1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %W meataxe.tex GAP documentation Alexander Hulpke -->
<!-- %% -->
<!-- %% -->
<!-- %Y Copyright 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany -->
<!-- %% -->
<!-- %% This file contains a description of the MeatAxe functions. -->
<!-- %% -->
<Chapter Label="The MeatAxe">
<Heading>The MeatAxe</Heading>
The MeatAxe <Cite Key="Par84"/> is a tool for the examination of submodules of a
group algebra. It is a basic tool for the examination of group actions on
finite-dimensional modules.
<P/>
&GAP; uses the improved MeatAxe of Derek Holt and Sarah Rees, and
also incorporates further improvements of Ivanyos and Lux.
<P/>
Please note that, consistently with the convention for group actions, the action of the &GAP; MeatAxe is always that of matrices
on row vectors by multiplication on the right. If you want to investigate
left modules you will have to transpose the matrices.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="MeatAxe Modules">
<Heading>MeatAxe Modules</Heading>
<ManSection>
<Heading>GModuleByMats</Heading>
<Func Name="GModuleByMats" Arg='gens, field'
Label="for generators and a field"/>
<Func Name="GModuleByMats" Arg='emptygens, dim, field'
Label="for empty list, the dimension, and a field"/>
<Description>
creates a MeatAxe module over <A>field</A> from a list of invertible matrices
<A>gens</A> which reflect a group's action. If the list of generators is empty,
the dimension must be given as second argument.
<P/>
MeatAxe routines are on a level with Gaussian elimination. Therefore they do
not deal with &GAP; modules but essentially with lists of matrices. For the
MeatAxe, a module is a record with components
<P/>
<List>
<Mark><C>generators</C></Mark>
<Item>
A list of matrices which represent a group operation on a
finite dimensional row vector space.
</Item>
<Mark><C>dimension</C></Mark>
<Item>
The dimension of the vector space (this is the common length of
the row vectors (see <Ref Attr="DimensionOfVectors"/>)).
</Item>
<Mark><C>field</C></Mark>
<Item>
The field over which the vector space is defined.
</Item>
</List>
<P/>
Once a module has been created its entries may not be changed. A MeatAxe may
create a new component <A>NameOfMeatAxe</A> in which it can store private
information. By a MeatAxe <Q>submodule</Q> or <Q>factor module</Q> we denote
actually the <E>induced action</E> on the submodule, respectively factor module.
Therefore the submodules or factor modules are again MeatAxe modules. The
arrangement of <C>generators</C> is guaranteed to be the same for the induced
modules, but to obtain the complete relation to the original module, the
bases used are needed as well.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Module Constructions">
<Heading>Module Constructions</Heading>
<ManSection>
<Heading>NaturalGModule</Heading>
<Func Name="NaturalGModule" Arg='group[, field]' Label="for matrix group and a field"/>
<Description>
creates a MeatAxe module over <A>field</A> from the generators of the matrix
group <A>group</A>. If <A>field</A> is not provided then the value returned by
<Ref Attr="DefaultFieldOfMatrixGroup"/> is used instead.
</Description>
</ManSection>
<ManSection>
<Func Name="PermutationGModule" Arg='G, F'/>
<Description>
Called with a permutation group <A>G</A> and a field <A>F</A> (<A>F</A> may be infinite),
<Ref Func="PermutationGModule"/> returns the natural permutation module
<M>M</M> over <A>F</A>
for the group of permutation matrices that acts on the canonical basis of
<M>M</M> in the same way as <A>G</A> acts on the points up to its largest
moved point (see <Ref Attr="LargestMovedPoint" Label="for a list or collection of permutations"/>).
</Description>
</ManSection>
<ManSection>
<Func Name="TrivialGModule" Arg='G, F'/>
<Description>
Called with a group <A>G</A> and a field <A>F</A> (<A>F</A> may be infinite),
<Ref Func="TrivialGModule"/> returns the trivial module over <A>F</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="TensorProductGModule" Arg='m1, m2'/>
<Description>
<Ref Func="TensorProductGModule"/> calculates the tensor product
of the modules <A>m1</A> and <A>m2</A>.
