File: pperm.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1777 lines) | stat: -rw-r--r-- 72,440 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
<Chapter Label="Partial permutations">
<Heading>Partial permutations</Heading>

This chapter describes the functions in &GAP; for partial permutations.
<P/>

A <E>partial permutation</E> in &GAP; is simply an injective function from any
finite set of positive integers to any other finite set of positive integers.
The largest point on which a partial permutation can be defined, and the
largest value that the image of such a point can have, are defined by certain
architecture dependent limits. <P/>

Every inverse semigroup is isomorphic to an inverse semigroup of partial
permutations and, as such, partial permutations are to inverse semigroup theory
what permutations are to group theory and transformations are to semigroup
theory.  In this way, partial permutations are the
elements of inverse partial permutation semigroups.  <P/>

A partial permutations in &GAP; acts on a finite set of positive integers on
the right. The image of a point <C>i</C> under a partial permutation <C>f</C>
is expressed as <C>i^f</C> in &GAP;.  This action is also implemented by the
function <Ref Func="OnPoints"/>.  The preimage of a point <C>i</C> under the
partial permutation <C>f</C> can be computed using  <C>i/f</C> without
constructing the inverse of <C>f</C>.  Partial permutations in &GAP; are
created using the operations described in Section <Ref
  Sect="sect:CreatingPartialPerms"/>.
Partial permutations are, by default, displayed
in component notation, which is described in Section
<Ref Sect="sect:DisplayingPartialPerms"/>. <P/>

The fundamental attributes of a partial permutation are:
<List>
  <Mark>Domain</Mark>
  <Item>The <E>domain</E> of a partial permutation is just the set of positive
    integers where it is defined; see <Ref Attr="DomainOfPartialPerm"/>. We
    will denote the domain of a partial permutation <C>f</C> by dom(<C>f</C>).
  </Item>
  <Mark>Degree</Mark>
  <Item> The <E>degree</E> of a partial permutation <C>f</C> is just the largest
    positive integer where <C>f</C> is defined. In other words, the degree of
    <C>f</C> is the largest element in the domain of <C>f</C>;
    see <Ref Func="DegreeOfPartialPerm"/>.
  </Item>
  <Mark>Image list</Mark>
  <Item>
    The <E>image list</E> of a partial permutation <C>f</C> is the list
    <C>[i_1^f, i_2^f, .. , i_n^f]</C>
    where the domain of <C>f</C> is
    <C>[i_1, i_2, .., i_n]</C>
    see <Ref Attr="ImageListOfPartialPerm"/>. For example, the partial perm
    sending <C>1</C> to <C>5</C> and <C>2</C> to <C>4</C> has image list
    <C>[ 5, 4 ]</C>.
  </Item>
  <Mark>Image set</Mark>
  <Item>
    The <E>image set</E> of a partial permutation <C>f</C> is just the set of
    points in the image list (i.e. the image list after it has been sorted into
    increasing order);
    see <Ref Attr="ImageSetOfPartialPerm"/>. We will denote the image set of a
    partial permutation <C>f</C> by im(<C>f</C>).
  </Item>
  <Mark>Codegree</Mark>
  <Item> The <E>codegree</E> of a partial permutation <C>f</C> is just the
    largest positive integer of the form <C>i^f</C> for any <C>i</C>
    in the domain of <C>f</C>. In other words, the codegree of <C>f</C> is
    the largest element in the image of <C>f</C>; see
    <Ref Func="CodegreeOfPartialPerm"/>.
  </Item>
 <Mark>Rank</Mark>
  <Item>The <E>rank</E> of a partial permutation <C>f</C> is the size of its
    domain, or equivalently the size of its image set or image list; see
    <Ref Func="RankOfPartialPerm"/>.
  </Item>
</List>

  A <E>functional digraph</E> is a directed graph where every vertex has
  out-degree <C>1</C>.  A partial permutation <A>f</A> can be thought of as a
  functional digraph with vertices <C>[1..DegreeOfPartialPerm(f)]</C> and
  edges from <C>i</C> to <C>i^f</C> for every <C>i</C>. A <E>component</E>
  of a partial permutation is defined as a component of the corresponding
  functional digraph.
  More specifically, <C>i</C> and <C>j</C> are in the same component if and
  only if there are <M>i=v_0, v_1, \ldots, v_n=j</M> such that either
  <M>v_{k+1}=v_{k}^f</M> or <M>v_{k}=v_{k+1}^f</M> for all <C>k</C>. <P/>

  If <C>S</C> is a semigroup and <C>s</C> is an element of <C>S</C>, then an
  element <C>t</C> in <C>S</C> is a <E>semigroup inverse</E> for <C>s</C> if
  <C>s*t*s=s</C> and <C>t*s*t=t</C>; see, for example,
  <Ref Func="InverseOfTransformation"/>. A semigroup in which every element has
  a unique semigroup inverse is called an <E>inverse semigroup</E>.<P/>

  Every partial permutation belongs to a symmetric inverse monoid; see
  <Ref Oper="SymmetricInverseSemigroup"/>. Inverse semigroups of partial
  permutations are hence inverse subsemigroups of the symmetric inverse
  monoids. <P/>

  The inverse <C>f^-1</C> of a partial permutation <C>f</C> is simply the
  partial permutation that maps <C>i^f</C> to <C>i</C> for all <C>i</C> in the
  image of <C>f</C>. It follows that the domain of <C>f^-1</C> equals the
  image of <C>f</C> and that the image of <C>f^-1</C> equals the domain of
  <C>f</C>.  The inverse <C>f^-1</C> is the
  unique partial permutation with the property that <C>f*f^-1*f=f</C>
  and <C>f^-1*f*f^-1=f^-1</C>. In other words, <C>f^-1</C> is the unique
  semigroup inverse of <C>f</C> in the symmetric inverse monoid. <P/>

  If <C>f</C> and <C>g</C> are partial permutations, then the domain and image
  of the product are:
  <Alt Only='Text'>
  <Display>
    dom(fg)=(im(f)\cap dom(g))f^-1 and
    im(fg)=(im(f)\cap dom(g))g
  </Display>
  </Alt>
  <Alt Not='Text'>
  <Display>
    \textrm{dom}(fg)=(\textrm{im}(f)\cap \textrm{dom}(g))f^{-1}\textrm{ and }
    \textrm{im}(fg)=(\textrm{im}(f)\cap \textrm{dom}(g))g
  </Display>
  </Alt>

  A partial permutation is an idempotent if and only if it is the identity
  function on its domain.
  The products <C>f*f^-1</C> and <C>f^-1*f</C> are just the identity
  functions on the domain and image of <C>f</C>, respectively. It follows that
  <C>f*f^-1</C> is a left identity for <C>f</C> and <C>f^-1*f</C> is a right
  identity. These products will be referred to here
  as the <E>left one</E> and <E>right one</E> of the partial permutation
  <C>f</C>; see <Ref Attr="LeftOne" Label="for a partial perm"/>.  The
  <E>one</E> of a partial permutation is just the identity on the
  union of its domain and its image, and the <E>zero</E> of a partial
  permutation is just the empty partial permutation; see
  <Ref Meth="One" Label="for a partial perm"/> and
  <Ref Meth="MultiplicativeZero" Label="for a partial perm"/>.
  <P/>

  If <C>S</C> is an arbitrary inverse semigroup, the <E>natural partial
  order</E> on <C>S</C> is defined as follows: for elements <C>x</C> and
  <C>y</C> of <C>S</C> we say <C>x</C><M>\leq</M><C>y</C> if there exists an
  idempotent element <C>e</C> in <C>S</C> such that <C>x=ey</C>.
  In the context of the symmetric inverse monoid, a partial permutation
  <C>f</C> is less than or equal to a partial permutation <C>g</C> in the
  natural partial order if and only
  if <C>f</C> is a restriction of <C>g</C>. The natural partial order is a meet
  semilattice, in other words, every pair of elements has a greatest lower
  bound; see <Ref Func="MeetOfPartialPerms"/>.<P/>

  Note that unlike permutations, partial permutations do not fix unspecified
  points but are simply undefined on such points; see Chapter
  <Ref Chap="Permutations"/>. Similar to permutations, and unlike
  transformations, it is possible to multiply any two partial permutations in
  &GAP;.<P/>

  Internally, &GAP; stores a partial permutation <C>f</C> as a list consisting
  of the codegree of <C>f</C> and the images <C>i^f</C> of the points
  <C>i</C> that are less than or equal to the degree of <C>f</C>; the value
  <C>0</C> is stored where <C>i^f</C> is undefined.  The domain and image set
  of <C>f</C> are also stored after either of these values is computed. When
  the codegree of a partial permutation <C>f</C> is less than 65536, the
  codegree and images <C>i^f</C> are stored as 16-bit integers, the domain and
  image set are subobjects of <C>f</C>  which are immutable plain lists of
  &GAP; integers.  When the codegree of <C>f</C> is greater than or equal to
  65536, the codegree and images are stored as 32-bit integers; the domain and
  image set are stored in the same way as before. A partial permutation belongs
  to <C>IsPPerm2Rep</C> if it is stored using 16-bit integers  and to
  <C>IsPPerm4Rep</C> otherwise.
<P/>

In the names of the &GAP; functions that deal with partial permutations, the word <Q>Permutation</Q> is usually abbreviated to <Q>Perm</Q>, to save typing.
For example, the category test function for partial permutations is
<Ref Filt="IsPartialPerm"/>.

