File: grpmat.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (145 lines) | stat: -rw-r--r-- 4,638 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A  grpmat.xml                  GAP documentation            Alexander Hulpke -->
<!-- %% -->
<!-- %% -->
<!-- %Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y  Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Matrix Groups">
<Heading>Matrix Groups</Heading>

Matrix groups are groups generated by invertible square matrices.
<P/>
In the following example we temporarily increase the line length limit from
its default value 80 to 83 in order to get a nicer output format.
<P/>
<Example><![CDATA[
gap> m1 := [ [ Z(3)^0, Z(3)^0,   Z(3) ],
>            [   Z(3), 0*Z(3),   Z(3) ],
>            [ 0*Z(3),   Z(3), 0*Z(3) ] ];;
gap> m2 := [ [   Z(3),   Z(3), Z(3)^0 ],
>            [   Z(3), 0*Z(3),   Z(3) ],
>            [ Z(3)^0, 0*Z(3),   Z(3) ] ];;
gap> m := Group( m1, m2 );
Group(
[
  [ [ Z(3)^0, Z(3)^0, Z(3) ], [ Z(3), 0*Z(3), Z(3) ],
      [ 0*Z(3), Z(3), 0*Z(3) ] ],
  [ [ Z(3), Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3) ],
      [ Z(3)^0, 0*Z(3), Z(3) ] ] ])
]]></Example>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:IsMatrixGroup">
<Heading>IsMatrixGroup (Filter)</Heading>

For most operations, &GAP; only provides methods for finite matrix groups.
Many calculations in finite matrix groups are done via so-called
<Q>nice monomorphisms</Q> (see Section <Ref Sect="Nice Monomorphisms"/>)
that represent a faithful action on vectors.

<#Include Label="IsMatrixGroup">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Attributes and Properties for Matrix Groups">
<Heading>Attributes and Properties for Matrix Groups</Heading>

<#Include Label="DimensionOfMatrixGroup">
<#Include Label="DefaultFieldOfMatrixGroup">
<#Include Label="FieldOfMatrixGroup">
<#Include Label="TransposedMatrixGroup">
<#Include Label="IsFFEMatrixGroup">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Actions of Matrix Groups">
<Heading>Actions of Matrix Groups</Heading>

<#Include Label="[1]{grpmat}">
<#Include Label="ProjectiveActionOnFullSpace">
<#Include Label="ProjectiveActionHomomorphismMatrixGroup">
<#Include Label="BlowUpIsomorphism">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="GL and SL">
<Heading>GL and SL</Heading>

(See also section&nbsp;<Ref Sect="Classical Groups"/>.)

<#Include Label="IsGeneralLinearGroup">
<#Include Label="IsNaturalGL">
<#Include Label="IsSpecialLinearGroup">
<#Include Label="IsNaturalSL">
<#Include Label="IsSubgroupSL">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Invariant Forms">
<Heading>Invariant Forms</Heading>

<#Include Label="InvariantBilinearForm">
<#Include Label="IsFullSubgroupGLorSLRespectingBilinearForm">
<#Include Label="InvariantSesquilinearForm">
<#Include Label="IsFullSubgroupGLorSLRespectingSesquilinearForm">
<#Include Label="InvariantQuadraticForm">
<#Include Label="IsFullSubgroupGLorSLRespectingQuadraticForm">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Matrix Groups in Characteristic 0">
<Heading>Matrix Groups in Characteristic 0</Heading>

Most of the functions described in this and the following section have
implementations which use functions from the &GAP; package
<Package>CaratInterface</Package>.
If <Package>CaratInterface</Package> is not installed or not compiled,
no suitable methods are available.

<#Include Label="IsCyclotomicMatrixGroup">
<#Include Label="IsRationalMatrixGroup">
<#Include Label="IsIntegerMatrixGroup">
<#Include Label="IsNaturalGLnZ">
<#Include Label="IsNaturalSLnZ">
<#Include Label="InvariantLattice">
<#Include Label="NormalizerInGLnZ">
<#Include Label="CentralizerInGLnZ">
<#Include Label="ZClassRepsQClass">
<#Include Label="IsBravaisGroup">
<#Include Label="BravaisGroup">
<#Include Label="BravaisSubgroups">
<#Include Label="BravaisSupergroups">
<#Include Label="NormalizerInGLnZBravaisGroup">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Acting OnRight and OnLeft">
<Heading>Acting OnRight and OnLeft</Heading>

<#Include Label="[1]{grpramat}">
<#Include Label="CrystGroupDefaultAction">
<#Include Label="SetCrystGroupDefaultAction">

</Section>
</Chapter>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->