They are assumed to be modules over the same algebra so, in particular,
they should have the same number of generators.
</Description>
</ManSection>
<ManSection>
<Func Name="WedgeGModule" Arg='module'/>
<Description>
<Ref Func="WedgeGModule"/> calculates the wedge product of a <A>G</A>-module.
That is the action on antisymmetric tensors.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Selecting a Different MeatAxe">
<Heading>Selecting a Different MeatAxe</Heading>
<ManSection>
<Var Name="MTX"/>
<Description>
All MeatAxe routines are accessed via the global variable <Ref Var="MTX"/>,
which is a record whose components hold the various functions.
It is possible to have several implementations of a MeatAxe available.
Each MeatAxe represents its routines in an own global variable and assigning
<Ref Var="MTX"/> to this variable selects the corresponding MeatAxe.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Accessing a Module">
<Heading>Accessing a Module</Heading>
Even though a MeatAxe module is a record, its components should never be
accessed outside of MeatAxe functions. Instead the following operations
should be used:
<ManSection>
<Func Name="MTX.Generators" Arg='module'/>
<Description>
returns a list of matrix generators of <A>module</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.Dimension" Arg='module'/>
<Description>
returns the dimension in which the matrices act.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.Field" Arg='module'/>
<Description>
returns the field over which <A>module</A> is defined.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Irreducibility Tests">
<Heading>Irreducibility Tests</Heading>
<ManSection>
<Func Name="MTX.IsIrreducible" Arg='module'/>
<Description>
tests whether the module <A>module</A> is irreducible (i.e. contains no proper
submodules.)
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.IsAbsolutelyIrreducible" Arg='module'/>
<Description>
A module is absolutely irreducible if it remains irreducible over the
algebraic closure of the field.
(Formally: If the tensor product <M>L \otimes_K M</M> is irreducible
where <M>M</M> is the module defined over <M>K</M> and <M>L</M> is the
algebraic closure of <M>K</M>.)
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.DegreeSplittingField" Arg='module'/>
<Description>
returns the degree of the splitting field as extension of the prime field.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Decomposition of modules">
<Heading>Decomposition of modules</Heading>
A module is <E>decomposable</E> if it can be written as the direct sum of two
proper submodules (and <E>indecomposable</E> if not). Obviously every finite
dimensional module is a direct sum of its indecomposable parts.
The <E>homogeneous components</E> of a module are the direct sums of isomorphic
indecomposable components. They are uniquely determined.
<P/>
<ManSection>
<Func Name="MTX.IsIndecomposable" Arg='module'/>
<Description>
returns whether <A>module</A> is indecomposable.
</Description>
</ManSection>
<P/>
<ManSection>
<Func Name="MTX.Indecomposition" Arg='module'/>
<Description>
returns a decomposition of <A>module</A> as a direct sum of indecomposable
modules. It returns a list, each entry is a list of form [<A>B</A>,<A>ind</A>] where
<A>B</A> is a list of basis vectors for the indecomposable component and <A>ind</A>
the induced module action on this component. (Such a decomposition is not
unique.)
</Description>
</ManSection>
<P/>
<ManSection>
<Func Name="MTX.HomogeneousComponents" Arg='module'/>
<Description>
computes the homogeneous components of <A>module</A> given as sums of
indecomposable components. The function returns a list, each entry of which
is a record corresponding to one isomorphism type of indecomposable
components.
The record has the following components.
<P/>
<List>
<Mark><C>indices</C></Mark>
<Item>
the index numbers of the indecomposable components,
as given by <Ref Func="MTX.Indecomposition"/>,
that are in the homogeneous component,
</Item>
<Mark><C>component</C></Mark>
<Item>
one of the indecomposable components,
</Item>
<Mark><C>images</C></Mark>
<Item>
a list of the remaining indecomposable components,
each given as a record with the components
<C>component</C> (the component itself) and
<C>isomorphism</C> (an isomorphism from the defining component to this one).