  <Section>
    <Heading>The family and categories of partial permutations</Heading>
  <ManSection>
    <Filt Name="IsPartialPerm" Arg='obj' Type='Category'/>
    <Returns><K>true</K> or <K>false</K>.</Returns>
    <Description>
    Every partial permutation in &GAP; belongs to the category
    <C>IsPartialPerm</C>. Basic operations for partial permutations are
    <Ref Attr="DomainOfPartialPerm"/>, <Ref Attr="ImageListOfPartialPerm"/>,
    <Ref Attr="ImageSetOfPartialPerm"/>, <Ref Func="RankOfPartialPerm"/>,
    <Ref Func="DegreeOfPartialPerm"/>, multiplication of two partial
    permutations is via <K>*</K>, and exponentiation with the first argument
    a positive integer <C>i</C> and second argument a partial permutation
    <C>f</C> where the result is the image <C>i^f</C> of the point <C>i</C>
    under <C>f</C>. The inverse of a partial permutation <C>f</C> can be
    obtains using <C>f^-1</C>.
    </Description>
  </ManSection>

  <ManSection>
    <Filt Name="IsPartialPermCollection" Arg='obj' Type='Category'/>
    <Description>
     Every collection of partial permutations belongs to the category
     <C>IsPartialPermCollection</C>.
      For example, a semigroup of partial permutations belongs
      in <C>IsPartialPermCollection</C>.
    </Description>
  </ManSection>

  <ManSection>
    <Fam Name="PartialPermFamily"/>
    <Description>
      The family of all partial permutations is <C>PartialPermFamily</C>
    </Description>
  </ManSection>
</Section>

<!-- *************************************************************** -->
<!-- *************************************************************** -->

<Section Label="sect:CreatingPartialPerms">
  <Heading>Creating partial permutations</Heading>

  There are several ways of creating partial permutations in &GAP;, which are
  described in this section.

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="PartialPerm" Arg="dom, img" Label="for a domain and image"/>
    <Func Name="PartialPerm" Arg="list" Label="for a dense image"/>
    <Returns>A partial permutation.</Returns>
    <Description>
      Partial permutations can be created in two ways: by giving the domain
      and the image, or the dense image list.<P/>

      <List>
        <Mark>Domain and image</Mark>
        <Item>
          The partial permutation defined by a domain <A>dom</A> and image
          <A>img</A>, where <A>dom</A> is a set of positive integers and
          <A>img</A> is a duplicate free list of positive integers, maps
          <A>dom</A><C>[i]</C> to <A>img</A><C>[i]</C>. For example,
          the partial permutation mapping <C>1</C> and <C>5</C> to <C>20</C> and
          <C>2</C> can be created using:
          <Log>PartialPerm([1,5],[20,2]); </Log>
          In this setting, <C>PartialPerm</C> is the analogue in the context of
          partial permutations of <Ref Func="MappingPermListList"/>.
        </Item>
        <Mark>Dense image list</Mark>
        <Item>
          The partial permutation defined by a dense image list <A>list</A>,
          maps the positive integer <C>i</C> to <A>list</A><C>[i]</C> if
          <A>list</A><C>[i]&lt;>0</C> and is undefined at <C>i</C> if
          <A>list</A><C>[i]=0</C>.  For example, the partial permutation
          mapping <C>1</C> and <C>5</C> to <C>20</C> and <C>2</C> can be
          created using: <Log>PartialPerm([20,0,0,0,2]);</Log>
          In this setting, <C>PartialPerm</C> is the analogue in the context of
          partial permutations of <Ref Func="PermList"/>.
        </Item>
      </List>

      Regardless of which of these two methods are used to create a partial
      permutation in &GAP; the internal representation is the same. <P/>

      If the largest point in the domain is larger than the
      rank of the partial permutation, then using the dense image list to
      define the partial permutation will require less typing; otherwise
      using the domain and the image will require less typing. For example,
      the partial permutation mapping <C>10000</C> to <C>1</C> can be defined
      using:
      <Log>PartialPerm([10000], [1]);</Log>
      but using the dense image list would require a list with <C>9999</C>
      entries equal to <C>0</C> and the final entry equal to <C>1</C>.
      On the other hand, the identity on <C>[1,2,3,4,6]</C> can be defined
      using:
      <Log>PartialPerm([1,2,3,4,0,6]);</Log>
      <P/>

      Please note that a partial permutation in &GAP; is never a permutation
      nor is a permutation ever a partial permutation. For example, the
      permutation <C>(1,4,2)</C> fixes <C>3</C> but the partial permutation
      <C>PartialPerm([4,1,0,2]);</C> is not defined on <C>3</C>.
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Oper Name="PartialPermOp" Arg='obj, list[, func]'/>
    <Oper Name="PartialPermOpNC" Arg='obj, list[, func]'/>
    <Returns>A partial permutation or <K>fail</K>.</Returns>
    <Description>
      <Ref Oper="PartialPermOp"/> returns the partial permutation that corresponds
      to the action of the object <A>obj</A> on the domain or list <A>list</A>
      via the function <A>func</A>. If the optional third argument <A>func</A>
      is not specified, then the action <Ref Func="OnPoints"/> is used by
      default.  Note that the returned partial permutation
      refers to the positions in <A>list</A> even if <A>list</A> itself
      consists of integers.  <P/>

      This function is the analogue in the context of
      partial permutations of <Ref Func="Permutation"
        Label="for a group, an action domain, etc."/> or
      <Ref Oper="TransformationOp"/>.<P/>

      If <A>obj</A> does not map the elements of <A>list</A> injectively,
      then <K>fail</K> is returned.<P/>

      <Ref Oper="PartialPermOpNC"/> does not check that <A>obj</A> maps
      elements of <A>list</A> injectively or that a partial permutation is
      defined by the action of <A>obj</A> on <A>list</A> via <A>func</A>. This
      function should be used only with caution, in situations where it is
      guaranteed that the arguments have the required properties.

      <Example>
gap> f:=Transformation( [ 9, 10, 4, 2, 10, 5, 9, 10, 9, 6 ] );;
gap> PartialPermOp(f, [ 6 .. 8 ], OnPoints);
[1,4][2,5][3,6]</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Oper Name="RestrictedPartialPerm" Arg="f, set"/>
    <Returns>A partial permutation.</Returns>
    <Description>
      <C>RestrictedPartialPerm</C> returns a new partial permutation that acts
      on the points in the set of positive integers <A>set</A> in  the  same
      way as the partial permutation <A>f</A>, and that is undefined on those
      points that are not in <A>set</A>.

      <Example>
gap> f:=PartialPerm( [ 1, 3, 4, 7, 8, 9 ], [ 9, 4, 1, 6, 2, 8 ] );;
gap> RestrictedPartialPerm(f, [ 2, 3, 6, 10 ] );
[3,4]</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="JoinOfPartialPerms" Arg="arg"/>
    <Func Name="JoinOfIdempotentPartialPermsNC" Arg="arg"/>
    <Returns>A partial permutation or <K>fail</K>.</Returns>
    <Description>
      The join of partial permutations <A>f</A> and <A>g</A> is just the join,
      or supremum,  of <A>f</A> and <A>g</A> under the natural partial
      ordering of partial permutations. <P/>

      <C>JoinOfPartialPerms</C> returns the union of the partial permutations
      in its argument if this defines a partial permutation, and <K>fail</K>
      if it is not.  The argument <A>arg</A> can be a partial permutation
      collection or a number of partial permutations.
      <P/>

      The function <C>JoinOfIdempotentPartialPermsNC</C> returns the join of
      its argument which is assumed to be a collection of idempotent partial
      permutations or a number of idempotent partial permutations. It is not
      checked that the arguments are idempotents. The performance of this
      function is higher than <C>JoinOfPartialPerms</C> when it is known
      <E>a priori</E> that the argument consists of idempotents.<P/>

      The union of <A>f</A> and <A>g</A> is a partial
      permutation if and only if <A>f</A> and <A>g</A> agree on the
      intersection dom(<A>f</A>)<M>\cap</M> dom(<A>g</A>) of their domains and
      the images of dom(<A>f</A>)<M>\setminus</M> dom(<A>g</A>)
      and dom(<A>g</A>)<M>\setminus</M> dom(<A>f</A>) under
      <A>f</A> and <A>g</A>, respectively, are disjoint.

