File: language.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (2413 lines) | stat: -rw-r--r-- 85,203 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %W  language.xml           GAP documentation                Martin Schönert -->
<!-- %% -->
<!-- %% -->
<!-- %Y  Copyright 1990-1992, Lehrstuhl D für Mathematik, RWTH Aachen, Germany -->
<!-- %% -->
<!-- %%  This file describes the &GAP; programming language. -->
<!-- %% -->
<Chapter Label="The Programming Language">
<Heading>The Programming Language</Heading>

This chapter describes the &GAP; programming language.  It should allow
you, in principle, to predict the result of each and every input. In order
to know what we are talking about, we first have to look more closely at
the process of interpretation and the various representations of data
involved.

<!-- %%  The &GAP; language and its interpreter in the kernel were designed by  -->
<!-- %%  Martin Sch{\"o}nert. -->


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Language Overview">
<Heading>Language Overview</Heading>

First we have the input to &GAP;, given as a string of characters. How
those characters enter &GAP; is operating system dependent, e.g., they
might be entered at a terminal, pasted with a mouse into a window, or
read from a file. The mechanism does not matter. This representation of
expressions by characters is called the <E>external representation</E> of the
expression. Every expression has at least one external representation
that can be entered to get exactly this expression.
<P/>
The input, i.e., the external representation, is transformed in a process
called <E>reading</E> to an internal representation.  At this point the input
is analyzed and inputs  that are not legal external representations,
according to the rules given below, are rejected as errors. Those rules
are usually called the <E>syntax</E> of a programming language.
<P/>
The internal representation created by reading is called either an
<E>expression</E> or a <E>statement</E>.
Later we will distinguish between those two terms.
However for now we will use them interchangeably.
The exact form of the internal representation does not matter.
It could be a string of characters equal to the external representation,
in which case the reading would only need to check for errors.
It could be a series of machine instructions for the processor on which
&GAP; is running, in which case the reading would more appropriately
be called compilation.
It is in fact a tree-like structure.
<P/>
After the input has been read it is again transformed in a process called
<E>evaluation</E> or <E>execution</E>.
Later we will distinguish between those two terms too,
but for the moment we will use them interchangeably. The name
hints at the nature of this process, it replaces an expression with the
value of the expression. This works recursively, i.e., to evaluate an
expression first the subexpressions are evaluated and then the value of
the expression is computed from those values according to rules given below.
Those rules are usually called the <E>semantics</E> of a programming language.
<P/>
The result of the evaluation is, not surprisingly, called a <E>value</E>.
<!-- % The -->
<!-- % set of values  is of course a  much smaller set than the  set of -->
<!-- % expressions; for every value there may be several expressions that will -->
<!-- % evaluate to  this value. -->
Again the form in which such a  value is
represented internally does not  matter. It is  in fact a tree-like
structure again.
<P/>
The last process is called <E>printing</E>. It takes the value produced by
the evaluation and creates an external representation, i.e., a string of
characters again. What you do with this external representation is up to
you. You can look at it, paste it with the mouse into another window, or
write it to a file.
<P/>
Lets look at an example to make this more clear. Suppose you type in the
following string of 8 characters
<P/>
<Listing><![CDATA[
1 + 2 * 3;
]]></Listing>
<P/>
&GAP; takes  this external representation  and creates  a tree-like
internal representation, which we can picture as follows
<P/>
<Listing><![CDATA[
  +
 / \
1   *
   / \
  2   3
]]></Listing>
<P/>
This expression is then evaluated. To do this &GAP; first evaluates the
right subexpression <C>2*3</C>.  Again, to do this &GAP; first evaluates its
subexpressions 2 and 3. However they are so simple that they are their
own value, we say that they are self-evaluating. After this has been
done, the rule for <C>*</C> tells us that the value is the product of the
values of the two subexpressions, which in this case is clearly 6.
Combining this with the value of the left operand of the <C>+</C>, which is
self-evaluating, too, gives us the value of the whole expression 7. This
is then printed, i.e., converted into the external representation
consisting of the single character <C>7</C>.
<P/>
In this fashion we can predict the result of every input when we know the
syntactic rules that govern the process of reading and the semantic rules
that tell us for every expression how its value is computed in terms of
the values of the subexpressions.
The syntactic rules are given in sections <Ref Sect="Lexical Structure"/>,
<Ref Sect="Symbols"/>, <Ref Sect="Whitespaces"/>, <Ref Sect="Keywords"/>,
and <Ref Sect="Identifiers"/>,
the semantic rules are given in sections <Ref Sect="Expressions"/>,
<Ref Sect="Variables"/>, <Ref Sect="Function Calls"/>,
<Ref Sect="Comparisons"/>, <Ref Sect="Arithmetic Operators"/>,
<Ref Sect="Statements"/>, <Ref Sect="Assignments"/>,
<Ref Sect="Procedure Calls"/>, <Ref Sect="If"/>, <Ref Sect="While"/>,
<Ref Sect="Repeat"/>, <Ref Sect="For"/>, <Ref Sect="Function"/>,
and the chapters describing the individual data types.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Lexical Structure">
<Heading>Lexical Structure</Heading>

Most input of &GAP; consists of sequences of the following characters.
<P/>
Digits, uppercase and lowercase letters, <B>Space</B>, <B>Tab</B>,
<B>Newline</B>, <B>Return</B> and the special characters
<P/>
<Listing><![CDATA[
"    '    (    )    *    +    ,    -    #
.    /    :    ;    <    =    >    ~
[    \    ]    ^    _    {    }    !
]]></Listing>
<P/>
It is possible to use other characters in identifiers by escaping
them with backslashes, but we do not recommend the use of this feature.
Inside strings
(see section&nbsp;<Ref Sect="Symbols"/> and
chapter&nbsp;<Ref Chap="Strings and Characters"/>)
and comments (see&nbsp;<Ref Sect="Whitespaces"/>) the full character set
supported by the computer is allowed.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Symbols">
<Heading>Symbols</Heading>

The process of reading, i.e., of assembling the input into expressions,
has a subprocess, called <E>scanning</E>, that assembles the characters into
symbols.  A <E>symbol</E> is a sequence of characters that form a lexical
unit. The set of symbols consists of keywords, identifiers, strings,
integers, and operator and delimiter symbols.
<P/>
A <E>keyword</E> is a reserved word (see <Ref Sect="Keywords"/>).
An <E>identifier</E> is a sequence of letters, digits and underscores
(or other characters escaped by backslashes) that contains at least one
non-digit and is not a keyword (see <Ref Sect="Identifiers"/>).
An integer is a sequence of digits (see <Ref Chap="Integers"/>),
possibly prepended by <C>-</C> and <C>+</C> sign characters.
A <E>string</E> is a sequence of arbitrary characters enclosed in
double quotes (see <Ref Chap="Strings and Characters"/>).
<P/>
Operator and delimiter symbols are
<P/>
<Listing><![CDATA[
+    -    *    /    ^    ~   !.
=    <>   <    <=   >    >=  ![
:=   .    ..   ->   ,    ;   [
]    {    }    (    )    :
]]></Listing>
<P/>
Note also that during the process of scanning all whitespace is removed
(see <Ref Sect="Whitespaces"/>).

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Whitespaces">
<Heading>Whitespaces</Heading>

<Index>space</Index>
<Index>blank</Index><Index>tabulator</Index><Index>newline</Index>
<Index>comments</Index><Index>#</Index>
The characters <B>Space</B>, <B>Tab</B>, <B>Newline</B>, and <B>Return</B>
are called <E>whitespace characters</E>.
Whitespace is used as necessary to separate lexical symbols,
such as integers, identifiers, or keywords. For example
<C>Thorondor</C> is a single identifier,
while <C>Th or ondor</C> is the keyword <K>or</K> between the two identifiers
<C>Th</C> and <C>ondor</C>.
Whitespace may occur between any two symbols, but not within a symbol.
Two or more adjacent whitespace characters are equivalent to a single
whitespace.
Apart from the role as separator of symbols,
whitespace characters are otherwise insignificant.
Whitespace characters may also occur inside a string,
where they are significant.
Whitespace characters should also be used freely for improved readability.
<P/>
A <E>comment</E> starts with the  character <C>#</C>,
which is sometimes called sharp or hatch,
and continues to the end of the line on which the comment character appears.
The whole comment, including <C>#</C> and the <B>Newline</B> character
is treated as a single whitespace.
Inside a string, the comment character <C>#</C> loses its role and is just
an ordinary character.
<P/>
For example, the following statement
<P/>
<Listing><![CDATA[
if i<0 then a:=-i;else a:=i;fi;
]]></Listing>
<P/>
is equivalent to
<P/>
<Listing><![CDATA[
if i < 0 then   # if i is negative
  a := -i;      #   take its additive inverse
else            # otherwise
  a := i;       #   take itself
fi;
]]></Listing>
<P/>
(which by the way shows that it is possible to write superfluous
comments). However the first statement is <E>not</E> equivalent to
<P/>
<Listing><![CDATA[
ifi<0thena:=-i;elsea:=i;fi;
]]></Listing>
<P/>
since the keyword <K>if</K> must be separated from the identifier <C>i</C>
by a whitespace, and similarly <K>then</K> and <C>a</C>,
and <K>else</K> and <C>a</C> must be separated.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Keywords">
<Heading>Keywords</Heading>

