1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A grpmat.xml GAP documentation Alexander Hulpke -->
<!-- %% -->
<!-- %% -->
<!-- %Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Matrix Groups">
<Heading>Matrix Groups</Heading>
Matrix groups are groups generated by invertible square matrices.
<P/>
In the following example we temporarily increase the line length limit from
its default value 80 to 83 in order to get a nicer output format.
<P/>
<Example><![CDATA[
gap> m1 := [ [ Z(3)^0, Z(3)^0, Z(3) ],
> [ Z(3), 0*Z(3), Z(3) ],
> [ 0*Z(3), Z(3), 0*Z(3) ] ];;
gap> m2 := [ [ Z(3), Z(3), Z(3)^0 ],
> [ Z(3), 0*Z(3), Z(3) ],
> [ Z(3)^0, 0*Z(3), Z(3) ] ];;
gap> m := Group( m1, m2 );
Group(
[
[ [ Z(3)^0, Z(3)^0, Z(3) ], [ Z(3), 0*Z(3), Z(3) ],
[ 0*Z(3), Z(3), 0*Z(3) ] ],
[ [ Z(3), Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3) ],
[ Z(3)^0, 0*Z(3), Z(3) ] ] ])
]]></Example>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:IsMatrixGroup">
<Heading>IsMatrixGroup (Filter)</Heading>
For most operations, &GAP; only provides methods for finite matrix groups.
Many calculations in finite matrix groups are done via so-called
<Q>nice monomorphisms</Q> (see Section <Ref Sect="Nice Monomorphisms"/>)
that represent a faithful action on vectors.
<#Include Label="IsMatrixGroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Attributes and Properties for Matrix Groups">
<Heading>Attributes and Properties for Matrix Groups</Heading>
<#Include Label="DimensionOfMatrixGroup">
<#Include Label="DefaultFieldOfMatrixGroup">
<#Include Label="FieldOfMatrixGroup">
<#Include Label="TransposedMatrixGroup">
<#Include Label="IsFFEMatrixGroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Actions of Matrix Groups">
<Heading>Actions of Matrix Groups</Heading>
<#Include Label="[1]{grpmat}">
<#Include Label="ProjectiveActionOnFullSpace">
<#Include Label="ProjectiveActionHomomorphismMatrixGroup">
<#Include Label="BlowUpIsomorphism">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="GL and SL">
<Heading>GL and SL</Heading>
(See also section <Ref Sect="Classical Groups"/>.)
<#Include Label="IsGeneralLinearGroup">
<#Include Label="IsNaturalGL">
<#Include Label="IsSpecialLinearGroup">
<#Include Label="IsNaturalSL">
<#Include Label="IsSubgroupSL">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Invariant Forms">
<Heading>Invariant Forms</Heading>
<#Include Label="InvariantBilinearForm">
<#Include Label="IsFullSubgroupGLorSLRespectingBilinearForm">
<#Include Label="InvariantSesquilinearForm">
<#Include Label="IsFullSubgroupGLorSLRespectingSesquilinearForm">
<#Include Label="InvariantQuadraticForm">
<#Include Label="IsFullSubgroupGLorSLRespectingQuadraticForm">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Matrix Groups in Characteristic 0">
<Heading>Matrix Groups in Characteristic 0</Heading>
Most of the functions described in this and the following section have
implementations which use functions from the &GAP; package
<Package>CaratInterface</Package>.
If <Package>CaratInterface</Package> is not installed or not compiled,
no suitable methods are available.
<#Include Label="IsCyclotomicMatrixGroup">
<#Include Label="IsRationalMatrixGroup">
<#Include Label="IsIntegerMatrixGroup">
<#Include Label="IsNaturalGLnZ">
<#Include Label="IsNaturalSLnZ">
<#Include Label="InvariantLattice">
<#Include Label="NormalizerInGLnZ">
<#Include Label="CentralizerInGLnZ">
<#Include Label="ZClassRepsQClass">
<#Include Label="IsBravaisGroup">
<#Include Label="BravaisGroup">
<#Include Label="BravaisSubgroups">
<#Include Label="BravaisSupergroups">
<#Include Label="NormalizerInGLnZBravaisGroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Acting OnRight and OnLeft">
<Heading>Acting OnRight and OnLeft</Heading>
<#Include Label="[1]{grpramat}">
<#Include Label="CrystGroupDefaultAction">
<#Include Label="SetCrystGroupDefaultAction">
</Section>
</Chapter>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->
|