      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );
[3,7][8,1,2,6,9][10,5]
gap> g:=PartialPerm( [ 11, 12, 14, 16, 18, 19 ],
> [ 17, 20, 11, 19, 14, 12 ] );
[16,19,12,20][18,14,11,17]
gap> JoinOfPartialPerms(f, g);
[3,7][8,1,2,6,9][10,5][16,19,12,20][18,14,11,17]
gap> f:=PartialPerm( [ 1, 4, 5, 6, 7 ], [ 5, 7, 3, 1, 4 ] );
[6,1,5,3](4,7)
gap> g:=PartialPerm( [ 100 ], [ 1 ] );
[100,1]
gap> JoinOfPartialPerms(f, g);
fail
gap> f:=PartialPerm( [ 1, 3, 4 ], [ 3, 2, 4 ] );
[1,3,2](4)
gap> g:=PartialPerm( [ 1, 2, 4 ], [ 2, 3, 4 ] );
[1,2,3](4)
gap> JoinOfPartialPerms(f, g);
fail
gap> f:=PartialPerm( [ 1 ], [ 2 ] );
[1,2]
gap> JoinOfPartialPerms(f, f^-1);
(1,2)</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="MeetOfPartialPerms" Arg="arg"/>
    <Returns>A partial permutation.</Returns>
    <Description>
      The meet of partial permutations <A>f</A> and <A>g</A> is just the meet,
      or infimum,  of <A>f</A> and <A>g</A> under the natural partial
      ordering of partial permutations. In other words, the meet is the
      greatest partial permutation which is a restriction of both <A>f</A> and
      <A>g</A>. <P/>

      Note that unlike the join of partial permutations, the meet always
      exists. <P/>

      <Ref Func="MeetOfPartialPerms"/> returns the meet of the partial permutations
      in its argument. The argument <A>arg</A> can be a partial permutation
      collection or a number of partial permutations.

      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 6, 100000 ], [ 2, 6, 7, 1, 5 ] );
[3,7][100000,5](1,2,6)
gap> g:=PartialPerm( [ 1, 2, 3, 4, 6 ], [ 2, 4, 6, 1, 5 ] );
[3,6,5](1,2,4)
gap> MeetOfPartialPerms(f, g);
[1,2]
gap> g:=PartialPerm( [ 1, 2, 3, 5, 6, 7, 9, 10 ],
> [ 4, 10, 5, 6, 7, 1, 3, 2 ] );
[9,3,5,6,7,1,4](2,10)
gap> MeetOfPartialPerms(f, g);
&lt;empty partial perm></Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="EmptyPartialPerm" Arg=""/>
    <Returns>The empty partial permutation.</Returns>
    <Description>
      The empty partial permutation is returned by this function when it is
      called with no arguments. This is just short hand for
      <C>PartialPerm([]);</C>.

      <Example>
gap> EmptyPartialPerm();
&lt;empty partial perm></Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection><Heading>RandomPartialPerm</Heading>
    <Func Name="RandomPartialPerm" Arg="n" Label="for a positive integer"/>
    <Func Name="RandomPartialPerm" Arg="set" Label="for a set of positive
      integers"/>
    <Func Name="RandomPartialPerm" Arg="dom, img" Label="for domain and image"/>
    <Returns>A random partial permutation.</Returns>
    <Description>
      In its first form,
      <C>RandomPartialPerm</C> returns a randomly chosen partial permutation
      where points in the domain and image are bounded above by the
      positive integer <A>n</A>.
<Log>gap> RandomPartialPerm(10);
[2,9][4,1,6,5][7,3](8)</Log>

      In its second form, <C>RandomPartialPerm</C> returns a randomly chosen
      partial permutation with points in the domain and image contained in the
      set of positive integers <A>set</A>.
<Log>gap> RandomPartialPerm([1,2,3,1000]);
[2,3,1000](1)</Log>

      In its third form, <C>RandomPartialPerm</C> creates a randomly chosen
      partial permutation with domain contained in the set of positive integers
      <A>dom</A> and image contained in the set of positive integers
      <A>img</A>. The arguments <A>dom</A> and <A>img</A> do not have to have
      equal length.<P/>

      Note that it is not guaranteed in either of these cases that partial
      permutations are chosen with a uniform distribution.
 </Description>
  </ManSection>
</Section>

<!-- *************************************************************** -->

<Section Label="sect:AttributesPartialPerms">
  <Heading>Attributes for partial permutations</Heading>
  In this section we describe the functions available in &GAP; for
  finding various attributes of partial permutations.  <P/>

  <ManSection>
    <Func Name="DegreeOfPartialPerm" Arg="f"/>
    <Attr Name="DegreeOfPartialPermCollection" Arg="coll"/>
    <Returns>A non-negative integer.</Returns>
    <Description>
      The <E>degree</E> of a partial permutation <A>f</A> is the largest
      positive integer where it is defined, i.e. the maximum element in the
      domain of <A>f</A>. <P/>

      The degree a collection of partial permutations <A>coll</A> is the
      largest degree of any partial permutation in <A>coll</A>.
      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );
[3,7][8,1,2,6,9][10,5]
gap> DegreeOfPartialPerm(f);
10</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="CodegreeOfPartialPerm" Arg="f"/>
    <Attr Name="CodegreeOfPartialPermCollection" Arg="coll"/>
    <Returns>A non-negative integer.</Returns>
    <Description>
      The <E>codegree</E> of a partial permutation <A>f</A> is the largest
      positive integer in its image. <P/>

      The codegree a collection of partial permutations <A>coll</A> is the
      largest codegree of any partial permutation in <A>coll</A>.
      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], [ 7, 1, 4, 3, 2, 6, 5 ] );
[8,6][10,5,2,1,7](3,4)
gap> CodegreeOfPartialPerm(f);
7</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="RankOfPartialPerm" Arg="f"/>
    <Attr Name="RankOfPartialPermCollection" Arg="coll"/>
    <Returns>A non-negative integer.</Returns>
    <Description>
    The <E>rank</E> of a partial permutation <A>f</A> is the size of its
    domain, or equivalently the size of its image set or image list.<P/>

    The rank of a partial permutation collection <A>coll</A> is the size of the
    union of the domains of the elements of <A>coll</A>, or
    equivalently, the total number of points on which the elements of <A>coll</A>
    act. Note that this is value may not the same as the size of the union of
    the images of the elements in <A>coll</A>.

      <Example>
gap> f:=PartialPerm( [ 1, 2, 4, 6, 8, 9 ], [ 7, 10, 1, 9, 4, 2 ] );
[6,9,2,10][8,4,1,7]
gap> RankOfPartialPerm(f);
6</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

<ManSection>
    <Attr Name="DomainOfPartialPerm" Arg="f"/>
    <Attr Name="DomainOfPartialPermCollection" Arg="f"/>
    <Returns>A set of positive integers (maybe empty).</Returns>
    <Description>
      The <E>domain</E> of a partial permutation <A>f</A> is the set of
      positive integers where <A>f</A> is defined. <P/>

      The domain of a partial permutation collection <A>coll</A> is the union of
      the domains of its elements.

      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );
[3,7][8,1,2,6,9][10,5]
gap> DomainOfPartialPerm(f);
[ 1, 2, 3, 6, 8, 10 ]</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Attr Name="ImageOfPartialPermCollection" Arg="coll"/>
    <Returns>A set of positive integers (maybe empty).</Returns>
    <Description>
      The <E>image</E> of a partial permutation collection <A>coll</A> is the
      union of the images of its elements.

      <Example><![CDATA[
gap> S := SymmetricInverseSemigroup(5);
<symmetric inverse monoid of degree 5>
gap> ImageOfPartialPermCollection(GeneratorsOfInverseSemigroup(S));
[ 1 .. 5 ]]]></Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Attr Name="ImageListOfPartialPerm" Arg="f"/>
    <Returns>The list of images of a partial permutation.</Returns>
    <Description>
      The <E>image list</E> of a partial permutation <A>f</A> is the list of
      images of the elements of the domain <A>f</A> where
      <C>ImageListOfPartialPerm(<A>f</A>)[i]=DomainOfPartialPerm(<A>f</A>)[i]^<A>f</A></C>
      for any <C>i</C> in the range from <C>1</C> to the rank of <A>f</A>.
<Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ], [ 7, 1, 4, 3, 2, 6, 5 ] );
[8,6][10,5,2,1,7](3,4)
gap> ImageListOfPartialPerm(f);
[ 7, 1, 4, 3, 2, 6, 5 ]</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Attr Name="ImageSetOfPartialPerm" Arg='f'/>
    <Returns>The image set of a partial permutation.</Returns>
    <Description>
      The <E>image set</E> of a partial permutation <C>f</C> is just the set of
      points in the image list (i.e. the image list after it has been sorted
      into increasing order).
      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 5, 7, 10 ], [ 10, 2, 3, 5, 7, 6 ] );
[1,10,6](2)(3)(5)(7)
gap> ImageSetOfPartialPerm(f);
[ 2, 3, 5, 6, 7, 10 ]</Example>
    </Description>
</ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Attr Name="FixedPointsOfPartialPerm" Arg="f" Label="for a partial perm"/>
    <Meth Name="FixedPointsOfPartialPerm" Arg="coll" Label="for a partial perm coll"/>
    <Returns>A set of positive integers.</Returns>
    <Description>
      <C>FixedPointsOfPartialPerm</C> returns the set of points <C>i</C> in the
      domain of the partial permutation <A>f</A> such that <C>i^<A>f</A>=i</C>.
      <P/>

      When the argument is a collection of partial permutations <A>coll</A>,
      <C>FixedPointsOfPartialPerm</C> returns the set of points fixed by every
      element of the collection of partial permutations <A>coll</A>.
      <Example>
gap> f := PartialPerm( [ 1, 2, 3, 6, 7 ], [ 1, 3, 4, 7, 5 ] );
[2,3,4][6,7,5](1)
gap> FixedPointsOfPartialPerm(f);
[ 1 ]
gap> f := PartialPerm([1 .. 10]);;
gap> FixedPointsOfPartialPerm(f);
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]</Example>
    </Description>
  </ManSection>

  <ManSection>
    <Attr Name="MovedPoints" Arg="f" Label="for a partial perm"/>
    <Meth Name="MovedPoints" Arg="coll" Label="for a partial perm coll"/>
    <Returns>A set of positive integers.</Returns>
    <Description>
      <C>MovedPoints</C> returns the set of points <C>i</C> in the domain of
      the partial permutation <A>f</A> such that <C>i^<A>f</A>&lt;>i</C>. <P/>

      When the argument is a collection of partial permutations
      <A>coll</A>, <C>MovedPoints</C> returns the set of points moved by some
      element of the collection of partial permutations <A>coll</A>.