<Index Key="GAPInfo.Keywords"><C>GAPInfo.Keywords</C></Index>

<E>Keywords</E> are reserved words that are used to denote special operations
or are part of statements. They must not be used as identifiers. The list of
keywords is contained in the <C>GAPInfo.Keywords</C> component of the
<C>GAPInfo</C> record (see <Ref Sect="GAPInfo"/>). We will show how to print
it in a nice table, demonstrating at the same time some list manipulation
techniques:
<P/>
<Example><![CDATA[
gap> keys:=SortedList( GAPInfo.Keywords );; l:=Length( keys );;
gap> arr:= List( [ 0 .. Int( l/4 )-1 ], i-> keys{ 4*i + [ 1 .. 4 ] } );;
gap> if l mod 4 <> 0 then Add( arr, keys{[ 4*Int(l/4) + 1 .. l ]} ); fi;
gap> Length( keys ); PrintArray( arr );
35
[ [         Assert,           Info,        IsBound,           QUIT ],
  [  TryNextMethod,         Unbind,            and,         atomic ],
  [          break,       continue,             do,           elif ],
  [           else,            end,          false,             fi ],
  [            for,       function,             if,             in ],
  [          local,            mod,            not,             od ],
  [             or,           quit,       readonly,      readwrite ],
  [            rec,         repeat,         return,           then ],
  [           true,          until,          while ] ]
]]></Example>
<P/>
Note that (almost) all keywords are written in lowercase and that they
are case sensitive.
For example <K>else</K> is a keyword; <C>Else</C>, <C>eLsE</C>, <C>ELSE</C>
and so forth are ordinary identifiers.
Keywords must not contain whitespace, for example <C>el if</C> is not the
same as <K>elif</K>.
<P/>
<E>Note</E>:
Several tokens from the list of keywords above may appear to be normal
identifiers representing functions or literals of various kinds but are
actually implemented as keywords for technical reasons. The only
consequence of this is that those identifiers cannot be re-assigned, and
do not actually have function objects bound to them, which could be
assigned to other variables or passed to functions. These keywords are
<K>true</K>, <K>false</K>, <Ref Func="Assert"/>,
<Ref Func="IsBound" Label="for a global variable"/>,
<Ref Func="Unbind" Label="unbind a variable"/>,
<Ref Func="Info"/> and <Ref Func="TryNextMethod"/>.
<P/>
<!-- Update the next paragraph to reference HPC-GAP suitably -->
Keywords <C>atomic</C>, <C>readonly</C>, <C>readwrite</C> are not used
at the moment. They are reserved for the future version of GAP to prevent
their accidental use as identifiers.
</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Identifiers">
<Heading>Identifiers</Heading>

An <E>identifier</E> is used to refer to a variable
(see <Ref Sect="Variables"/>).
An identifier usually consists of letters, digits, underscores <C>_</C>,
and <Q>at</Q>-characters <C>@</C>,
and must contain at least one non-digit.
An identifier is terminated by the first character not in this class.
Note that the <Q>at</Q>-character <C>@</C> is used to implement
namespaces, see Section <Ref Sect="Namespaces"/> for details.
<P/>
Examples of valid identifiers are
<P/>
<Listing><![CDATA[
a           foo         aLongIdentifier
hello       Hello       HELLO
x100        100x       _100
some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords
abc@def
]]></Listing>
<P/>
Note that case is significant, so the three identifiers in the second
line are distinguished.
<P/>
The backslash <C>\</C> can be used to include other characters in identifiers;
a backslash followed by a character is equivalent  to the character,
except that this escape sequence is considered to be an ordinary letter.
For example
<Listing><![CDATA[
G\(2\,5\)
]]></Listing>
is an identifier, not a call to a function <C>G</C>.
<P/>
An identifier that starts with a backslash is never a keyword, so for
example <C>\*</C> and <C>\mod</C> are identifiers.
<P/>
The length of identifiers is not limited,
however only the first <M>1023</M> characters are significant.
The escape sequence <C>\</C><B>newline</B> is ignored,
making it possible to split long identifiers over multiple lines.

<#Include Label="IsValidIdentifier">

Note that the <Q>at</Q>-character is used to implement namespaces
for global variables in packages. See <Ref Sect="Namespaces"/> for
details.
<Index>namespace</Index>

<Subsection Label="Conventions about Identifiers">
<Heading>Conventions about Identifiers</Heading>

<Index>variable names</Index>

(The following rule is stated also in Section
<Ref Sect="Variables versus Objects" BookName="tut"/>.)

<P/>

The name of almost every global variable in the &GAP; library
and in &GAP; packages starts with a <E>capital letter</E>.
(See Section <Ref Sect="Main Loop"/> for the few exceptions.)
For user variables, we recommend only choosing names that start with a
<E>lower case letter</E>, in order to avoid name clashes.

<P/>

For example, valid &GAP; input which assigns some user variables whose names
start with capital letters may run into errors with a newer version of &GAP;
or in a &GAP; session with more or newer packages,
because it may happen that these variables are predefined global variables
in this situation.

</Subsection>

</Section>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Expressions">
<Heading>Expressions</Heading>

<Index>evaluation</Index>
An <E>expression</E> is a construct that evaluates to a value.
Syntactic constructs that are executed to produce a side effect and return
no value are called <E>statements</E> (see <Ref Sect="Statements"/>).
Expressions appear as right hand sides of assignments
(see <Ref Sect="Assignments"/>), as actual arguments in function calls
(see <Ref Sect="Function Calls"/>), and in statements.
<P/>
Note that an expression is not the same as a value.
For example <C>1 + 11</C> is an expression, whose value is the integer 12.
The external representation of this integer is the character sequence
<C>12</C>, i.e., this sequence is output if the integer is printed.
This sequence is another expression whose value is the integer <M>12</M>.
The process of finding the value of an expression is done by the interpreter
and is called the <E>evaluation</E> of the expression.
<P/>
The simplest cases of expressions are the following:
<List>
<Item>variables (see Section&nbsp;<Ref Sect="Variables"/>),</Item>
<Item>function literals (see Section&nbsp;<Ref Sect="Function"/>),</Item>
<Item>function calls (see Section&nbsp;<Ref Sect="Function Calls"/>),</Item>
<Item>integer literals (see Chapter&nbsp;<Ref Chap="Integers"/>),</Item>
<Item>floating point literals (see Chapter&nbsp;<Ref Chap="Floats"/>),</Item>
<Item>permutation literals (see Chapter&nbsp;<Ref Chap="Permutations"/>),</Item>
<Item>string literals (see Chapter&nbsp;<Ref Chap="Strings and Characters"/>),</Item>
<Item>character literals (see Chapter&nbsp;<Ref Chap="Strings and Characters"/>),</Item>
<Item>list literals (see Chapter&nbsp;<Ref Chap="Lists"/>), and</Item>
<Item>record literals (see Chapter&nbsp;<Ref Chap="Records"/>).</Item>
</List>
Expressions, for example the simple expressions mentioned above, can be
combined with the operators to form more complex expressions. Of course
those expressions can then be combined further with the operators to form
even more complex expressions. The <E>operators</E> fall into three classes.
<Index>operators</Index>
The <E>comparisons</E> are <C>=</C>, <C>&lt;></C>, <C>&lt;</C>, <C>&lt;=</C>,
<C>></C>, <C>>=</C>, and <K>in</K> (see <Ref Sect="Comparisons"/> and
<Ref Sect="Membership Test for Collections"/>).
The <E>arithmetic operators</E> are <C>+</C>, <C>-</C>, <C>*</C>, <C>/</C>,
<K>mod</K>, and <C>^</C> (see&nbsp;<Ref Sect="Arithmetic Operators"/>).
The <E>logical operators</E> are <K>not</K>, <K>and</K>, and <K>or</K>
(see&nbsp;<Ref Sect="Operations for Booleans"/>).
<P/>
The following example shows a very simple expression with value 4 and a
more complex expression.
<P/>
<Example><![CDATA[
gap> 2 * 2;
4
gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true
]]></Example>
<P/>

The following table lists all operators by precedence, from highest to
lowest, and also indicates whether the operator is left associative (aka
left-to-right) or right associative (aka right-to-left) or neither.

<Index>precedence</Index>
<Index>associativity</Index>
<Table Align="ll">
<Row>
  <Item><E>operator</E></Item>
  <Item><E>associativity</E></Item>
</Row>
<HorLine/>
<Row>
  <Item><E>arithmetic (see&nbsp;<Ref Sect="Arithmetic Operators"/>)</E></Item>
  <Item></Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;<C>^</C></Item>
  <Item>none</Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;unary <C>+</C>, unary <C>-</C></Item>
  <Item>right-to-left</Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;<C>*</C>, <C>/</C>, <K>mod</K></Item>
  <Item>left-to-right</Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;binary <C>+</C>, binary <C>-</C></Item>
  <Item>left-to-right</Item>
</Row>
<HorLine/>
<Row>
  <Item><E>comparison (see&nbsp;<Ref Sect="Comparisons"/>)</E></Item>
  <Item></Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;<C>=</C>, <C>&lt;></C>, <C>&lt;</C>, <C>&lt;=</C>, <C>></C>, <C>>=</C>, and <K>in</K></Item>
  <Item>none</Item>
</Row>
<HorLine/>
<Row>
  <Item><E>logical (see&nbsp;<Ref Sect="Operations for Booleans"/>)</E></Item>
  <Item></Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;<K>not</K></Item>
  <Item>right-to-left</Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;<K>and</K></Item>
  <Item>left-to-right</Item>
</Row>
<Row>
  <Item>&nbsp;&nbsp;&nbsp;&nbsp;<K>or</K></Item>
  <Item>left-to-right</Item>
</Row>
</Table>


</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Variables">
<Heading>Variables</Heading>

<Index>scope</Index><Index>bound</Index>
A <E>variable</E> is a location in a &GAP; program that points to a value.
We say the variable is <E>bound</E> to this value.
If a variable is evaluated it evaluates to this value.
<P/>
Initially an ordinary variable is not bound to any value.
The variable can be bound to a value by <E>assigning</E> this value to the
variable (see <Ref Sect="Assignments"/>).
Because of this we sometimes say that a variable that is not bound to any
value has no assigned value.
Assignment is in fact the only way by which a variable, which is not an
argument of a function, can be bound to a value.
After a variable has been bound to a  value an assignment can also be used
to bind the variable to another value.
<P/>
A special class of variables is the class of <E>arguments</E> of functions.
They behave similarly to other variables,
except they are bound to the value of the
actual arguments upon a function call (see <Ref Sect="Function Calls"/>).
<P/>
Each variable has a name that is also called its <E>identifier</E>. This is
because in a given scope an identifier identifies a unique variable (see
<Ref Sect="Identifiers"/>).
A <E>scope</E> is a lexical part of a program text. There is
the <E>global scope</E> that encloses the entire program text, and there are
local scopes that range from the <K>function</K> keyword, denoting the
beginning of a function definition, to the corresponding <K>end</K> keyword.
A <E>local scope</E> introduces new variables, whose identifiers are given in
the formal argument list and the <K>local</K> declaration of the function (see
<Ref Sect="Function"/>). Usage of an identifier in a program text refers to the
variable in the innermost scope that has this identifier as its name.
Because this mapping from identifiers to variables is done when the
program is read, not when it is executed, &GAP; is said to have <E>lexical
scoping</E>.  The following example shows how one identifier refers to
different variables at different points in the program text.
<P/>
<Listing><![CDATA[
g := 0;      # global variable g
x := function ( a, b, c )
  local  y;
  g := c;     # c refers to argument c of function x
  y := function ( y )
    local d, e, f;
    d := y;   # y refers to argument y of function y
    e := b;   # b refers to argument b of function x
    f := g;   # g refers to global variable g
    return d + e + f;
  end;
  return y( a ); # y refers to local y of function x
end;
]]></Listing>
<P/>
It is important to note that the concept of a variable in &GAP; is quite
different from the concept of a variable in most compiled programming languages.
<P/>
In those languages a variable denotes a block of memory. The
value of the variable is stored in this block. So in those languages two
variables can have the same value, but they can never have identical
values, because they denote different blocks of memory.  Note that
some languages have the concept of a reference argument. It seems as if such an
argument and the variable used in the actual function call have the same
value, since changing the argument's value also changes the value of the
variable used in the actual function call.  But this is not so; the
reference argument is actually a pointer to the variable used in the
actual function call, and it is the compiler that inserts enough magic to
make the pointer invisible.  In order for this to work the compiler
needs enough information to compute the amount of memory needed for each
variable in a program, which is readily available in the declarations.
<P/>
In &GAP; on the other hand each variable just points to a value,
and different variables can share the same value.