</Item>
</List>
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Finding Submodules">
<Heading>Finding Submodules</Heading>
<ManSection>
<Func Name="MTX.SubmoduleGModule" Arg='module, subspace'/>
<Func Name="MTX.SubGModule" Arg='module, subspace'/>
<Description>
<A>subspace</A> should be a subspace of (or a vector in) the underlying vector
space of <A>module</A> i.e. the full row space of the same dimension and over
the same field as <A>module</A>. A normalized basis of the submodule of
<A>module</A> generated by <A>subspace</A> is returned.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.ProperSubmoduleBasis" Arg='module'/>
<Description>
returns the basis of a proper submodule of <A>module</A> and <K>fail</K> if no proper
submodule exists.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasesSubmodules" Arg='module'/>
<Description>
returns a list containing a basis for every submodule.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasesMinimalSubmodules" Arg='module'/>
<Description>
returns a list of bases of all minimal submodules.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasesMaximalSubmodules" Arg='module'/>
<Description>
returns a list of bases of all maximal submodules.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasisRadical" Arg='module'/>
<Description>
returns a basis of the radical of <A>module</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasisSocle" Arg='module'/>
<Description>
returns a basis of the socle of <A>module</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasesMinimalSupermodules" Arg='module, sub'/>
<Description>
returns a list of bases of all minimal supermodules of the submodule given by
the basis <A>sub</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasesCompositionSeries" Arg='module'/>
<Description>
returns a list of bases of submodules in a composition series in ascending
order.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.CompositionFactors" Arg='module'/>
<Description>
returns a list of composition factors of <A>module</A> in ascending order.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.CollectedFactors" Arg='module'/>
<Description>
returns a list giving all irreducible composition factors with their
frequencies.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Induced Actions">
<Heading>Induced Actions</Heading>
<ManSection>
<Func Name="MTX.NormedBasisAndBaseChange" Arg='sub'/>
<Description>
returns a list <C>[<A>bas</A>, <A>change</A> ]</C> where <A>bas</A> is a
normed basis (i.e. in echelon form with pivots normed to 1) for <A>sub</A>
and <A>change</A> is the base change from <A>bas</A> to <A>sub</A>
(the basis vectors of <A>bas</A> expressed in coefficients for <A>sub</A>).
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.InducedActionSubmodule" Arg='module, sub'/>
<Func Name="MTX.InducedActionSubmoduleNB" Arg='module, sub'/>
<Description>
creates a new module corresponding to the action of <A>module</A> on
the non-trivial submodule
<A>sub</A>.
In the <C>NB</C> version the basis <A>sub</A> must be normed.
(That is it must be in echelon form with pivots normed to 1,
see <Ref Func="MTX.NormedBasisAndBaseChange"/>.)
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.InducedActionFactorModule" Arg='module, sub[, compl]'/>
<Description>
creates a new module corresponding to the action of <A>module</A> on the
factor of the proper submodule <A>sub</A>. If <A>compl</A> is given, it has to be a basis of a
(vector space-)complement of <A>sub</A>. The action then will correspond to
<A>compl</A>.
<P/>
The basis <A>sub</A> has to be given in normed form. (That is it must be in
echelon form with pivots normed to 1,
see <Ref Func="MTX.NormedBasisAndBaseChange"/>)
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.InducedActionSubMatrix" Arg='mat, sub'/>
<Func Name="MTX.InducedActionSubMatrixNB" Arg='mat, sub'/>
<Func Name="MTX.InducedActionFactorMatrix" Arg='mat, sub[, compl]'/>
<Description>
work the same way as the above functions for modules, but take as input only
a single matrix.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.InducedAction" Arg='module, sub[, type]'/>
<Description>
Computes induced actions on submodules or factor modules and also returns the
corresponding bases. The action taken is binary encoded in <A>type</A>:
<C>1</C> stands for subspace action,
<C>2</C> for factor action,
and <C>4</C> for action of the full module on a subspace adapted basis.
The routine returns the computed results in a list in sequence
(<A>sub</A>,<A>quot</A>,<A>both</A>,<A>basis</A>)
where <A>basis</A> is a basis for the whole space,
extending <A>sub</A>. (Actions which are not computed are omitted, so the
returned list may be shorter.)