      <Example>
gap> f := PartialPerm( [ 1, 2, 3, 4 ], [ 5, 7, 1, 6 ] );
[2,7][3,1,5][4,6]
gap> MovedPoints(f);
[ 1, 2, 3, 4 ]
gap> FixedPointsOfPartialPerm(f);
[  ]
gap> FixedPointsOfPartialPerm(PartialPerm([1 .. 4]));
[ 1, 2, 3, 4 ]</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Attr Name="NrFixedPoints" Arg="f" Label="for a partial perm"/>
    <Meth Name="NrFixedPoints" Arg="coll" Label="for a partial perm coll"/>
    <Returns>A positive integer.</Returns>
    <Description>
      <C>NrFixedPoints</C> returns the number of points <C>i</C> in the domain
      of the partial permutation <A>f</A> such that <C>i^<A>f</A>=i</C>. <P/>

      When the argument is a collection of partial permutations
      <A>coll</A>, <C>NrFixedPoints</C> returns the number of points fixed by
      every element of the collection of partial permutations <A>coll</A>.
      <Example>
gap> f := PartialPerm( [ 1, 2, 3, 4, 5 ], [ 3, 2, 4, 6, 1 ] );
[5,1,3,4,6](2)
gap> NrFixedPoints(f);
1
gap> NrFixedPoints(PartialPerm([1 .. 10]));
10</Example>
    </Description>
  </ManSection>

  <ManSection>
    <Attr Name="NrMovedPoints" Arg="f" Label="for a partial perm"/>
    <Meth Name="NrMovedPoints" Arg="coll" Label="for a partial perm coll"/>
    <Returns>A positive integer.</Returns>
    <Description>
      <C>NrMovedPoints</C> returns the number of points <C>i</C> in the domain
      of the partial permutation <A>f</A> such that <C>i^<A>f</A>&lt;>i</C>.
      <P/>

      When the argument is a collection of partial permutations
      <A>coll</A>, <C>NrMovedPoints</C> returns the number of points moved by
      some element of the collection of partial permutations <A>coll</A>.

      <Example>
gap> f := PartialPerm( [ 1, 2, 3, 4, 5, 7, 8 ], [ 4, 5, 6, 7, 1, 3, 2 ] );
[8,2,5,1,4,7,3,6]
gap> NrMovedPoints(f);
7
gap> NrMovedPoints(PartialPerm([1 .. 4]));
0</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

<ManSection>
  <Attr Name="SmallestMovedPoint" Arg="f" Label="for a partial perm"/>
  <Meth Name="SmallestMovedPoint" Arg="coll" Label="for a partial perm coll"/>
  <Returns>A positive integer or <K>infinity</K>.</Returns>
  <Description>
    <C>SmallestMovedPoint</C> returns the smallest  positive integer <C>i</C>
    such that <C>i^<A>f</A>&lt;>i</C> if such an <C>i</C> exists.  If <A>f</A>
    is an identity partial permutation, then <K>infinity</K> is returned.<P/>

    If the argument is a collection of partial permutations
    <A>coll</A>, then the smallest point which is moved by at least one element
    of <A>coll</A> is returned, if such a point exists.  If <A>coll</A> only
    contains identity partial permutations, then <C>SmallestMovedPoint</C>
    returns <K>infinity</K>.

    <Example>
gap> f := PartialPerm( [ 1, 3 ], [ 4, 3 ] );
[1,4](3)
gap> SmallestMovedPoint(f);
1
gap> SmallestMovedPoint(PartialPerm([1 .. 10]));
infinity</Example>
  </Description>
</ManSection>

<ManSection>
  <Attr Name="LargestMovedPoint" Arg="f" Label="for a partial perm"/>
  <Meth Name="LargestMovedPoint" Arg="coll" Label="for a partial perm coll"/>
  <Returns>A positive integer or <K>infinity</K>.</Returns>
  <Description>
     <C>LargestMovedPoint</C> returns the largest positive integers <C>i</C>
    such that <C>i^<A>f</A>&lt;>i</C> if such an <C>i</C> exists.  If <A>f</A>
    is the identity partial permutation, then <C>0</C> is returned.<P/>

    If the argument is a collection of partial permutations <A>coll</A>, then
    the largest point which is moved by at least one element of <A>coll</A> is
    returned, if such a point exists.  If <A>coll</A> only contains identity
    partial permutations, then <C>LargestMovedPoint</C> returns <C>0</C>.
    <Example>
gap> f := PartialPerm( [ 1, 3, 4, 5 ], [ 5, 1, 6, 4 ] );
[3,1,5,4,6]
gap> LargestMovedPoint(f);
5
gap> LargestMovedPoint(PartialPerm([1 .. 10]));
0</Example>
  </Description>
</ManSection>

<ManSection>
  <Attr Name="SmallestImageOfMovedPoint" Arg="f" Label="for a partial permutation"/>
  <Meth Name="SmallestImageOfMovedPoint" Arg="coll"
    Label="for a partial permutation coll"/>
  <Returns>A positive integer or <K>infinity</K>.</Returns>
  <Description>
    <C>SmallestImageOfMovedPoint</C> returns the smallest positive integer
    <C>i^<A>f</A></C> such that <C>i^<A>f</A>&lt;>i</C> if such an <C>i</C>
    exists.  If <A>f</A> is the identity partial permutation, then
    <K>infinity</K> is returned.<P/>

    If the argument is a collection of partial permutations <A>coll</A>, then
    the smallest integer which is the image a point moved by at least one
    element of <A>coll</A> is returned, if such a point exists.  If <A>coll</A>
    only contains identity partial permutations, then
    <C>SmallestImageOfMovedPoint</C> returns <K>infinity</K>.

  <Example><![CDATA[
gap> S := SymmetricInverseSemigroup(5);
<symmetric inverse monoid of degree 5>
gap> SmallestImageOfMovedPoint(S);
1
gap> S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;
gap> SmallestImageOfMovedPoint(S);
infinity
gap> f := PartialPerm( [ 1, 2, 3, 6 ] );
[4,6](1)(2)(3)
gap> SmallestImageOfMovedPoint(f);
6]]></Example>
  </Description>
</ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Attr Name="LargestImageOfMovedPoint" Arg="f"
    Label="for a partial permutation"/>
  <Meth Name="LargestImageOfMovedPoint" Arg="coll"
    Label="for a partial permutation coll"/>
  <Returns>A positive integer.</Returns>
  <Description>
    <C>LargestImageOfMovedPoint</C> returns the largest positive integer
    <C>i^<A>f</A></C> such that <C>i^<A>f</A>&lt;>i</C> if such an <C>i</C>
    exists.  If <A>f</A> is an identity partial permutation, then <C>0</C> is
    returned.<P/>

    If the argument is a collection of partial permutations <A>coll</A>, then
    the largest integer which is the image of a point moved by at least one
    element of <A>coll</A> is returned, if such a point exists.  If <A>coll</A>
    only contains identity partial permutations, then
    <C>LargestImageOfMovedPoint</C> returns <C>0</C>.
  <Example><![CDATA[
gap> S := SymmetricInverseSemigroup(5);
<symmetric inverse monoid of degree 5>
gap> LargestImageOfMovedPoint(S);
5
gap> S := Semigroup(PartialPerm([10 .. 100], [10 .. 100]));;
gap> LargestImageOfMovedPoint(S);
0
gap> f := PartialPerm( [ 1, 2, 3, 6 ] );;
gap> LargestImageOfMovedPoint(f);
6]]></Example>
  </Description>
</ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

  <ManSection>
    <Attr Name="IndexPeriodOfPartialPerm" Arg="f"/>
    <Returns>A pair of positive integers.</Returns>
    <Description>
      Returns the least positive integers <C>m, r</C> such that
      <C><A>f</A>^(m+r)=<A>f</A>^m</C>, which are
      known as the <E>index</E> and <E>period</E> of the partial permutation
      <A>f</A>.
      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 5, 6, 7, 8, 11, 12, 16, 19 ],
> [ 9, 18, 20, 11, 5, 16, 8, 19, 14, 13, 1 ] );
[2,18][3,20][6,5,11,19,1,9][7,16,13][12,14](8)
gap> IndexPeriodOfPartialPerm(f);
[ 6, 1 ]
gap> f^6=f^7;
true</Example>
    </Description>
  </ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Attr Name="SmallestIdempotentPower" Arg="f" Label="for a partial perm"/>
  <Returns>A positive integer.</Returns>
  <Description>
      This function returns the least positive integer <C>n</C> such that the
      partial permutation <C><A>f</A>^n</C> is an idempotent.  The smallest
      idempotent power of <A>f</A> is the least multiple of the period of
      <A>f</A> that is greater than or equal to the index of <A>f</A>;
      see <Ref Attr="IndexPeriodOfPartialPerm"/>.