<ManSection>
<Func Name="IsBound" Arg='ident' Label="for a global variable"/>

<Description>
<Ref Func="IsBound" Label="for a global variable"/> returns <K>true</K>
if the variable <A>ident</A> points to a value,
and <K>false</K> otherwise.
<P/>
For records and lists <Ref Func="IsBound" Label="for a global variable"/>
can be used to check whether components or entries, respectively,
are bound
(see Chapters&nbsp;<Ref Chap="Records"/> and <Ref Chap="Lists"/>).
</Description>
</ManSection>


<ManSection>
<Func Name="Unbind" Arg='ident' Label="unbind a variable"/>

<Description>
deletes the identifier <A>ident</A>.
If there is no other variable pointing to the same value as <A>ident</A> was,
this value will be removed by the next garbage collection.
Therefore <Ref Func="Unbind" Label="unbind a variable"/> can be used to get
rid of unwanted large objects.
<P/>
For records and lists <Ref Func="Unbind" Label="unbind a variable"/>
can be used to delete components or entries, respectively
(see Chapters&nbsp;<Ref Chap="Records"/> and <Ref Chap="Lists"/>).
</Description>
</ManSection>

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="More About Global Variables">
<Heading>More About Global Variables</Heading>

The vast majority of variables in &GAP; are defined at the outer
level (the global scope). They are used to access functions and
other objects created either in the &GAP; library or packages or in the user's
code.
<P/>
Note that for packages there is a mechanism to implement package local
namespaces on top of this global namespace. See Section <Ref
Sect="Namespaces"/> for details.
<Index>namespace</Index>
<P/>
Certain special facilities are provided for manipulating global
variables which are not available for other types of variable (such as
local variables or function arguments).
<P/>
First, such variables may be marked <E>read-only</E> using
<Ref Func="MakeReadOnlyGlobal"/>. In which case
attempts to change them will fail. Most of the global variables
defined in the &GAP; library are so marked. <E>read-only</E> variables
can be made read-write again by calling <Ref Func="MakeReadWriteGlobal"/>.
GAP also features <E>constant</E> variables, which are created by calling
<Ref Func="MakeConstantGlobal"/>. Constant variables can never be changed.
In some cases, GAP can optimise code which uses <E>constant</E> variables,
as their value never changes. In this version GAP these optimisations can be
observed by printing the function back out, but this behaviour may change
in future.
<Example><![CDATA[
gap> globali := 1 + 2;;
gap> globalb := true;;
gap> MakeConstantGlobal("globali");
gap> MakeConstantGlobal("globalb");
gap> f := function()
>     if globalb then
>         return globali + 1;
>     else
>         return globali + 2;
>     fi;
> end;;
gap> Print(f);
function (  )
    return 3 + 1;
end
]]></Example>


<P/>
Second, a group of functions are supplied for accessing and altering the
values assigned to global variables. Use of these functions differs
from the use of assignment,
<Ref Func="Unbind" Label="unbind a variable"/> and
<Ref Func="IsBound" Label="for a global variable"/>
statements, in two ways.
First, these functions always affect global variables, even if
local variables of the same names exist.
Second, the variable names are passed as strings,
rather than being written directly into the statements.
<P/>
Note that the functions <Ref Func="NamesGVars"/>,
<Ref Func="NamesSystemGVars"/>, and <Ref Func="NamesUserGVars"/>,
deal with the <E>global namespace</E>.


<ManSection>
<Func Name="IsReadOnlyGlobal" Arg='name'/>

<Description>
returns <K>true</K> if the global variable named by the string <A>name</A> is
read-only and <K>false</K> otherwise (the default).
</Description>
</ManSection>


<ManSection>
<Func Name="MakeReadOnlyGlobal" Arg='name'/>

<Description>
marks the global variable named by the string <A>name</A> as read-only.
<P/>
A warning is given if <A>name</A> has no value bound to it or if it is
already read-only.
</Description>
</ManSection>


<ManSection>
<Func Name="MakeReadWriteGlobal" Arg='name'/>

<Description>
marks the global variable named by the string <A>name</A> as read-write.
<P/>
A warning is given if <A>name</A> is already read-write.
<P/>
<Log><![CDATA[
gap> xx := 17;
17
gap> IsReadOnlyGlobal("xx");
false
gap> xx := 15;
15
gap> MakeReadOnlyGlobal("xx");
gap> xx := 16;
Variable: 'xx' is read only
not in any function
Entering break read-eval-print loop ...
you can 'quit;' to quit to outer loop, or
you can 'return;' after making it writable to continue
brk> quit;
gap> IsReadOnlyGlobal("xx");
true
gap> MakeReadWriteGlobal("xx");
gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false
]]></Log>
</Description>
</ManSection>

<#Include Label="MakeConstantGlobal">

<ManSection>
<Func Name="ValueGlobal" Arg='name'/>

<Description>
returns the value currently bound to the global variable named by the
string <A>name</A>. An error is raised if no value is currently bound.
</Description>
</ManSection>


<ManSection>
<Func Name="IsBoundGlobal" Arg='name'/>

<Description>
returns <K>true</K> if a value currently bound
to the global variable named by the string <A>name</A> and <K>false</K> otherwise.
</Description>
</ManSection>


<ManSection>
<Func Name="UnbindGlobal" Arg='name'/>

<Description>
removes any value currently bound
to the global variable named by the string <A>name</A>. Nothing is returned.
<P/>
A warning is given if <A>name</A> was not bound. The global variable named
by <A>name</A> must be writable, otherwise an error is raised.
</Description>
</ManSection>


<#Include Label="BindGlobal">


<ManSection>
<Func Name="NamesGVars" Arg=''/>

<Description>
This function returns an immutable
(see&nbsp;<Ref Sect="Mutability and Copyability"/>)
sorted (see&nbsp;<Ref Sect="Sorted Lists and Sets"/>) list of all the global
variable names known to the system.  This includes names of variables
which were bound but have now been unbound and some other names which
have never been bound but have become known to the system by various
routes.
</Description>
</ManSection>


<ManSection>
<Func Name="NamesSystemGVars" Arg=''/>

<Description>
This function returns an immutable sorted list of all the global
variable names created by the &GAP; library when &GAP; was started.
</Description>
</ManSection>


<ManSection>
<Func Name="NamesUserGVars" Arg=''/>

<Description>
This function returns an immutable sorted list of the global variable
names created since the library was read, to which a value is
currently bound.
</Description>
</ManSection>

<!-- here name spaces -->

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Namespaces">
<Heading>Namespaces for &GAP; packages</Heading>

As mentioned in Section <Ref Sect="More About Global Variables"/>
above all global variables share a common namespace. This can
relatively easily lead to name clashes, in particular when many
&GAP; packages are loaded at the same time. To give package code
a way to have a package local namespace without breaking backward
compatibility of the &GAP; language, the following simple rule has
been devised:
<P/>
If in package code a global variable that ends with an
<Q>at</Q>-character <C>@</C> is accessed in any way, the name of the
package is appended before accessing it. Here, <Q>package code</Q>
refers to everything which is read with <Ref Func="ReadPackage"/>.
As the name of the package the entry <C>PackageName</C> in its
<F>PackageInfo.g</F> file is taken. As for all identifiers,
this name is case sensitive.
<P/>
For example, if the following is done in the code of a package with name
<C>xYz</C>:

<Log><![CDATA[
gap> a@ := 12;
]]>
</Log>

Then actually the global variable <C>a@xYz</C> is assigned. Further
accesses to <C>a@</C> within the package code will all be redirected
to <C>a@xYz</C>. This includes all the functions described in Section
<Ref Sect="More About Global Variables"/> and indeed all the functions
described Section <Ref Sect="Global Variables in the Library"/> like
for example <Ref Func="DeclareCategory"/>. Note that from code in the
same package it is still possible to access the same global variable
via <C>a@xYz</C> explicitly.
<P/>
All other code outside the package as well as interactive user input
that wants to refer to that variable <C>a@xYz</C> must do so explicitly
by using <C>a@xYz</C>.
<P/>
Since in earlier releases of &GAP; the <Q>at</Q>-character <C>@</C>
was not a legal character (without using backslashes), this small
extension of the language does not break any old code.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Function">
<Heading>Function</Heading>

