal <M>p</M>-subgroup
of <M>G</M>. Then the group of 1-cocycles <M>Z^1( G/M, M )</M> is
defined as
<Display Mode="M">
Z^1(G/M, M) = \{ \gamma: G/M \rightarrow M \mid \forall g_1, g_2 \in G :
\gamma(g_1 M \cdot g_2 M )
= \gamma(g_1 M)^{{g_2}} \cdot \gamma(g_2 M) \}
</Display>
and is a <M>GF(p)</M>-vector space.
<P/>
The group of 1-coboundaries <M>B^1( G/M, M )</M> is defined as
<Display Mode="M">
B^1(G/M, M) = \{ \gamma : G/M \rightarrow M \mid \exists m \in M
\forall g \in G :
\gamma(gM) = (m^{{-1}})^g \cdot m \}
</Display>
It also is a <M>GF(p)</M>-vector space.
<P/>
Let <M>\alpha</M> be the isomorphism of <M>M</M> into a row vector space
<M>{\cal W}</M> and <M>(g_1, \ldots, g_l)</M> representatives for a
generating set of <M>G/M</M>.
Then there exists a monomorphism <M>\beta</M> of <M>Z^1( G/M, M )</M> in the
<M>l</M>-fold direct sum of <M>{\cal W}</M>,
such that
<M>\beta( \gamma ) = ( \alpha( \gamma(g_1 M) ),\ldots, \alpha( \gamma(g_l M) ) )</M>
for every <M>\gamma \in Z^1( G/M, M )</M>.
<#Include Label="OneCocycles">
<#Include Label="OneCoboundaries">
<#Include Label="OCOneCocycles">
<#Include Label="ComplementClassesRepresentativesEA">
<#Include Label="InfoCoh">
<!-- %% The computation of the 1-Cohomology follows <Cite Key="CNW90"/> and was implemented -->
<!-- %% by Frank Celler and Alexander Hulpke. -->
<!-- % </Section>
<Section Label="AutomorphisGroups and Testing Isomorphism">
<Heading>AutomorphisGroups and Testing Isomorphism</Heading> -->
<!-- %T Is dealt with in section on group homomorphisms! -->
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Schur Covers and Multipliers">
<Heading>Schur Covers and Multipliers</Heading>
Additional attributes and properties of a group can be derived
from computing its Schur cover.
For example, if <M>G</M> is a finitely presented group, the
derived subgroup of a Schur cover of <M>G</M> is invariant and isomorphic to
the <Ref Oper="NonabelianExteriorSquare"/> value of <M>G</M>,
see <Cite Key="BJR87"/>.
<Index Subkey="see EpimorphismSchurCover">Darstellungsgruppe</Index>
<#Include Label="EpimorphismSchurCover">
<#Include Label="SchurCover">
<#Include Label="AbelianInvariantsMultiplier">
<#Include Label="Epicentre">
<#Include Label="NonabelianExteriorSquare">
<#Include Label="EpimorphismNonabelianExteriorSquare">
<#Include Label="IsCentralFactor">
<#Include Label="{SchurCoversOfSymmetricGroup}">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="2-Cohomology">
<Heading>2-Cohomology</Heading>
<#Include Label="TwoCohomologyGeneric">
<#Include Label="FpGroupCocycle">
Also see Section <Ref Sect="2-Cohomology and Extensions"/> for operations and
methods specific for Pc groups.
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Tests for the Availability of Methods">
<Heading>Tests for the Availability of Methods</Heading>
<#Include Label="[3]{grp}">
<#Include Label="CanEasilyTestMembership">
<#Include Label="CanEasilyComputeWithIndependentGensAbelianGroup">
<#Include Label="CanComputeSize">
<#Include Label="CanComputeSizeAnySubgroup">
<#Include Label="CanComputeIndex">
<#Include Label="CanComputeIsSubset">
<#Include Label="KnowsHowToDecompose">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Specific functions for Normalizer calculation">
<Heading>Specific functions for Normalizer calculation</Heading>
<#Include Label="NormalizerViaRadical">
</Section>
</Chapter>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->
|