      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 18, 19, 20 ],
> [ 5, 1, 7, 3, 10, 2, 12, 14, 11, 16, 6, 9, 15 ] );
[4,3,7,2,1,5,10,14][8,12][13,16][18,6][19,9][20,15](11)
gap> SmallestIdempotentPower(f);
8
gap> f^8;
&lt;identity partial perm on [ 11 ]></Example>
    </Description>
  </ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Attr Name="ComponentsOfPartialPerm" Arg="f" />
  <Returns>A list of lists of positive integer.</Returns>
  <Description>
    <C>ComponentsOfPartialPerm</C> returns a list of the components of the
    partial permutation <A>f</A>.  Each component is a subset of the domain of
    <A>f</A>, and the union of the components equals the domain.

    <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ],
> [ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
gap> ComponentsOfPartialPerm(f);
[ [ 1, 20 ], [ 2, 4, 19, 13, 15 ], [ 7, 14 ], [ 8, 3, 6 ],
  [ 10, 12, 5, 9 ], [ 11, 17 ] ]</Example>
  </Description>
</ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Attr Name="NrComponentsOfPartialPerm" Arg="f" />
  <Returns>A positive integer.</Returns>
  <Description>
    <C>NrComponentsOfPartialPerm</C>
    returns the number of components of the partial permutation
    <A>f</A> on its domain.

    <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ],
> [ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
gap> NrComponentsOfPartialPerm(f);
6</Example>
  </Description>
</ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Attr Name="ComponentRepsOfPartialPerm" Arg="f" />
  <Returns>A list of positive integers.</Returns>
  <Description>
      <C>ComponentRepsOfPartialPerm</C> returns the representatives, in the
      following sense, of the components of the partial permutation <A>f</A>.
      Every component of <A>f</A> contains a unique element in the domain but
      not the image of <A>f</A>; this element is called the
      <E>representative</E> of the component. If <C>i</C> is a representative
      of a component of <A>f</A>, then for every <C>j</C><M>\not=</M><C>i</C>
      in the component of <C>i</C>, there exists a positive integer <C>k</C>
      such that <C>i ^ (<A>f</A> ^ k) = j</C>. Unlike transformations, there is
      exactly one representative for every component of <A>f</A>.
      <C>ComponentRepsOfPartialPerm</C> returns the least number of
      representatives.

    <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 19 ],
> [ 20, 4, 6, 19, 9, 14, 3, 12, 17, 5, 15, 13 ] );
[1,20][2,4,19,13,15][7,14][8,3,6][10,12,5,9][11,17]
gap> ComponentRepsOfPartialPerm(f);
[ 1, 2, 7, 8, 10, 11 ]</Example>
  </Description>
</ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Attr Name="LeftOne" Arg="f" Label="for a partial perm"/>
  <Attr Name="RightOne" Arg="f" Label="for a partial perm"/>
  <Returns>A partial permutation.</Returns>
  <Description>
    <C>LeftOne</C> returns the identity partial permutation
    <C>e</C> such that the domain and image of <C>e</C> equal the domain of
    the partial permutation <A>f</A> and such that <C>e*<A>f</A>=f</C>. <P/>

    <C>RightOne</C> returns the identity partial permutation
    <C>e</C> such that the domain and image of <C>e</C> equal the image of
    <A>f</A> and such that <C><A>f</A>*e=f</C>.

    <Example>
gap> f:=PartialPerm( [ 1, 2, 4, 5, 6, 7 ], [ 10, 1, 6, 5, 8, 7 ] );
[2,1,10][4,6,8](5)(7)
gap> RightOne(f);
&lt;identity partial perm on [ 1, 5, 6, 7, 8, 10 ]>
gap> LeftOne(f);
&lt;identity partial perm on [ 1, 2, 4, 5, 6, 7 ]></Example>
  </Description>
</ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Meth Name="One" Arg="f" Label="for a partial perm"/>
  <Returns>A partial permutation.</Returns>
  <Description>
    As described in <Ref Attr="OneImmutable"/>,
    <C>One</C> returns the multiplicative neutral element of the partial
    permutation <A>f</A>, which is the identity partial permutation on the
    union of the domain and image of <A>f</A>. Equivalently, the one of
    <A>f</A> is the join of the right one and left one of <A>f</A>.
    <Example>
gap> f:=PartialPerm([ 1, 2, 3, 4, 5, 7, 10 ], [ 3, 7, 9, 6, 1, 10, 2 ]);;
gap> One(f);
&lt;identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 9, 10 ]></Example>
  </Description>
</ManSection>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<ManSection>
  <Meth Name="MultiplicativeZero" Arg="f" Label="for a partial perm"/>
  <Returns>The empty partial permutation.</Returns>
  <Description>
    As described in <Ref Attr="MultiplicativeZero"/>,
    <C>Zero</C> returns the multiplicative zero element of the partial
    permutation <A>f</A>, which is the empty partial permutation.
    <Example>
gap> f := PartialPerm([ 1, 2, 3, 4, 5, 7, 10 ], [ 3, 7, 9, 6, 1, 10, 2 ]);;
gap> MultiplicativeZero(f);
&lt;empty partial perm></Example>
  </Description>
</ManSection>

 <!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

</Section>

<!-- *************************************************************** -->

<Section Label="sect:ChangingRepPartialPerms">
  <Heading>Changing the representation of a partial permutation</Heading>
  It is possible that a partial permutation in &GAP; can be represented by other
  types of objects, or that other types of &GAP; objects can be represented by
  partial permutations. Partial permutations which are
  mathematically permutations can be converted into permutations in &GAP; using
  the function <Ref Attr="AsPermutation"/>.  Similarly, a partial permutation
  can be converted into a transformation using <Ref Attr="AsTransformation"/>.
  <P/>

  In this section we describe functions for converting other types of objects
  in &GAP; into partial permutations.

  <ManSection>
  <Oper Name="AsPartialPerm" Arg="f, set" Label="for a permutation and a set of
    positive integers"/>
  <Meth Name="AsPartialPerm" Arg="f" Label="for a permutation"/>
  <Meth Name="AsPartialPerm" Arg="f, n" Label="for a permutation and a positive integer"/>
  <Returns>A partial permutation.</Returns>
  <Description>
    A permutation <A>f</A> defines a partial permutation when it is restricted
    to any finite set of positive integers.  <C>AsPartialPerm</C> can be used to
    obtain this partial permutation.<P/>

    There are several possible arguments for <C>AsPartialPerm</C>:

    <List>
      <Mark>for a permutation and set of positive integers</Mark>
      <Item><C>AsPartialPerm</C> returns the
      partial permutation that equals <A>f</A> on the set of positive
      integers <A>set</A> and that is undefined on every other positive integer.
      <P/>

      Note that as explained in
      <Ref Func="PartialPerm" Label="for a domain and image"/>
      <E>a permutation is never a partial permutation</E> in &GAP;, please
      keep this in mind when using <C>AsPartialPerm</C>.
      </Item>
      <Mark>for a permutation</Mark>
      <Item><C>AsPartialPerm</C> returns the partial permutation that agrees
      with <A>f</A> on <C>[1..LargestMovedPoint(<A>f</A>)]</C> and that is
      not defined on any other positive integer.
      </Item>
      <Mark>for a permutation and a positive integer</Mark>
      <Item><C>AsPartialPerm</C> returns the partial permutation that agrees
        with <A>f</A> on <C>[1..<A>n</A>]</C>, when <A>n</A> is a positive
        integer,  and that is not defined on any other positive integer.
      </Item>
    </List>

    The operation <Ref Oper="PartialPermOp"/> can also be used to convert
    permutations into partial permutations.