<Index Subkey="definition of">functions</Index>
<Index Key="end"><K>end</K></Index>
<Index Key="local"><K>local</K></Index>
<Index>recursion</Index>
<Index Subkey="recursive">functions</Index>
<Index>environment</Index><Index>body</Index>
<C>function( [ <A>arg-ident</A> {, <A>arg-ident</A>} ] )</C>
<P/>
<C>&nbsp;&nbsp;[local  <A>loc-ident</A> {, <A>loc-ident</A>} ; ]</C>
<P/>
<C>&nbsp;&nbsp;<A>statements</A></C>
<P/>
<C>end</C>
<P/>
A function
literal can be assigned to a variable or to a list element or a record
component.
Later this function can be called as described in <Ref Sect="Function Calls"/>.
<P/>
The following is an example of a function definition.  It is a function
to compute values of the Fibonacci sequence (see <Ref Func="Fibonacci"/>).
<P/>
<Example><![CDATA[
gap> fib := function ( n )
>     local f1, f2, f3, i;
>     f1 := 1; f2 := 1;
>     for i in [3..n] do
>       f3 := f1 + f2;
>       f1 := f2;
>       f2 := f3;
>     od;
>     return f2;
>   end;;
gap> List( [1..10], fib );
[ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]
]]></Example>
<P/>
Because for each of the formal arguments <A>arg-ident</A> and for each of the
formal locals <A>loc-ident</A> a new variable is allocated when the function
is called (see <Ref Sect="Function Calls"/>),
it is possible that a function calls itself.
This is usually called <E>recursion</E>.
The following is a recursive function that computes values of the Fibonacci
sequence.
<P/>
<Example><![CDATA[
gap> fib := function ( n )
>     if n < 3 then
>       return 1;
>     else
>       return fib(n-1) + fib(n-2);
>     fi;
>   end;;
gap> List( [1..10], fib );
[ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ]
]]></Example>
<P/>
Note that the recursive version needs <C>2 * fib(<A>n</A>)-1</C> steps
to compute <C>fib(<A>n</A>)</C>,
while the iterative version of <C>fib</C> needs only <C><A>n</A>-2</C> steps.
Both are not optimal however, the library function <Ref Func="Fibonacci"/>
only needs about <C>Log(<A>n</A>)</C> steps.
<P/>
<Index Subkey="with a variable number of arguments">functions</Index>
<Index Key="arg" Subkey="special function argument"><C>arg</C></Index>
As noted in Section&nbsp;<Ref Sect="Function Calls"/>,
the case where a function's last argument is followed by <C>...</C> is special.
It provides a way of defining  a  function  with  a  variable  number  of
arguments. The values of the actual arguments are computed and the
first ones are assigned to the new variables corresponding to the
formal arguments before the last argument, if any. The values of all the
remaining actual arguments are stored  in  a  list
and this list is assigned to the new variable corresponding to the final formal
argument. There are  two  typical  scenarios  for  wanting  such  a
possibility:  having  optional  arguments  and  having  any   number   of
arguments.
<P/>
The  following  example  shows  one  way  that  the  function
<Ref Oper="Position"/> might be encoded  and  demonstrates  the
<Q>optional argument</Q> scenario.
<P/>
<Example><![CDATA[
gap> position := function ( list, obj, arg... )
>     local pos;
>     if 0 = Length(arg) then
>       pos := 0;
>     else
>       pos := arg[1];
>     fi;
>     repeat
>       pos := pos + 1;
>       if pos > Length(list) then
>         return fail;
>       fi;
>     until list[pos] = obj;
>     return pos;
>    end;
function( list, obj, arg... ) ... end
gap> position([1, 4, 2], 4);
2
gap> position([1, 4, 2], 3);
fail
gap> position([1, 4, 2], 4, 2);
fail
]]></Example>
<P/>
The following  example  demonstrates  the  <Q>any  number  of  arguments</Q>
scenario.
<P/>
<Example><![CDATA[
gap> sum := function ( l... )
>     local total, x;
>     total := 0;
>     for x in l do
>       total := total + x;
>     od;
>     return total;
>    end;
function( l... ) ... end
gap> sum(1, 2, 3);
6
gap> sum(1, 2, 3, 4);
10
gap> sum();
0
]]></Example>
<P/>
The user should compare the above with the  &GAP; function <Ref Func="Sum"/>
which, for example, may take a list argument and optionally
an initial element (which zero should the sum of an empty list return?).
<P/>
GAP will also special case a function with a single argument with the name
<C>arg</C> as function with a variable length list of arguments, as if the
user had written <C>arg...</C>.
<P/>
Note that if a function <A>f</A> is defined as above
then <C>NumberArgumentsFunction(<A>f</A>)</C> returns
minus the number of formal arguments (including the final argument)
(see&nbsp;<Ref Oper="NumberArgumentsFunction"/>).
<P/>
Using the <C>...</C> notation on a function <A>f</A> with only a single
named argument tells &GAP; that when it encounters <A>f</A> that it should
form a list out of the arguments of <A>f</A>.
What if one wishes to do the <Q>opposite</Q>:
tell &GAP; that a list should be <Q>unwrapped</Q> and passed as several
arguments to a function.
The function <Ref Oper="CallFuncList"/> is provided for this purpose.
<P/>
Also see Chapter&nbsp;<Ref Chap="Functions"/>.
<P/>
<Index Subkey="definition by arrow notation">functions</Index>
<Index>arrow notation for functions</Index>
<C>{ <A>arg-list</A> } -> <A>expr</A></C>
<P/>
This is a shorthand for
<P/>
<C>function ( <A>arg-list</A> ) return <A>expr</A>; end.</C>
<P/>
<A>arg-list</A> is a (possibly empty) argument list. Any arguments list
which would be valid for a normal GAP function is also valid here (including
variadic arguments).
<P/>
The following gives a couple of examples of a typical use of such a function
<P/>
<Example><![CDATA[
gap> Sum( List( [1..100], {x} -> x^2 ) );
338350
gap> list := [3, 5, 2, 1, 3];;
gap> Sort(list, {x,y} -> x > y);
gap> list;
[ 5, 3, 3, 2, 1 ]
gap> f := {x,y...} -> y;;
gap> f(1,2,3,4);
[ 2, 3, 4 ]
gap> f := {} -> 2;
function(  ) ... end
gap> Print(f);
function (  )
    return 2;
end
gap> f();
2
]]></Example>
<P/>
The <C>{</C> and <C>}</C> may be omitted for
functions with one argument:
<Example><![CDATA[
gap> Sum( List( [1..100], {x} -> x^2 ) );
338350
gap> Sum( List( [1..100], x -> x^2 ) );
338350
]]></Example>

<P/>
When the definition of a function <A>fun1</A> is evaluated inside another
function <A>fun2</A>,
&GAP; binds all the identifiers inside the function <A>fun1</A> that
are identifiers of an argument or a local of <A>fun2</A> to the corresponding
variable.
This set of bindings is called the environment of the function <A>fun1</A>.
When <A>fun1</A> is called, its body is executed in this environment.
The following implementation of a simple stack uses this.
Values can be pushed onto the stack and then later be popped off again.
The interesting thing here is that the functions <C>push</C> and <C>pop</C>
in the record returned by <C>Stack</C> access the local variable <C>stack</C>
of <C>Stack</C>.
When <C>Stack</C> is called, a new variable for the identifier <C>stack</C>
is created.
When the function definitions of <C>push</C> and <C>pop</C> are then
evaluated (as part of the <K>return</K> statement) each reference to
<C>stack</C> is bound to this new variable.
Note also that the two stacks <C>A</C> and <C>B</C> do not interfere,
because each call of <C>Stack</C> creates a new variable for <C>stack</C>.
<P/>
<Example><![CDATA[
gap> Stack := function()
>     local  stack;
>     stack := [];
>     return rec(
>       push := function( value )
>         Add( stack, value );
>       end,
>       pop := function()
>         return Remove( stack) ;
>       end
>     );
>  end;;
gap> A := Stack();;
gap> B := Stack();;
gap> A.push( 1 ); A.push( 2 ); A.push( 3 );
gap> B.push( 4 ); B.push( 5 ); B.push( 6 );
gap> A.pop(); A.pop(); A.pop();
3
2
1
gap> B.pop(); B.pop(); B.pop();
6
5
4
]]></Example>
<P/>
This feature should be used rarely, since its implementation in &GAP; is
not very efficient.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Function Calls">
<Heading>Function Calls</Heading>

<Subsection Label="Function Call With Arguments">
<Heading>Function Call With Arguments</Heading>

<C><A>function-var</A>( [<A>arg-expr</A>[, <A>arg-expr</A>, ...]] )</C>
<P/>
The function call has the effect of calling the function <A>function-var</A>.
The precise semantics are as follows.
<P/>
First &GAP; evaluates the <A>function-var</A>.
Usually <A>function-var</A> is a variable,
and &GAP; does nothing more than taking the value of this variable.
It is allowed though that <A>function-var</A> is a more complex expression,
such as a reference to an element of a list
(see Chapter&nbsp;<Ref Chap="Lists"/>)
<C><A>list-var</A>[<A>int-expr</A>]</C>,
or to a component of a record (see Chapter&nbsp;<Ref Chap="Records"/>)
<C><A>record-var</A>.<A>ident</A></C>.
In any case &GAP; tests whether the value is a function.
If it is not, &GAP; signals an error.
<P/>
<Index Subkey="with a variable number of arguments, calling">functions</Index>
<Index Key="arg" Subkey="special function argument, calling with"><C>arg</C></Index>
Next &GAP; checks that the number of actual arguments <A>arg-expr</A>s agrees
with the number of <E>formal arguments</E> as given in the function definition.
If they do not agree &GAP; signals an error.
An exception is the case when the function has a variable length argument list,
which is denoted by adding <C>...</C> after the final argument.
In this case there must be at least as many
actual arguments as there are formal arguments <E>before the
final argument</E> and can be any larger number
(see&nbsp;<Ref Sect="Function"/> for examples).
<P/>
Now &GAP; allocates for each formal argument and for each <E>formal local</E>
(that is, the identifiers in the <K>local</K> declaration) a new variable.
Remember that a variable is a location in a &GAP; program
that points to a value. Thus for  each formal argument and for each
formal local such a location is allocated.
<P/>
Next the arguments <A>arg-expr</A>s are evaluated from left to right,
and the values are assigned
to the newly created variables corresponding to the formal arguments. Of
course the first value is assigned to the new variable corresponding to
the first formal argument, the second  value  is assigned to the new
variable corresponding  to  the second  formal argument, and  so on.
An exception again occurs if the last formal argument has
the name <C>arg</C>. In this case the values of all the actual
arguments not assigned to the other formal parameters are
stored in  a list and this  list is assigned to the  new variable
corresponding to the formal argument <C>arg</C>.
<P/>
The new variables corresponding to the formal locals are initially not
bound to any  value.  So trying  to evaluate those  variables before
something has been assigned to them will signal an error.
<P/>
Now the body of the function, which is a statement, is executed. If the
identifier of one of the formal arguments or formal locals appears in the
body of the function it refers to the new variable that was allocated for
this formal argument or formal local, and evaluates to the value of this
variable.
<P/>
If during the execution of the body of the function a <K>return</K> statement
with an expression (see <Ref Sect="Return"/>)
is executed, execution of the body is
terminated and the value of the function call is the value of the
expression of the <K>return</K>. If during the execution of the body a
<K>return</K> statement without an expression is executed, execution of the
body is terminated and the function call does not produce a value, in
which case we call this call a procedure call (see <Ref Sect="Procedure Calls"/>).
If the execution of the body completes without execution of a <K>return</K>
statement, the function call again produces no value, and again we talk
about a procedure call.
<P/>
<Example><![CDATA[
gap> Fibonacci( 11 );
89
]]></Example>
<P/>
The above example shows a call to the function <Ref Func="Fibonacci"/> with
actual argument <C>11</C>, the following one shows a call to the operation
<Ref Func="RightCosets"/> where the second actual argument is another
function call.
<P/>
<Log><![CDATA[
gap> RightCosets( G, Intersection( U, V ) );;
]]></Log>