If no <A>type</A> is given, it is assumed to be <C>7</C>.
The basis given in <A>sub</A> must be normed!
<P/>
All these routines return <K>fail</K> if <A>sub</A> is not a proper subspace.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Module Homomorphisms">
<Heading>Module Homomorphisms</Heading>
<ManSection>
<Func Name="MTX.BasisModuleHomomorphisms" Arg='module1, module2'/>
<Description>
returns a basis of all module homomorphisms from <A>module1</A> to
<A>module2</A>.
Homomorphisms are by matrices, whose rows give the images of the
standard basis vectors of <A>module1</A> in the standard basis of
<A>module2</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.BasisModuleEndomorphisms" Arg='module'/>
<Description>
returns a basis of all module homomorphisms from <A>module</A> to <A>module</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.IsomorphismModules" Arg='module1, module2'/>
<Description>
If <A>module1</A> and <A>module2</A> are isomorphic modules,
this function returns an isomorphism from <A>module1</A> to <A>module2</A>
in form of a matrix.
It returns <K>fail</K> if the modules are not isomorphic.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.ModuleAutomorphisms" Arg='module'/>
<Description>
returns the module automorphisms of <A>module</A> (the set of all isomorphisms
from <A>module</A> to itself) as a matrix group.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Module Homomorphisms for irreducible modules">
<Heading>Module Homomorphisms for irreducible modules</Heading>
The following are lower-level functions that provide homomorphism
functionality for irreducible modules. Generic code should use the functions
in Section <Ref Sect="Module Homomorphisms"/> instead.
<ManSection>
<Func Name="MTX.IsEquivalent" Arg='module1, module2'/>
<Description>
tests two irreducible modules for equivalence.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.IsomorphismIrred" Arg='module1, module2'/>
<Description>
returns an isomorphism from <A>module1</A> to <A>module2</A> (if one exists),
and <K>fail</K> otherwise. It requires that one of the modules is known to be
irreducible. It implicitly assumes that the same group is acting, otherwise
the results are unpredictable.
The isomorphism is given by a matrix <M>M</M>, whose rows give the images of
the standard basis vectors of <A>module1</A> in the standard basis of
<A>module2</A>.
That is, conjugation of the generators of <A>module2</A> with <M>M</M> yields
the generators of <A>module1</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.Homomorphism" Arg='module1, module2, mat'/>
<Description>
<A>mat</A> should be a <A>dim1</A> <M>\times</M> <A>dim2</A> matrix
defining a homomorphism from <A>module1</A> to <A>module2</A>.
This function verifies that <A>mat</A>
really does define a module homomorphism, and then returns the
corresponding homomorphism between the underlying row spaces of the
modules. This can be used for computing kernels, images and pre-images.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.Homomorphisms" Arg='module1, module2'/>
<Description>
returns a basis of the space of all homomorphisms from the irreducible module
<A>module1</A> to <A>module2</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.Distinguish" Arg='cf, nr'/>
<Description>
Let <A>cf</A> be the output of <Ref Func="MTX.CollectedFactors"/>.
This routine tries to find a group algebra element that has nullity zero
on all composition factors except number <A>nr</A>.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="meataxe:Invariant Forms">
<Heading>MeatAxe Functionality for Invariant Forms</Heading>
The functions in this section can only be applied to an absolutely irreducible
MeatAxe module.
<ManSection>
<Func Name="MTX.InvariantBilinearForm" Arg='module'/>
<Description>
returns an invariant bilinear form, which may be symmetric or anti-symmetric,
of <A>module</A>, or <K>fail</K> if no such form exists.
</Description>
</ManSection>
<ManSection>
<Func Name="MTX.InvariantSesquilinearForm" Arg='module'/>
<Description>
returns an invariant hermitian (= self-adjoint) sesquilinear form of
<A>module</A>,
which must be defined over a finite field whose order is a square,
or <K>fail</K> if no such form exists.
</Description>
</ManSection>
<#Include Label="MTX.InvariantQuadraticForm">
<ManSection>
<Func Name="MTX.BasisInOrbit" Arg='module'/>
<Description>
returns a basis of the underlying vector space of <A>module</A> which is contained
in an orbit of the action of the generators of module on that space.