    <Example>
gap> f:=(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16);;
gap> AsPartialPerm(f);
(1)(2,8,19,9,14,10,20,17,4,13,12,3,5,7,18,16)(6)(11)(15)
gap> AsPartialPerm(f, [ 1, 2, 3 ] );
[2,8][3,5](1)</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Oper Name="AsPartialPerm" Arg="f, set"
      Label="for a transformation and a set of positive integer"/>
    <Meth Name="AsPartialPerm" Arg="f, n"
      Label="for a transformation and a positive integer"/>
  <Returns>A partial permutation or <K>fail</K>.</Returns>
  <Description>
    A transformation <A>f</A> defines a partial permutation when it is
    restricted to a set of positive integers where it is injective.
    <C>AsPartialPerm</C> can be used to obtain this partial permutation. <P/>

    There are several possible arguments for <C>AsPartialPerm</C>:
    <List>
      <Mark>for a transformation and set of positive integers</Mark>
      <Item>
        <C>AsPartialPerm</C> returns the partial permutation obtained by
        restricting <A>f</A> to the set of positive integers <A>set</A> when:
        <List>
          <Item><A>set</A> contains no elements exceeding the degree of
            <A>f</A>;
          </Item>
          <Item><A>f</A> is injective on <A>set</A>.
          </Item>
        </List>
      </Item>
      <Mark>for a transformation and a positive integer</Mark>
      <Item><C>AsPartialPerm</C> returns the partial permutation that agrees
        with <A>f</A> on <C>[1..<A>n</A>]</C> when <A>A</A> is a positive
        integer and this set satisfies the
        conditions given above.
      </Item>
    </List>

    The operation <Ref Oper="PartialPermOp"/> can also be used to convert
    transformations into partial permutations.

  <Example>
gap> f:=Transformation( [ 8, 3, 5, 9, 6, 2, 9, 7, 9 ] );;
gap> AsPartialPerm(f, [1, 2, 3, 5, 8]);
[1,8,7][2,3,5,6]
gap> AsPartialPerm(f, 3);
[1,8][2,3,5]
gap> AsPartialPerm(f, [ 2 .. 4 ] );
[2,3,5][4,9]</Example>
  </Description>
</ManSection>
</Section>
<!-- *************************************************************** -->
<!-- *************************************************************** -->

<Section Label="sect:OperatorsPartialPerms">
  <Heading>Operators and operations for partial permutations</Heading>

<ManSection>
  <Meth Name="Inverse" Arg="f" Label="for a partial permutation"/>
  <Description>
      returns the inverse of the partial permutation <A>f</A>.
  </Description>
</ManSection>

<ManSection>
  <Meth Name="\^" Arg="i, f" Label="for a positive integer and a partial permutation"/>
  <Description>
      returns the image of the positive integer <A>i</A> under the
      partial permutation <A>f</A> if it is defined and <C>0</C> if it is not.
  </Description>
</ManSection>

<ManSection>
  <Meth Name="\/" Arg="i, f" Label="for a positive integer and a partial permutation"/>
  <Description>
      returns the preimage of the positive integer <A>i</A> under the
      partial permutation <A>f</A> if it is defined and <C>0</C> if it is not.
      Note that the inverse of <A>f</A> is not calculated to find the
      preimage of <A>i</A>.
  </Description>
</ManSection>

<ManSection>
  <Meth Name="\^" Arg="f, g" Label="for a partial permutation and a permutation or partial permutation"/>
  <Description>
      <C><A>f</A> ^ <A>g</A></C>
      returns <C><A>g</A>^-1*<A>f</A>*<A>g</A></C> when
      <A>f</A> is a partial permutation and <A>g</A> is a permutation or partial
      permutation; see <Ref Oper="\^"/>. This operation requires
      essentially the same number of steps as multiplying partial permutations,
      which is around one third as many as inverting and multiplying twice.
  </Description>
</ManSection>

 <ManSection>
  <Meth Name="\*" Arg="f, g" Label="for permutations and partial permutations"/>
  <Description>
      <C><A>f</A> * <A>g</A></C>
      returns the composition of <A>f</A> and <A>g</A> when <A>f</A> and
      <A>g</A> are partial permutations or permutations. The product of a
      permutation and a partial permutation is returned as a partial
      permutation.
   </Description>
</ManSection>

<ManSection>
  <Meth Name="\/" Arg="f, g" Label="for a partial permutation and permutation or partial permutation"/>
  <Description>
      <C><A>f</A> / <A>g</A></C>
      returns <C><A>f</A>*<A>g</A>^-1</C> when <A>f</A> is a partial
      permutation and
      <A>g</A> is a permutation or partial permutation.
      This operation requires essentially the same number of steps
      as multiplying partial permutations, which is
      approximately half that required to first invert <A>g</A> and then take
      the product with <A>f</A>.
  </Description>
</ManSection>

<ManSection>
  <Meth Name="LeftQuotient" Arg="g, f" Label="for a permutation or partial permutation
        and a partial permutation"/>
  <Description>
      returns <C><A>g</A>^-1*<A>f</A></C>
      when <A>f</A> is a partial permutation and
      <A>g</A> is a permutation or partial permutation.
      This operation requires essentially the same number of steps
      as multiplying partial permutations, which is
      approximately half that required to first invert <A>g</A> and then take
      the product with <A>f</A>.
  </Description>
</ManSection>

<ManSection>
  <Meth Name="\&lt;" Arg="f, g" Label="for partial permutations"/>
  <Description>
      <C><A>f</A> &lt; <A>g</A></C>
      returns <K>true</K> if the image of <A>f</A> on the range from 1 to the
      degree of <A>f</A>
      is lexicographically less than the corresponding image for <A>g</A>
      and <K>false</K> if it is not. See <Ref Func="NaturalLeqPartialPerm"/>
      and <Ref Func="ShortLexLeqPartialPerm"/> for additional orders for
      partial permutations.
  </Description>
</ManSection>

<ManSection>
  <Meth Name="\=" Arg="f, g" Label="for partial permutations"/>
  <Description>
      <C><A>f</A> = <A>g</A></C>
      returns <K>true</K> if the partial permutation <A>f</A> equals the
      partial permutation <A>g</A> and returns <K>false</K> if it does not.
  </Description>
</ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Oper Name="PermLeftQuoPartialPerm" Arg='f, g'/>
    <Oper Name="PermLeftQuoPartialPermNC" Arg='f, g'/>
    <Returns>A permutation.</Returns>
    <Description>
      Returns the permutation on the image set of <A>f</A> induced by
      <C><A>f</A>^-1*<A>g</A></C> when the partial permutations <A>f</A> and
      <A>g</A> have equal domain and image set. <P/>

      <C>PermLeftQuoPartialPerm</C> verifies that <A>f</A> and <A>g</A> have
      equal domains and image sets, and returns an error if they do not.
      <C>PermLeftQuoPartialPermNC</C> does no checks.
      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 5, 7 ], [ 7, 9, 10, 4, 2, 5 ] );
[1,7,5,2,9][3,10](4)
gap> g:=PartialPerm( [ 1, 2, 3, 4, 5, 7 ], [ 7, 4, 9, 2, 5, 10 ] );
[1,7,10][3,9](2,4)(5)
gap> PermLeftQuoPartialPerm(f, g);
(2,5,10,9,4)</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

<ManSection>
  <Oper Name="PreImagePartialPerm" Arg='f, i'/>
  <Returns>A positive integer or <K>fail</K>.</Returns>
  <Description>
    <C>PreImagePartialPerm</C> returns the preimage of the positive
    integer <A>i</A> under the partial permutation <A>f</A> if
    <A>i</A> belongs to the image of <A>f</A>. If <A>i</A> does not belong to
    the image of <A>f</A>, then <K>fail</K> is returned. <P/>

    The same result can be obtained by using <C><A>i</A>/<A>f</A></C> as
    described in Section <Ref Sect="sect:OperatorsPartialPerms"/>.

    <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 5, 9, 10 ], [ 5, 10, 7, 8, 9, 1 ] );
[2,10,1,5,8][3,7](9)
gap> PreImagePartialPerm(f, 8);
5
gap> PreImagePartialPerm(f, 5);
1
gap> PreImagePartialPerm(f, 1);
10
gap> PreImagePartialPerm(f, 10);
2
gap> PreImagePartialPerm(f, 2);
fail</Example>
  </Description>
</ManSection>

<!-- *************************************************************** -->

<ManSection>
  <Oper Name="ComponentPartialPermInt" Arg='f, i'/>
  <Returns>A set of positive integers.</Returns>
  <Description>
    <C>ComponentPartialPermInt</C> returns the elements of the component of
    <A>f</A> containing <A>i</A> that can be obtained by repeatedly applying
    <A>f</A> to <A>i</A>.
    <Example>
gap> f:=PartialPerm( [ 1, 2, 4, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18 ],
> [ 11, 4, 14, 16, 15, 3, 20, 8, 17, 19, 1, 6, 12 ] );
[2,4,14,17,6,15,19][5,16,1,11][7,3][10,8,20][18,12]
gap> ComponentPartialPermInt(f, 4);
[ 4, 14, 17, 6, 15, 19 ]
gap> ComponentPartialPermInt(f, 3);
[  ]
gap> ComponentPartialPermInt(f, 10);
[ 10, 8, 20 ]
gap> ComponentPartialPermInt(f, 100);
[  ]</Example>
  </Description>
</ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="NaturalLeqPartialPerm" Arg="f, g"/>
    <Returns><K>true</K> or <K>false</K>.</Returns>
    <Description>
      The <E>natural partial order</E> <M>\leq</M> on an inverse semigroup
      <C>S</C> is defined by <C>s</C><M>\leq</M><C>t</C> if there exists an
      idempotent
      <C>e</C> in <C>S</C> such that <C>s=et</C>. Hence if <A>f</A> and
      <A>g</A> are partial permutations, then <A>f</A><M>\leq</M><A>g</A> if
      and only if <A>f</A> is a restriction of <A>g</A>;
      see <Ref Oper="RestrictedPartialPerm"/>. <P/>

      <C>NaturalLeqPartialPerm</C>
      returns <K>true</K> if <A>f</A> is a restriction of <A>g</A> and
      <K>false</K> if it is not. Note that since this is a partial order and
      not a total order, it is possible that <A>f</A> and <A>g</A> are
      incomparable with respect to the natural partial order.