</Subsection>


<Subsection Label="Function Call With Options">
<Heading>Function Call With Options</Heading>

<C><A>function-var</A>( <A>arg-expr</A>[, <A>arg-expr</A>, ...][ : [ <A>option-expr</A> [,<A>option-expr</A>, ....]]])</C>
<P/>
As well as passing arguments to a function, providing the mathematical
input to its calculation, it is sometimes useful to supply <Q>hints</Q>
suggesting to &GAP; how the desired result may be computed more
quickly, or specifying a level of tolerance for random errors in a
Monte Carlo algorithm.
<P/>
Such hints may be supplied to a function-call <E>and to all subsidiary
functions called from that call</E> using the options mechanism. Options
are separated from the actual arguments by a colon <C>:</C> and have much
the same syntax as the components of a record expression. The one
exception to this is that a component name may appear without a value,
in which case the value <K>true</K> is silently inserted.
<P/>
Options are evaluated from left to right, but only after all arguments have been evaluated.
<P/>
The following example shows a call to <Ref Attr="Size"/> passing the options
<C>hard</C> (with the value <K>true</K>)
and <C>tcselection</C> (with the string <C>"external"</C> as value).
<P/>
<Log><![CDATA[
gap> Size( fpgrp : hard, tcselection := "external" );
]]></Log>
<P/>
Options supplied with function calls in this way are passed down using
the global options stack described in chapter <Ref Chap="Options Stack"/>,
so that the call above is exactly equivalent to
<P/>
<Log><![CDATA[
gap> PushOptions( rec( hard := true, tcselection := "external") );
gap> Size( fpgrp );
gap> PopOptions( );
]]></Log>
<P/>
<E>Note</E> that any option may be passed with any function, whether or not
it has any actual meaning for that function, or any function called by
it. The system provides no safeguard against misspelled option names.

</Subsection>
</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Comparisons">
<Heading>Comparisons</Heading>

<Index>equality test</Index>
<C><A>left-expr</A> = <A>right-expr</A></C>
<P/>
<Index>inequality test</Index>
<C><A>left-expr</A> &lt;> <A>right-expr</A></C>
<P/>
The operator <C>=</C> tests for equality of its two operands and evaluates to
<K>true</K> if they are equal and to <K>false</K> otherwise.
Likewise <C>&lt;></C> tests for inequality of its two operands.
For each type of objects the definition of equality is given in the
respective chapter.
Objects in different families (see&nbsp;<Ref Sect="Families"/>) are never equal,
i.e., <C>=</C> evaluates in this case to <K>false</K>, and <C>&lt;></C> evaluates to <K>true</K>.
<P/>
<Index>smaller test</Index>
<C><A>left-expr</A> &lt; <A>right-expr</A></C>
<P/>
<Index>larger test</Index>
<C><A>left-expr</A> >  <A>right-expr</A></C>
<P/>
<Index>smaller or equal</Index>
<C><A>left-expr</A> &lt;= <A>right-expr</A></C>
<P/>
<Index>larger or equal</Index>
<C><A>left-expr</A> >= <A>right-expr</A></C>
<P/>
<C>&lt;</C> denotes less than, <C>&lt;=</C> less than or equal, <C>></C> greater than, and
<C>>=</C> greater than or equal of its two operands.
For each kind of objects the definition of the ordering is given in the
respective chapter.
<P/>
Note that <C>&lt;</C> implements a <E>total ordering</E> of objects (which
can be used for example to sort a list of elements). Therefore in general
<C>&lt;</C> will not be compatible with any inclusion relation (which can be
tested using <Ref Oper="IsSubset"/>). (For
example, it is possible to compare permutation groups with <C>&lt;</C> in a
total ordering of all permutation groups, but this ordering is not
compatible with the relation of being a subgroup.)
<P/>
<#Include Label="[1]{object.gi}">
<P/>
Comparison operators, including the operator <K>in</K>
(see&nbsp;<Ref Sect="Membership Test for Lists"/>),
are not associative,
Hence it is not allowed to write <C><A>a</A> = <A>b</A> &lt;> <A>c</A> = <A>d</A></C>,
you must use <C>(<A>a</A> = <A>b</A>) &lt;> (<A>c</A> = <A>d</A>)</C> instead.
The comparison operators have  higher precedence than the logical operators
<Index Subkey="precedence">operators</Index>
(see&nbsp;<Ref Sect="Operations for Booleans"/>), but lower precedence than the arithmetic
operators (see&nbsp;<Ref Sect="Arithmetic Operators"/>).
Thus, for instance, <C><A>a</A> * <A>b</A> = <A>c</A> and <A>d</A></C> is interpreted as
<C>((<A>a</A> * <A>b</A>) = <A>c</A>) and <A>d</A>)</C>.
<P/>
The following example shows a comparison where the left operand is an
expression.
<P/>
<Example><![CDATA[
gap> 2 * 2 + 9 = Fibonacci(7);
true
]]></Example>
<P/>
For the underlying operations of the operators introduced above,
see&nbsp;<Ref Sect="Comparison Operations for Elements"/>.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Arithmetic Operators">
<Heading>Arithmetic Operators</Heading>

<Index>precedence</Index>
<Index>associativity</Index>
<Index Subkey="arithmetic">operators</Index>
<Index Key="+"><C>+</C></Index>
<Index Key="-"><C>-</C></Index>
<Index Key="*"><C>*</C></Index>
<Index Key="/"><C>/</C></Index>
<Index Key="^"><C>^</C></Index>
<Index Key="mod" Subkey="arithmetic operators"><K>mod</K></Index>
<Index>modulo</Index>
<Index Subkey="arithmetic operators">modulo</Index>
<Index>positive number</Index>
<C>+ <A>right-expr</A></C>
<P/>
<Index>negative number</Index>
<C>- <A>right-expr</A></C>
<P/>
<Index>addition</Index>
<C><A>left-expr</A> + <A>right-expr</A></C>
<P/>
<Index>subtraction</Index>
<C><A>left-expr</A> - <A>right-expr</A></C>
<P/>
<Index>multiplication</Index>
<C><A>left-expr</A> * <A>right-expr</A></C>
<P/>
<Index>division</Index>
<C><A>left-expr</A> / <A>right-expr</A></C>
<P/>
<Index Key="mod"><K>mod</K></Index>
<C><A>left-expr</A> mod <A>right-expr</A></C>
<P/>
<Index>power</Index>
<C><A>left-expr</A> ^ <A>right-expr</A></C>
<P/>
The arithmetic operators are <C>+</C>, <C>-</C>, <C>*</C>, <C>/</C>,
<K>mod</K>, and <C>^</C>.
The meanings (semantics) of those operators generally depend on the types
of the operands involved,
and they are defined in the various chapters describing the types.
However basically the meanings are as follows.
<P/>
<C><A>a</A> + <A>b</A></C> denotes the addition of additive elements <A>a</A> and <A>b</A>.
<P/>
<C><A>a</A> - <A>b</A></C> denotes the addition of <A>a</A> and the additive inverse of <A>b</A>.
<P/>
<C><A>a</A> * <A>b</A></C> denotes the multiplication of multiplicative elements <A>a</A> and
<A>b</A>.
<P/>
<C><A>a</A> / <A>b</A></C> denotes the multiplication of <A>a</A> with the multiplicative
inverse of <A>b</A>.
<P/>
<Index Subkey="rationals">mod</Index>
<C><A>a</A> mod <A>b</A></C>, for integer or rational left operand <A>a</A> and for non-zero
integer right operand <A>b</A>, is defined as follows.
If <A>a</A> and <A>b</A> are both integers, <C><A>a</A> mod <A>b</A></C> is the integer <A>r</A> in the
integer range <C>0 .. |<A>b</A>| - 1</C> satisfying <C><A>a</A> = <A>r</A> + <A>b</A><A>q</A></C>,
for some integer <A>q</A> (where the operations occurring have their usual meaning
over the integers, of course).
<P/>
<Index>modular remainder</Index><Index>modular inverse</Index>
<Index>coprime</Index><Index>relatively prime</Index>
If <A>a</A> is a rational number and <A>b</A> is a non-zero integer,
and <C><A>a</A> = <A>m</A> / <A>n</A></C> where <A>m</A> and <A>n</A> are
coprime integers  with  <A>n</A>  positive,  then
<C><A>a</A> mod <A>b</A></C> is the integer <A>r</A> in the integer range
<C>0 .. |<A>b</A>| - 1</C>
such that <A>m</A> is congruent to <C><A>r</A><A>n</A></C> modulo <A>b</A>,
and <A>r</A> is called the
<Q>modular remainder</Q> of <A>a</A> modulo <A>b</A>.
Also,  <C>1  /  <A>n</A>  mod  <A>b</A></C>  is
called the <Q>modular inverse</Q> of <A>n</A> modulo <A>b</A>.
(A pair of integers is said to be <E>coprime</E> (or <E>relatively prime</E>)
if their greatest common divisor is 1.)
<P/>
With the above definition, <C>4 / 6 mod 32</C> equals <C>2 / 3 mod 32</C>
and hence exists (and is equal to 22),
despite the fact that 6 has no inverse modulo 32.
<P/>
<E>Note:</E>
For rational <A>a</A>, <C><A>a</A> mod <A>b</A></C> could have been defined
to be the non-negative rational <A>c</A> less than <C>|<A>b</A>|</C>
such that <C><A>a</A> - <A>c</A></C> is a multiple of <A>b</A>.
However this definition is seldom useful and <E>not</E> the
one chosen for &GAP;.
<P/>
<C>+</C> and <C>-</C> can also be used as unary operations.
The unary <C>+</C> is ignored. The unary <C>-</C> returns the additive inverse of
its operand; over the integers it is equivalent to multiplication by <C>-1</C>.
<P/>
<Index Subkey="for two group elements" Key="^"><C>^</C></Index>
<Index Subkey="with a group element">conjugation</Index>
<C>^</C> denotes powering of a multiplicative element if the right operand  is
an integer, and is also used to denote the action of a group element on a
point of a set if the right operand is a group element.
In the special case that both operands are group elements,
<C>^</C> denotes conjugation, that is,
<M>g</M><C>^</C><M>h = h^{{-1}} g h</M>.
<P/>
<Index Subkey="precedence">arithmetic operators</Index>
The <E>precedence</E> of those operators is as follows.
The powering operator <C>^</C> has the highest precedence,
followed by the unary operators <C>+</C> and <C>-</C>,
which are followed by the multiplicative operators <C>*</C>, <C>/</C>, and
<K>mod</K>,
and the additive binary operators <C>+</C> and <C>-</C> have the lowest
precedence.
That means that the expression <C>-2 ^ -2 * 3 + 1</C> is
interpreted as <C>(-(2 ^ (-2)) * 3) + 1</C>. If in doubt use parentheses
to clarify your intention.
<P/>
<Index Subkey="associativity">operators</Index>
The <E>associativity</E> of the arithmetic operators is as follows.
<C>^</C> is not associative, i.e., it is invalid to write <C>2^3^4</C>,
use parentheses to clarify whether you mean <C>(2^3)^4</C> or <C>2^(3^4)</C>.
The unary operators <C>+</C> and <C>-</C> are right associative,
because they are written to the left of their operands.
<C>*</C>, <C>/</C>, <K>mod</K>, <C>+</C>, and <C>-</C> are all left
associative,
i.e., <C>1-2-3</C> is interpreted as <C>(1-2)-3</C> not as <C>1-(2-3)</C>.
Again, if in doubt use parentheses to clarify your intentions.
<P/>
The arithmetic operators have higher precedence than the comparison
operators (see&nbsp;<Ref Sect="Comparisons"/>
and&nbsp;<Ref Sect="Membership Test for Collections"/>)
and the logical operators (see <Ref Sect="Operations for Booleans"/>).
Thus, for example,
<C><A>a</A> * <A>b</A> = <A>c</A> and <A>d</A></C> is interpreted,
<C>((<A>a</A> * <A>b</A>) = <A>c</A>) and <A>d</A></C>.
<P/>
<Example><![CDATA[
gap> 2 * 2 + 9;  # a very simple arithmetic expression
13
]]></Example>
<P/>
For other arithmetic operations, and for the underlying operations of
the operators introduced above,
see&nbsp;<Ref Sect="Arithmetic Operations for Elements"/>.