This is used by <Ref Func="MTX.InvariantQuadraticForm"/> in characteristic 2.
</Description>
</ManSection>
<#Include Label="MTX.OrthogonalSign">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="The Smash MeatAxe">
<Heading>The Smash MeatAxe</Heading>
The standard MeatAxe provided in the &GAP; library is
based on the MeatAxe in the &GAP; 3 package <Package>Smash</Package>,
originally written by Derek Holt and Sarah Rees <Cite Key="HR94"/>.
It is accessible via the variable <C>SMTX</C> to which <Ref Var="MTX"/>
is assigned by default.
For the sake of completeness the remaining sections document more technical
functions of this MeatAxe.
<ManSection>
<Func Name="SMTX.RandomIrreducibleSubGModule" Arg='module'/>
<Description>
returns the module action on a random irreducible submodule.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.GoodElementGModule" Arg='module'/>
<Description>
finds an element with minimal possible nullspace dimension if <A>module</A>
is known to be irreducible.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.SortHomGModule" Arg='module1, module2, homs'/>
<Description>
Function to sort the output of <C>Homomorphisms</C>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.MinimalSubGModules" Arg='module1, module2[, max]'/>
<Description>
returns (at most <A>max</A>) bases of submodules of <A>module2</A> which are
isomorphic to the irreducible module <A>module1</A>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.Setter" Arg='string'/>
<Description>
returns a setter function for the component <C>smashMeataxe.(string)</C>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.Getter" Arg='string'/>
<Description>
returns a getter function for the component <C>smashMeataxe.(string)</C>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.IrreducibilityTest" Arg='module'/>
<Description>
Tests for irreducibility and sets a subbasis if reducible. It neither sets
an irreducibility flag, nor tests it. Thus the routine also can simply be
called to obtain a random submodule.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.AbsoluteIrreducibilityTest" Arg='module'/>
<Description>
Tests for absolute irreducibility and sets splitting field degree. It
neither sets an absolute irreducibility flag, nor tests it.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.MinimalSubGModule" Arg='module, cf, nr'/>
<Description>
returns the basis of a minimal submodule of <A>module</A> containing the
indicated composition factor. It assumes <C>Distinguish</C> has been called
already.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.MatrixSum" Arg='matrices1, matrices2'/>
<Description>
creates the direct sum of two matrix lists.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.CompleteBasis" Arg='module, pbasis'/>
<Description>
extends the partial basis <A>pbasis</A> to a basis of the full space
by action of <A>module</A>. It returns whether it succeeded.
</Description>
</ManSection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Smash MeatAxe Flags">
<Heading>Smash MeatAxe Flags</Heading>
The following getter routines access internal flags. For each routine, the
appropriate setter's name is prefixed with <C>Set</C>.
<ManSection>
<Func Name="SMTX.Subbasis" Arg='module'/>
<Description>
Basis of a submodule.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.AlgEl" Arg='module'/>
<Description>
list <C>[newgens,coefflist]</C> giving an algebra element used for chopping.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.AlgElMat" Arg='module'/>
<Description>
matrix of <Ref Func="SMTX.AlgEl"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.AlgElCharPol" Arg='module'/>
<Description>
minimal polynomial of <Ref Func="SMTX.AlgEl"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.AlgElCharPolFac" Arg='module'/>
<Description>
uses factor of <Ref Func="SMTX.AlgEl"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.AlgElNullspaceVec" Arg='module'/>
<Description>
nullspace of the matrix evaluated under this factor.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.AlgElNullspaceDimension" Arg='module'/>
<Description>
dimension of the nullspace.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.CentMat" Arg='module'/>
<Description>
matrix centralising all generators which is computed as
a byproduct of <Ref Func="SMTX.AbsoluteIrreducibilityTest"/>.
</Description>
</ManSection>
<ManSection>
<Func Name="SMTX.CentMatMinPoly" Arg='module'/>
<Description>
minimal polynomial of <Ref Func="SMTX.CentMat"/>.
</Description>
</ManSection>
</Section>
</Chapter>
|