      <Example>
gap> f:=PartialPerm(
> [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],
> [ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] );;
gap> g:=RestrictedPartialPerm(f, [ 1, 2, 3, 9, 13, 20 ] );
[1,3,14][2,12]
gap> NaturalLeqPartialPerm(g,f);
true
gap> NaturalLeqPartialPerm(f,g);
false
gap> g:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ],
> [ 7, 1, 4, 3, 2, 6, 5 ] );;
gap> NaturalLeqPartialPerm(f, g);
false
gap> NaturalLeqPartialPerm(g, f);
false</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

  <ManSection>
    <Func Name="ShortLexLeqPartialPerm" Arg="f, g"/>
    <Returns><K>true</K> or <K>false</K>.</Returns>
    <Description>
      <C>ShortLexLeqPartialPerm</C> returns <K>true</K> if
      the concatenation of the domain and image list of <A>f</A> is short-lex
      less than the corresponding concatenation for <A>g</A> and <K>false</K>
      otherwise.<P/>

      Note that this is not the natural partial order
      on partial permutation or the same as comparing <A>f</A> and <A>g</A>
      using <C>\&lt;</C>.
      <Example>
gap> f:=PartialPerm( [ 1, 2, 3, 4, 6, 7, 8, 10 ],
> [ 3, 8, 1, 9, 4, 10, 5, 6 ] );
[2,8,5][7,10,6,4,9](1,3)
gap> g:=PartialPerm( [ 1, 2, 3, 4, 5, 8, 10 ],
> [ 7, 1, 4, 3, 2, 6, 5 ] );
[8,6][10,5,2,1,7](3,4)
gap> f&lt;g;
true
gap> g&lt;f;
false
gap> ShortLexLeqPartialPerm(f, g);
false
gap> ShortLexLeqPartialPerm(g, f);
true
gap> NaturalLeqPartialPerm(f, g);
false
gap> NaturalLeqPartialPerm(g, f);
false</Example>
    </Description>
  </ManSection>

  <ManSection>
    <Oper Name="TrimPartialPerm" Arg="f"/>
    <Returns>Nothing.</Returns>
    <Description>
      It can happen that the internal representation of a partial permutation
      uses more memory than necessary. For example, by composing a partial
      permutation with codegree less than 65536 with a partial permutation with
      codegree greater than 65535. It is possible that the resulting partial
      permutation <A>f</A> has its codegree and images stored as
      32-bit integers, while none of its image points exceeds 65536. The
      purpose of this function is to change the internal representation of
      such an <A>f</A> from using 32-bit to using 16-bit integers. <P/>

      Note that the partial permutation <A>f</A> is changed in-place, and
      nothing is returned by this function.

      <Example>
gap> f:=PartialPerm( [ 1, 2 ], [ 3, 4 ] )
> *PartialPerm( [ 3, 5 ], [ 3, 100000 ] );
[1,3]
gap> IsPPerm4Rep(f);
true
gap> TrimPartialPerm(f); f;
[1,3]
gap> IsPPerm4Rep(f);
false</Example>
    </Description>
  </ManSection>

<!-- *************************************************************** -->

</Section>

<!-- *************************************************************** -->

<Section Label="sect:DisplayingPartialPerms">
  <Heading>Displaying partial permutations</Heading>
    It is possible to change the way that &GAP; displays partial permutations
    using the user preferences <C>PartialPermDisplayLimit</C>
    and <C>NotationForPartialPerms</C>;  see Section
    <Ref Func="UserPreference"/> for more information about user preferences.
    <P/>

    If <C>f</C> is a partial permutation of rank <C>r</C> exceeding the value
    of the user preference <C>PartialPermDisplayLimit</C>, then <C>f</C> is
    displayed as:
    <Log>&lt;partial perm on r pts with degree m, codegree n&gt;</Log>
    where the degree and codegree are <C>m</C> and <C>n</C>, respectively.
    The idea is to abbreviate the display of partial permutations defined on
    many points. The default value for the <C>PartialPermDisplayLimit</C> is
    <C>100</C>. <P/>

    If the rank of <C>f</C> does not exceed the value of
    <C>PartialPermDisplayLimit</C>, then how <C>f</C> is displayed depends on
    the value of the user preference <C>NotationForPartialPerms</C> except in
    the case that <C>f</C> is the empty partial permutation or an identity
    partial permutation.  <P/>

    There are three possible values for <C>NotationForPartialPerms</C> user
    preference, which are described below.
    <List>
      <Mark>component</Mark>
      <Item> Similar to permutations, and unlike transformations, partial
        permutations can be expressed as products of disjoint permutations and
        chains.
        A <E>chain</E> is a list <C>c</C> of some length <C>n</C> such
        that:
        <List>
          <Item>
          <C>c[1]</C> is an element of the domain of <A>f</A> but not the
          image
         </Item>
         <Item><C>c[i]^<A>f</A>=c[i+1]</C> for all <C>i</C> in the range from
           <C>1</C> to <C>n-1</C>.
        </Item>
        <Item><C>c[n]</C> is in the image of <A>f</A> but not the
          domain.</Item>
      </List>
      In the display, permutations are displayed as they usually are in &GAP;,
      except that fixed points are displayed enclosed in round brackets, and
      chains are displayed enclosed in square brackets.

      <Log>
gap> f := PartialPerm([ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],
> [ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ]);
[1,3,14][16,8,2,12,15](4)(5,11)[6,18,10,9][7,17,20](19)</Log>
      This option is the most compact way to display a partial permutation and
      is the default value of the user preference
      <C>NotationForPartialPerms</C>.
      </Item>

      <Mark>domainimage</Mark>
      <Item>
        With this option a partial permutation <C>f</C> is displayed
        in the format: <C>DomainOfPartialPerm(<A>f</A>)->
          ImageListOfPartialPerm(<A>f</A>)</C>.
<Log>gap> f:=PartialPerm( [ 1, 2, 4, 5, 6, 7 ], [ 10, 1, 6, 5, 8, 7 ]);
[ 1, 2, 4, 5, 6, 7 ] -> [ 10, 1, 6, 5, 8, 7 ]</Log>
      </Item>
      <Mark>input</Mark>
      <Item>
        With this option a partial permutation <A>f</A> is displayed as:
        <C>PartialPerm(DomainOfPartialPerm(<A>f</A>),
          ImageListOfPartialPerm(<A>f</A>))</C>
        which corresponds to the input (of the first type described in
        <Ref Func="PartialPerm" Label="for a domain and image"/>).
<Log>gap> f:=PartialPerm( [ 1, 2, 3, 5, 6, 9, 10 ],
> [ 4, 7, 3, 8, 2, 1, 6 ] );
PartialPerm( [ 1, 2, 3, 5, 6, 9, 10 ], [ 4, 7, 3, 8, 2, 1, 6 ] )</Log>
      </Item>
    </List>
    <Log>
gap> SetUserPreference("PartialPermDisplayLimit", 12);
gap> UserPreference("PartialPermDisplayLimit");
12
gap> f:=PartialPerm([1,2,3,4,5,6], [6,7,1,4,3,2]);
[5,3,1,6,2,7](4)
gap> f:=PartialPerm(
> [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],
> [ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] );
&lt;partial perm on 15 pts with degree 19, codegree 20>
gap> SetUserPreference("PartialPermDisplayLimit", 100);
gap> f;
[1,3,14][6,18,10,9][7,17,20][16,8,2,12,15](4)(5,11)(19)
gap> UserPreference("NotationForPartialPerms");
"component"
gap> SetUserPreference("NotationForPartialPerms", "domainimage");
gap> f;
[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ] ->
[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ]
gap> SetUserPreference("NotationForPartialPerms", "input");
gap> f;
PartialPerm(
[ 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 18, 19 ],
[ 3, 12, 14, 4, 11, 18, 17, 2, 9, 5, 15, 8, 20, 10, 19 ] )</Log>
</Section>

<Section Label="Partial perm semigroups">
<Heading>Semigroups and inverse semigroups of partial permutations</Heading>

As mentioned at the start of the chapter, every inverse semigroup is isomorphic
to a semigroup of partial permutations, and in this section we describe the
functions in &GAP; specific to partial permutation semigroups. For more information
about semigroups and inverse semigroups see Chapter <Ref Chap="Semigroups"/>. <P/>

The <Package>Semigroups</Package> package contains
many additional functions and methods for computing with semigroups of
partial permutations. In particular, <Package>Semigroups</Package>
contains more efficient methods than those available in the &GAP; library (and
in many cases more efficient than any other software) for creating semigroups of transformations, calculating their Green's classes, size, elements,
group of units, minimal ideal, small generating sets, testing membership,
finding the inverses of a regular element, factorizing elements over the
generators, and more. <P/>

Since a partial permutation semigroup is also a partial permutation collection, there are special methods for <Ref Attr="DomainOfPartialPermCollection"/>,
<Ref Attr="ImageOfPartialPermCollection"/>,
<Ref Meth="FixedPointsOfPartialPerm" Label="for a partial perm coll"/>,
<Ref Meth="MovedPoints" Label="for a partial perm coll"/>,
<Ref Meth="NrFixedPoints" Label="for a partial perm coll"/>,
<Ref Meth="NrMovedPoints" Label="for a partial perm coll"/>,
<Ref Meth="LargestMovedPoint" Label="for a partial perm coll"/>, and
<Ref Meth="SmallestMovedPoint" Label="for a partial perm coll"/>
when applied to a partial permutation semigroup.