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Statements">
<Heading>Statements</Heading>

<Index>execution</Index>
&GAP; programs consist of a sequence of so-called  <E>statements</E>.
The following types of statements exist:
<List>
  <Item>Assignments (see Section&nbsp;<Ref Sect="Assignments"/>),</Item>
  <Item>Procedure calls (see Section&nbsp;<Ref Sect="Procedure Calls"/>),</Item>
  <Item><K>if</K> statements (see Section&nbsp;<Ref Sect="If"/>),</Item>
  <Item><K>while</K> loops (see Section&nbsp;<Ref Sect="While"/>),</Item>
  <Item><K>repeat</K> loops (see Section&nbsp;<Ref Sect="Repeat"/>),</Item>
  <Item><K>for</K> loops (see Section&nbsp;<Ref Sect="For"/>),</Item>
  <Item><K>break</K> statements (see Section&nbsp;<Ref Sect="Break"/>),</Item>
  <Item><K>continue</K> statements (see Section&nbsp;<Ref Sect="Continue"/>), and</Item>
  <Item><K>return</K> statements (see Section&nbsp;<Ref Sect="Return"/>).</Item>
</List>
They can be entered interactively or be part of a function definition.
Every statement must be terminated by a semicolon.
<P/>
Statements, unlike expressions, have no value. They are executed only to
produce an effect. For example an assignment has the effect of assigning
a  value to a variable, a <K>for</K> loop  has the effect of executing a
statement sequence for all elements in a list and so on.
We will talk about <E>evaluation</E> of expressions
but about <E>execution</E> of statements to emphasize this difference.
<P/>
Using expressions as statements is treated as syntax error.
<P/>
<Log><![CDATA[
gap> i := 7;;
gap> if i <> 0 then k = 16/i; fi;
Syntax error: := expected
if i <> 0 then k = 16/i; fi;
                 ^
gap>
]]></Log>
<P/>
As you can see from the example this warning does in particular address
those users who are used to languages where <C>=</C> instead of <C>:=</C>
denotes assignment.
<P/>
Empty statements are permitted and have no effect.
<P/>
A sequence of one or more statements is a <E>statement sequence</E>, and may
occur everywhere instead of a single statement.
Each construct is terminated by a keyword.
The simplest statement sequence is a single semicolon, which can be
used as an empty statement sequence. In fact an empty statement
sequence as in <C>for i in [ 1 .. 2 ] do od</C> is also permitted and is
silently translated into the sequence containing just a semicolon.



<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="Assignments">
<Heading>Assignments</Heading>

<Index Subkey="variable">assignment</Index>
<C><A>var</A> := <A>expr</A>;</C>
<P/>
The <E>assignment</E> has the effect of assigning the value of the expressions
<A>expr</A> to the variable <A>var</A>.
<P/>
The variable <A>var</A> may be an ordinary variable
(see <Ref Sect="Variables"/>),
a list element selection <C><A>list-var</A>[<A>int-expr</A>]</C>
(see <Ref Sect="List Assignment"/>) or a record component selection
<C><A>record-var</A>.<A>ident</A></C> (see <Ref Sect="Record Assignment"/>).
Since a list element or a record component may itself be a
list or a record the left hand side of an assignment may be arbitrarily
complex.
<P/>
Note that variables do not have a type. Thus any value may be assigned
to any variable.  For example a variable with an integer value may be
assigned a permutation or a list or anything else.
<P/>
<Example><![CDATA[
gap> data:= rec( numbers:= [ 1, 2, 3 ] );
rec( numbers := [ 1, 2, 3 ] )
gap> data.string:= "string";; data;
rec( numbers := [ 1, 2, 3 ], string := "string" )
gap> data.numbers[2]:= 4;; data;
rec( numbers := [ 1, 4, 3 ], string := "string" )
]]></Example>
<P/>
If the expression <A>expr</A> is a function call then this function must
return a value.  If the function does not return a value an error is
signalled and you enter a break loop (see <Ref Sect="Break Loops"/>).
As usual you can leave the break  loop  with <C>quit;</C>.
If you enter <C>return <A>return-expr</A>;</C> the value of the expression
<A>return-expr</A> is assigned to the variable,
and execution continues after the assignment.
<P/>
<Log><![CDATA[
gap> f1:= function( x ) Print( "value: ", x, "\n" ); end;;
gap> f2:= function( x ) return f1( x ); end;;
gap> f2( 4 );
value: 4
Function Calls: <func> must return a value at
return f1( x );
 called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can 'quit;' to quit to outer loop, or
you can supply one by 'return <value>;' to continue
brk> return "hello";
"hello"
]]></Log>
<P/>
In the above example, the function <C>f2</C> calls <C>f1</C> with argument
<C>4</C>,
and since <C>f1</C> does not return a value (but only prints a line
<Q><C>value: ...</C></Q>),
the <K>return</K> statement of <C>f2</C> cannot be executed.
The error message says that it is possible to return an appropriate value,
and the returned string <C>"hello"</C> is used by <C>f2</C> instead of the
missing return value of <C>f1</C>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="Procedure Calls">
<Heading>Procedure Calls</Heading>

<Index>procedure call</Index>
<Index>procedure call with arguments</Index>
<C><A>procedure-var</A>( [<A>arg-expr</A> [,<A>arg-expr</A>, ...]] );</C>
<P/>
The <E>procedure call</E> has  the  effect  of calling  the procedure
<A>procedure-var</A>.  A procedure call is done exactly like a function call
(see <Ref Sect="Function Calls"/>).
The distinction between functions and procedures is only for the sake of the
discussion, &GAP; does not distinguish between them.
So we state the following conventions.
<P/>
A <E>function</E> does return a value but does not produce a side effect. As
a convention the name of a function is a noun, denoting what the function
returns, e.g., <C>"Length"</C>, <C>"Concatenation"</C> and <C>"Order"</C>.
<P/>
A <E>procedure</E> is a function that does not return a value but produces
some  effect. Procedures are called  only for  this effect. As  a
convention the name of a procedure is a verb, denoting what the procedure
does, e.g., <C>"Print"</C>, <C>"Append"</C> and <C>"Sort"</C>.
<P/>
<Log><![CDATA[
gap> Read( "myfile.g" );   # a call to the procedure Read
gap> l := [ 1, 2 ];;
gap> Append( l, [3,4,5] );  # a call to the procedure Append
]]></Log>
<P/>
There are a few exceptions of &GAP; functions that do both return
a value and produce some effect.
An example is <Ref Oper="Sortex"/> which sorts a list
and returns the corresponding permutation of the entries.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="If">
<Heading>If</Heading>

<Index Key="fi"><K>fi</K></Index>
<Index Key="then"><K>then</K></Index>
<Index Key="else"><K>else</K></Index>
<Index Key="elif"><K>elif</K></Index>
<C>if <A>bool-expr1</A> then <A>statements1</A> { elif <A>bool-expr2</A> then <A>statements2</A> }[ else <A>statements3</A> ] fi;</C>
<Index Key="if statement"><K>if</K> statement</Index>
<P/>
The <K>if</K> statement allows one to execute statements depending on the
value of some boolean expression. The execution is done as follows.
<P/>
First the expression <A>bool-expr1</A> following the <K>if</K> is evaluated.
If it evaluates to <K>true</K> the statement sequence <A>statements1</A>
after the first <K>then</K> is executed,
and the execution of the <K>if</K> statement is complete.
<P/>
Otherwise the expressions <A>bool-expr2</A> following the <K>elif</K> are
evaluated in turn.
There may be any number of <K>elif</K> parts, possibly none at all.
As soon as an expression evaluates to <K>true</K> the corresponding statement
sequence <A>statements2</A> is executed and execution of the <K>if</K>
statement is complete.
<P/>
If the <K>if</K> expression and all, if any, <K>elif</K> expressions evaluate
to <K>false</K> and there is an <K>else</K> part, which is optional,
its statement sequence <A>statements3</A> is executed and the execution of
the <K>if</K> statement is complete.
If there is no <K>else</K> part the <K>if</K> statement is complete without
executing any statement sequence.
<P/>
Since the <K>if</K> statement is terminated by the <K>fi</K> keyword
there is no question where an <K>else</K> part belongs,
i.e., &GAP; has no <Q>dangling else</Q>.
In
<P/>
<Listing><![CDATA[
if expr1 then if expr2 then stats1 else stats2 fi; fi;
]]></Listing>
<P/>
the <K>else</K> part belongs to the second  <K>if</K> statement, whereas in
<P/>
<Listing><![CDATA[
if expr1 then if expr2 then stats1 fi; else stats2 fi;
]]></Listing>
<P/>
the <K>else</K> part belongs to the first <K>if</K> statement.
<P/>
Since an <K>if</K> statement is not an expression it is not possible to write
<P/>
<Listing><![CDATA[
abs := if x > 0 then x; else -x; fi;
]]></Listing>
<P/>
which would, even if legal syntax, be  meaningless, since the <K>if</K>
statement does not produce a value that could be assigned to <C>abs</C>.
<P/>
If one of the expressions <A>bool-expr1</A>, <A>bool-expr2</A> is evaluated
and its value is neither <K>true</K> nor <K>false</K> an error is signalled
and a break loop (see <Ref Sect="Break Loops"/>) is entered.
As usual you can leave  the break loop with <C>quit;</C>.
If you enter <C>return true;</C>,
execution of the <K>if</K> statement continues as if the expression whose
evaluation  failed had evaluated to <K>true</K>.
Likewise, if you enter <C>return false;</C>,
execution of the <K>if</K> statement continues as if the expression
whose evaluation failed had evaluated to <K>false</K>.
<P/>
<Example><![CDATA[
gap> i := 10;;
gap> if 0 < i then
>    s := 1;
>  elif i < 0 then
>    s := -1;
>  else
>    s := 0;
>  fi;
gap> s;  # the sign of i
1
]]></Example>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="While">
<Heading>While</Heading>

<Index Subkey="while">loop</Index>
<Index Key="while loop"><K>while</K> loop</Index>
<C>while <A>bool-expr</A> do <A>statements</A> od;</C>
<P/>
The <K>while</K> loop executes the statement sequence <A>statements</A> while
the condition <A>bool-expr</A> evaluates to <K>true</K>.
<P/>
First <A>bool-expr</A> is evaluated.
If it evaluates to <K>false</K> execution of the <K>while</K> loop terminates
and the statement immediately following the <K>while</K> loop is executed
next.
Otherwise if it evaluates to <K>true</K> the
<A>statements</A> are executed and the whole process begins again.
<P/>
The difference between the <K>while</K> loop
and the <K>repeat</K> <K>until</K> loop (see <Ref Sect="Repeat"/>)
is that the <A>statements</A> in the <K>repeat</K> <K>until</K> loop are
executed at least once, while the <A>statements</A> in the <K>while</K> loop
are not executed at all if <A>bool-expr</A> is <K>false</K> at the first
iteration.
<P/>
If <A>bool-expr</A> does not evaluate to <K>true</K> or <K>false</K> an error
is signalled and a break loop (see <Ref Sect="Break Loops"/>) is entered.
As usual you can leave the break loop with <C>quit;</C>.
If you enter <C>return false;</C>,
execution continues with the next statement immediately following the
<K>while</K> loop.
If you enter <C>return true;</C>, execution continues at <A>statements</A>,
after which the next evaluation of <A>bool-expr</A> may cause another error.
<P/>
The following example shows a <K>while</K> loop that sums up the squares
<M>1^2, 2^2, \ldots</M> until the sum exceeds <M>200</M>.
<P/>
<Example><![CDATA[
gap> i := 0;; s := 0;;
gap> while s <= 200 do
>    i := i + 1; s := s + i^2;
>  od;
gap> s;
204
]]></Example>
<P/>
A <K>while</K> loop may be left prematurely using <K>break</K>,
see <Ref Sect="Break"/>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="Repeat">
<Heading>Repeat</Heading>

<Index Subkey="repeat">loop</Index>
<Index Key="until"><K>until</K></Index>
<Index Key="repeat loop"><K>repeat</K> loop</Index>
<C>repeat <A>statements</A> until <A>bool-expr</A>;</C>
<P/>
The <K>repeat</K> loop executes the statement sequence <A>statements</A>
until the condition <A>bool-expr</A> evaluates to <K>true</K>.
<P/>
First <A>statements</A> are executed.
Then <A>bool-expr</A> is evaluated.
If it evaluates to <K>true</K> the <K>repeat</K> loop terminates
and the statement immediately following the <K>repeat</K> loop is executed
next.
Otherwise if it evaluates to <K>false</K> the whole process begins again
with the execution of the <A>statements</A>.
<P/>
The difference between the <K>while</K> loop (see <Ref Sect="While"/>)
and the <K>repeat</K> <K>until</K> loop is that the <A>statements</A>
in the <K>repeat</K> <K>until</K> loop are executed at least once,
while the <A>statements</A> in the <K>while</K> loop are not executed at all
if <A>bool-expr</A> is <K>false</K> at the first iteration.
<P/>
If <A>bool-expr</A> does not evaluate to <K>true</K> or <K>false</K>
an error is signalled and a break loop (see <Ref Sect="Break Loops"/>)
is entered.
As usual you can leave the break loop with <C>quit;</C>.
If you enter <C>return true;</C>,
execution continues with the next statement immediately following the
<K>repeat</K> loop.
If you enter <C>return false;</C>, execution continues at <A>statements</A>,
after which the next evaluation of <A>bool-expr</A> may cause another error.
<P/>
The <K>repeat</K> loop in the following example has the same purpose as the
<K>while</K> loop in the preceding example, namely to sum up the squares
<M>1^2, 2^2, \ldots</M> until the sum exceeds <M>200</M>.
<P/>
<Example><![CDATA[
gap> i := 0;; s := 0;;
gap> repeat
>    i := i + 1; s := s + i^2;
>  until s > 200;
gap> s;
204
]]></Example>
<P/>
A <K>repeat</K> loop may be left prematurely using <K>break</K>,
see <Ref Sect="Break"/>.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="For">
<Heading>For</Heading>

<Index Subkey="for">loop</Index>
<Index Key="do"><K>do</K></Index>
<Index Key="od"><K>od</K></Index>
<C>for <A>simple-var</A> in <A>list-expr</A> do <A>statements</A> od;</C>
<Index Key="for loop"><K>for</K> loop</Index>
<P/>
The <K>for</K> loop executes the statement sequence <A>statements</A> for
every element of the list <A>list-expr</A>.
<P/>
The statement sequence <A>statements</A> is first executed with
<A>simple-var</A> bound to the first element of the list <A>list-expr</A>,
then with <A>simple-var</A> bound to the second element of <A>list-expr</A>
and so on.
<A>simple-var</A> must be a simple variable, it must not be a list element
selection <C><A>list-var</A>[<A>int-expr</A>]</C>
or a record component selection <C><A>record-var</A>.<A>ident</A></C>.
<P/>
The execution of the <K>for</K> loop over a list is exactly equivalent to
the following <K>while</K> loop.
<P/>
<Listing><![CDATA[
loop_list := list;
loop_index := 1;
while loop_index <= Length(loop_list) do
  variable := loop_list[loop_index];
  statements
  loop_index := loop_index + 1;
od;
]]></Listing>
<P/>
with the  exception  that <Q>loop_list</Q> and <Q>loop_index</Q> are different
variables for each <K>for</K> loop,
i.e., these variables of different <K>for</K> loops do not interfere with
each other.
<P/>
The list <A>list-expr</A> is very often a range (see&nbsp;<Ref Sect="Ranges"/>).
<P/>
<P/>
<Index>loop over range</Index>
<C>for <A>variable</A> in [<A>from</A>..<A>to</A>] do <A>statements</A> od;</C>
<P/>
corresponds to the more common
<P/>
<C>for <A>variable</A> from <A>from</A> to <A>to</A> do <A>statements</A> od;</C>
<P/>
in other programming languages.
<P/>
<Example><![CDATA[
gap> s := 0;;
gap> for i in [1..100] do
>    s := s + i;
> od;
gap> s;
5050
]]></Example>
<P/>
Note in the following example how the modification of the <E>list</E> in the
loop body causes the loop body also to be executed for the new values.
<P/>
<Example><![CDATA[
gap> l := [ 1, 2, 3, 4, 5, 6 ];;
gap> for i in l do
>    Print( i, " " );
>    if i mod 2 = 0 then Add( l, 3 * i / 2 ); fi;
> od; Print( "\n" );
1 2 3 4 5 6 3 6 9 9
gap> l;
[ 1, 2, 3, 4, 5, 6, 3, 6, 9, 9 ]
]]></Example>
<P/>
Note in the following example that the modification of the <E>variable</E>
that holds the list has no influence on the loop.
<P/>
<Example><![CDATA[
gap> l := [ 1, 2, 3, 4, 5, 6 ];;
gap> for i in l do
>    Print( i, " " );
>    l := [];
> od; Print( "\n" );
1 2 3 4 5 6
gap> l;
[  ]
]]></Example>
<P/>
<Index>loop over iterator</Index>
<C>for <A>variable</A> in <A>iterator</A> do <A>statements</A> od;</C>
<P/>
It is also possible to have a <K>for</K>-loop run over an iterator
(see&nbsp;<Ref Sect="Iterators"/>). In this case
the <K>for</K>-loop is equivalent to
<P/>
<Listing><![CDATA[
while not IsDoneIterator(iterator) do
  variable := NextIterator(iterator)
  statements
od;
]]></Listing>
<P/>
<Index>loop over object</Index>
<C>for <A>variable</A> in <A>object</A> do <A>statements</A> od;</C>
<P/>
Finally, if an object <A>object</A> which is not a list or an iterator appears in a
<K>for</K>-loop, then &GAP; will attempt to evaluate the function call
<C>Iterator(<A>object</A>)</C>. If this is successful then the loop is taken to
run over the iterator returned.
<P/>
<Example><![CDATA[
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([ (1,2,3,4,5), (1,2)(3,4)(5,6) ])
gap> count := 0;; sumord := 0;;
gap> for x in g do
> count := count + 1; sumord := sumord + Order(x); od;
gap> count;
120
gap> sumord;
471
]]></Example>
<P/>
The effect of
<P/>
<C>for <A>variable</A> in <A>domain</A> do</C>
<P/>
should thus normally be the same as
<P/>
<C>for <A>variable</A> in AsList(<A>domain</A>) do</C>
<P/>
but may use much less storage, as the iterator may be more compact than
a list of all the elements.
<P/>
See <Ref Sect="Iterators"/> for details about iterators.
<P/>
A <K>for</K> loop may be left prematurely using <K>break</K>,
see <Ref Sect="Break"/>. This
combines especially well with a loop over an iterator, as a way of
searching through a domain for an element with some useful property.

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="Break">
<Heading>Break</Heading>

<Index Subkey="leaving">loops</Index>
<C>break;</C>
<Index Key="break statement"><K>break</K> statement</Index>
<P/>
The statement <C>break;</C> causes an immediate exit from the innermost
loop enclosing it.
<P/>
<Example><![CDATA[
gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([ (1,2,3,4,5), (1,2)(3,4)(5,6) ])
gap> for x in g do
> if Order(x) = 3 then
> break;
> fi; od;
gap> x;
(1,5,2)(3,4,6)
]]></Example>
<P/>
It is an error to use this statement other than inside a loop.
<P/>
<Log><![CDATA[
gap> break;
Syntax error: 'break' statement not enclosed in a loop
]]></Log>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="Continue">
<Heading>Continue</Heading>

<Index Subkey="restarting">loops</Index>
<C>continue;</C>
<Index Key="continue statement"><K>continue</K> statement</Index>
<P/>
The statement <C>continue;</C> causes the rest of the current iteration of
the innermost loop enclosing it to be skipped.
<P/>
<Example><![CDATA[
gap> g := Group((1,2,3),(1,2));
Group([ (1,2,3), (1,2) ])
gap> for x in g do
> if Order(x) = 3 then
> continue;
> fi; Print(x,"\n"); od;
()
(2,3)
(1,3)
(1,2)
]]></Example>
<P/>
It is an error to use this statement other than inside a loop.
<P/>
<Log><![CDATA[
gap> continue;
Syntax error: 'continue' statement not enclosed in a loop
]]></Log>

</Subsection>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="Return">
<Heading>Return (With or without Value)</Heading>

<Index Key="return" Subkey="no value"><K>return</K></Index>
<C>return;</C>
<P/>
In this form <K>return</K> terminates the call of the innermost function that
is currently executing, and control returns to the calling function. An
error is signalled if no function is currently executing. No value is
returned by the function.
<P/>
<C>return <A>expr</A>;</C>
<Index Key="return" Subkey="with value"><K>return</K></Index>
<P/>
In this form <K>return</K> terminates the call of the innermost function that
is currently executing, and returns the value of the expression <A>expr</A>.
Control returns to the calling function. An error is signalled if no
function is currently executing.
<P/>
Both statements can also be used in break loops
(see <Ref Sect="Break Loops"/>).
<C>return;</C> has the effect that the computation continues where it was
interrupted by an error or the user hitting <B>Ctrl-C</B>.
<C>return <A>expr</A>;</C> can be used to continue execution after an error.
What happens with the value <A>expr</A> depends on the particular error.
<P/>
For examples of <K>return</K> statements, see the functions <C>fib</C> and
<C>Stack</C> in Section&nbsp;<Ref Sect="Function"/>.

</Subsection>

</Section>

<Section Label="Syntax Trees">
    <Heading>Syntax Trees</Heading>

    This section describes the tools available to handle &GAP; syntax trees.

    <#Include Label="SyntaxTree">
</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!--
<Section Label="The Syntax in BNF">
<Heading>The Syntax in BNF</Heading>

<Index>BNF</Index>
This section contains the definition of the &GAP; syntax in
Backus-Naur form. A few recent additions to the syntax may be missing
from this definition. Also, the actual rules for identifier names
implemented by the system, are somewhat more permissive than those
given below (see section <Ref Sect="Identifiers"/>).
<P/>
A  BNF is a set of rules, whose left side  is the name of  a  syntactical
construct.  Those  names  are written using <A>this font</A>.
The right side of each rule contains a possible form for that
syntactic  construct.   Each  right  side  may  contain  names  of  other
syntactic  constructs,  again  enclosed in angle brackets and written  in
<A>italics</A>,  or character  sequences that  must  occur literally; they are
written in <C>this font</C>.
<P/>
Furthermore  each right hand side  can contain  the  following metasymbols.
If the right  hand  side contains forms separated
by a pipe symbol  (<M>|</M>)  this means  that one  of the possible forms can
occur.  If a part of a form  is enclosed  in square brackets  (<C>[]</C>)  this
means that this part is optional, i.e.  might be present or  missing.  If
part  of the form is enclosed  in curly braces  (<C>{}</C>)  this means that
the part may occur arbitrarily often, or possibly be missing.
<P/>
<Table Align="lll">
<Row>
  <Item><A>Ident</A></Item>
  <Item>:=</Item>
  <Item><C>a</C><M>|\ldots|</M><C>z</C><M>|</M>
        <C>A</C><M>|\ldots|</M><C>Z</C><M>|</M>
        <C>_</C>
        <C>{a</C><M>|\ldots|</M><C>z</C><M>|</M>
                <C>A</C><M>|\ldots|</M><C>Z</C><M>|</M>
                <C>0</C><M>|\ldots|</M><C>9</C><M>|</M>
                <C>_}</C></Item>
</Row>
<Row>
  <Item><A>Var</A></Item>
  <Item>:=</Item>
  <Item><A>Ident</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>.</C> <A>Ident</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>. (</C> <A>Expr</A> <C>)</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>[</C> <A>Expr</A> <C>]</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>{</C> <A>Expr</A> <C>}</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>(</C> [ <A>Expr</A> <C>{,</C> <A>Expr</A> <C>} ] )</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>!.</C> <A>Ident</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>!. (</C> <A>Expr</A> <C>)</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>![</C> <A>Expr</A> <C>]</C></Item>
</Row>
<Row>
  <Item><A>List</A></Item>
  <Item>:=</Item>
  <Item><C>[</C> [ <A>Expr</A> ] <C>{,</C> [ <A>Expr</A> ] <C>} ]</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><C>[</C> <A>Expr</A> [<C>,</C> <A>Expr</A> ] <C>..</C> <A>Expr</A> <C>]</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>List</A> <C>{</C> <A>List</A> <C>}</C></Item>
</Row>
<Row>
  <Item><A>Record</A></Item>
  <Item>:=</Item>
  <Item><C>rec(</C> [ <A>Ident</A> <C>:=</C> <A>Expr</A>
                         <C>{,</C> <A>Ident</A> <C>:=</C> <A>Expr</A> <C>} ] )</C></Item>
</Row>
<Row>
  <Item><A>Permutation</A></Item>
  <Item>:=</Item>
  <Item><C>(</C> <A>Expr</A> <C>{,</C> <A>Expr</A> <C>} )</C>
                    <C>{ (</C> <A>Expr</A> <C>{,</C> <A>Expr</A> <C>} ) }</C></Item>
</Row>
<Row>
  <Item><A>Function</A></Item>
  <Item>:=</Item>
  <Item><C>function (</C> [ <A>Ident</A> <C>{,</C> <A>Ident</A> <C>} ] )</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item></Item>
  <Item>[ <K>local</K> <A>Ident</A> <C>{,</C> <A>Ident</A> <C>} ;</C> ]</Item>
</Row>
<Row>
  <Item></Item>
  <Item></Item>
  <Item><A>Statements</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item></Item>
  <Item><K>end</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Ident</A> <C>-></C> <A>Expr</A></Item>
</Row>
<Row>
  <Item><A>Char</A></Item>
  <Item>:=</Item>
  <Item><C>'<A>any character</A>'</C></Item>
</Row>
<Row>
  <Item><A>String</A></Item>
  <Item>:=</Item>
  <Item><C>" {</C> <A>any character</A> <C>} "</C></Item>
</Row>
<Row>
  <Item><A>Int</A></Item>
  <Item>:=</Item>
  <Item><C>0</C><M>|</M><C>1</C><M>|</M>...<M>|</M><C>9</C>
        <C>{0</C><M>|</M><C>1</C><M>|</M>...<M>|</M><C>9}</C></Item>
</Row>
<Row>
  <Item><A>Atom</A></Item>
  <Item>:=</Item>
  <Item><A>Int</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><C>(</C> <A>Expr</A> <C>)</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Permutation</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Char</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>String</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Function</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>List</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Record</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><C>{</C> <K>not</K> <C>}</C> <K>true</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><C>{</C> <K>not</K> <C>}</C> <K>false</K></Item>
</Row>
<Row>
  <Item><A>Factor</A></Item>
  <Item>:=</Item>
  <Item><C>{+</C><M>|</M><C>-}</C> <A>Atom</A>
                [ <C>^ {+</C><M>|</M><C>-}</C> <A>Atom</A> ]</Item>
</Row>
<Row>
  <Item><A>Term</A></Item>
  <Item>:=</Item>
  <Item><A>Factor</A> <C>{ *</C><M>|</M><C>/</C><M>|</M><K>mod</K> <A>Factor</A> <C>}</C></Item>
</Row>
<Row>
  <Item><A>Arith</A></Item>
  <Item>:=</Item>
  <Item><A>Term</A> <C>{ +</C><M>|</M><C>-</C> <A>Term</A> <C>}</C></Item>
</Row>
<Row>
  <Item><A>Rel</A></Item>
  <Item>:=</Item>
  <Item><C>{</C> <K>not</K> <C>}</C> <A>Arith</A>
                [ <C>=</C><M>|</M><C>&lt;></C><M>|</M><C>&lt;</C><M>|</M><C>></C><M>|</M><C>&lt;=</C><M>|</M><C>>=</C><M>|</M><K>in</K> <A>Arith</A> ]</Item>
</Row>
<Row>
  <Item><A>And</A></Item>
  <Item>:=</Item>
  <Item><A>Rel</A> <C>{</C> <K>and</K> <A>Rel</A> <C>}</C></Item>
</Row>
<Row>
  <Item><A>Logical</A></Item>
  <Item>:=</Item>
  <Item><A>And</A> <C>{</C> <K>or</K> <A>And</A> <C>}</C></Item>
</Row>
<Row>
  <Item><A>Expr</A></Item>
  <Item>:=</Item>
  <Item><A>Logical</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A></Item>
</Row>
<Row>
  <Item><A>Statement</A></Item>
  <Item>:=</Item>
  <Item><A>Expr</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><A>Var</A> <C>:=</C> <A>Expr</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>if</K> <A>Expr</A> <K>then</K> <A>Statements</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item></Item>
  <Item><C>{</C> <K>elif</K> <A>Expr</A> <K>then</K> <A>Statements</A> <C>}</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item></Item>
  <Item>[ <K>else</K> <A>Statements</A> ] <K>fi</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>for</K> <A>Var</A> <K>in</K> <A>Expr</A> <K>do</K> <A>Statements</A> <K>od</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>while</K> <A>Expr</A> <K>do</K> <A>Statements</A> <K>od</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>repeat</K> <A>Statements</A> <K>until</K> <A>Expr</A></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>return</K> [ <A>Expr</A> ]</Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>break</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>quit</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><K>QUIT</K></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item></Item>
</Row>
<Row>
  <Item><A>Statements</A></Item>
  <Item>:=</Item>
  <Item><C>{</C> <A>Statement</A> <C>; }</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item><C>;</C></Item>
</Row>
<Row>
  <Item></Item>
  <Item><M>|</M></Item>
  <Item></Item>
</Row>
</Table>

</Section>
-->
</Chapter>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->