<ManSection>
  <Filt Name="IsPartialPermSemigroup" Arg="obj"/>
  <Filt Name="IsPartialPermMonoid" Arg="obj"/>
  <Returns><K>true</K> or <K>false</K>.</Returns>
  <Description>
    A <E>partial perm semigroup</E> is simply a semigroup consisting of partial
    permutations, which may or may not be an inverse semigroup. An object
    <A>obj</A> in &GAP; is a partial perm semigroup if and only if it satisfies
    <Ref Filt="IsSemigroup"/> and <Ref Filt="IsPartialPermCollection"/>.<P/>

    A <E>partial perm monoid</E> is a monoid consisting of partial
    permutations. An object in &GAP; is a partial perm monoid if it satisfies
    <Ref Filt="IsMonoid"/> and <Ref Filt="IsPartialPermCollection"/>.<P/>

Note that it is possible for a partial perm semigroup to have a
multiplicative neutral element (i.e. an identity element) but not to satisfy
<C>IsPartialPermMonoid</C>. For example,
<Example><![CDATA[
gap> f := PartialPerm( [ 1, 2, 3, 6, 8, 10 ], [ 2, 6, 7, 9, 1, 5 ] );;
gap> S := Semigroup(f, One(f));
<commutative partial perm monoid of rank 9 with 1 generator>
gap> IsMonoid(S);
true
gap> IsPartialPermMonoid(S);
true]]></Example>

Note that unlike transformation semigroups, the <Ref Attr="One"/> of a partial permutation semigroup must coincide with the multiplicative neutral element, if either exists.<P/>

For more details see <Ref Filt="IsMagmaWithOne"/>.
  </Description>
</ManSection>

<ManSection>
  <Attr Name="DegreeOfPartialPermSemigroup" Arg="S"/>
  <Attr Name="CodegreeOfPartialPermSemigroup" Arg="S"/>
  <Attr Name="RankOfPartialPermSemigroup" Arg="S"/>
  <Returns>A non-negative integer.</Returns>
  <Description>
    The <E>degree</E> of a partial permutation semigroup <A>S</A> is the
    largest degree of any partial permutation in <A>S</A>. <P/>

    The <E>codegree</E> of a partial permutation semigroup <A>S</A> is the
    largest positive integer in its image.<P/>

    The <E>rank</E> of a partial permutation semigroup <A>S</A> is the number
    of points on which it acts.
    <Example><![CDATA[
gap> S := Semigroup( PartialPerm( [ 1, 5 ], [ 10000, 3 ] ) );
<commutative partial perm semigroup of rank 2 with 1 generator>
gap> DegreeOfPartialPermSemigroup(S);
5
gap> CodegreeOfPartialPermSemigroup(S);
10000
gap> RankOfPartialPermSemigroup(S);
2]]></Example>
  </Description>
</ManSection>

<ManSection>
  <Oper Name="SymmetricInverseSemigroup" Arg="n"/>
  <Oper Name="SymmetricInverseMonoid" Arg="n"/>
  <Returns>The symmetric inverse semigroup of degree <A>n</A>.</Returns>
  <Description>
    If <A>n</A> is a non-negative integer, then
    <C>SymmetricInverseSemigroup</C> returns the inverse semigroup consisting
    of all partial permutations with degree and codegree at most <A>n</A>.
    Note that <A>n</A> must be non-negative, but in particular, can equal
    <C>0</C>.  <P/>

    The symmetric inverse semigroup
    <Alt Not="Text">
      has <M>\sum_{r=0}^n{n\choose r}^2\cdot r!</M>
      elements and </Alt>
    is generated by any set that of partial permutations that
    generate the symmetric group on <A>n</A> points and any partial permutation
    of rank <C><A>n</A>-1</C>.<P/>

    <C>SymmetricInverseMonoid</C> is a synonym for
    <C>SymmetricInverseSemigroup</C>.

    <Example><![CDATA[
gap> S := SymmetricInverseSemigroup(5);
<symmetric inverse monoid of degree 5>
gap> Size(S);
1546
gap> GeneratorsOfInverseMonoid(S);
[ (1,2,3,4,5), (1,2)(3)(4)(5), [5,4,3,2,1] ]]]></Example>
  </Description>
</ManSection>

<ManSection>
<Prop Name="IsSymmetricInverseSemigroup" Arg='S'/>
<Prop Name="IsSymmetricInverseMonoid" Arg='S'/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
  If the partial perm semigroup <A>S</A> of degree and codegree <A>n</A>
  equals the symmetric inverse semigroup on <A>n</A> points, then
  <C>IsSymmetricInverseSemigroup</C> return <K>true</K> and otherwise it
  returns <K>false</K>.<P/>

  <C>IsSymmetricInverseMonoid</C> is a synonym of
  <C>IsSymmetricInverseSemigroup</C>. It is common in the literature
  for the symmetric inverse monoid to be referred to as the symmetric inverse
  semigroup.

  <Example><![CDATA[
gap> S := Semigroup(AsPartialPerm((1, 3, 4, 2), 5), AsPartialPerm((1, 3, 5), 5),
> PartialPerm( [ 1, 2, 3, 4 ] ) );
<partial perm semigroup of rank 5 with 3 generators>
gap> IsSymmetricInverseSemigroup(S);
true
gap> S;
<symmetric inverse monoid of degree 5>]]></Example>
</Description>
</ManSection>

<ManSection>
  <Attr Name="NaturalPartialOrder" Arg="S"/>
  <Attr Name="ReverseNaturalPartialOrder" Arg="S"/>
  <Returns>The natural partial order on an inverse semigroup.</Returns>
  <Description>
    The <E>natural partial order</E> <M>\leq</M> on an inverse semigroup
    <A>S</A> is defined by <C>s</C><M>\leq</M><C>t</C> if there exists an
    idempotent
    <C>e</C> in <A>S</A> such that <C>s=et</C>. Hence if <C>f</C> and
    <C>g</C> are partial permutations, then <C>f</C><M>\leq</M><C>g</C> if
    and only if <C>f</C> is a restriction of <C>g</C>;
    see <Ref Oper="RestrictedPartialPerm"/>.<P/>

    <C>NaturalPartialOrder</C> returns the natural partial order on the inverse
    semigroup of partial permutations <A>S</A> as a list of sets of positive
    integers where entry <C>i</C> in <C>NaturalPartialOrder(<A>S</A>)</C> is
    the set of positions in <C>Elements(<A>S</A>)</C> of elements which are
    less than <C>Elements(<A>S</A>)[i]</C>. See also
    <Ref Func="NaturalLeqPartialPerm"/>.<P/>

    <C>ReverseNaturalPartialOrder</C> returns the reverse of the natural
    partial order on the inverse semigroup of partial permutations <A>S</A> as
    a list of sets of
    positive integers where entry <C>i</C> in
    <C>ReverseNaturalPartialOrder(<A>S</A>)</C> is the set of positions in
    <C>Elements(<A>S</A>)</C> of elements which are greater than
    <C>Elements(<A>S</A>)[i]</C>. See also
    <Ref Func="NaturalLeqPartialPerm"/>.

    <Example><![CDATA[
gap> S := InverseSemigroup([ PartialPerm( [ 1, 3 ], [ 1, 3 ] ),
> PartialPerm( [ 1, 2 ], [ 3, 2 ] ) ] );
<inverse partial perm semigroup of rank 3 with 2 generators>
gap> Size(S);
11
gap> NaturalPartialOrder(S);
[ [  ], [ 1 ], [ 1 ], [ 1 ], [ 1, 2, 4 ], [ 1, 3, 4 ], [ 1 ], [ 1 ],
  [ 1, 4, 7 ], [ 1, 4, 8 ], [ 1, 2, 8 ] ]
gap> NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[10]);
true
gap> NaturalLeqPartialPerm(Elements(S)[4], Elements(S)[1]);
false]]></Example>
  </Description>
</ManSection>

<ManSection>
  <Attr Name="IsomorphismPartialPermSemigroup" Arg="S"/>
  <Attr Name="IsomorphismPartialPermMonoid" Arg="S"/>
  <Returns>An isomorphism.</Returns>
  <Description>
    <C>IsomorphismPartialPermSemigroup(<A>S</A>)</C>
     returns an isomorphism from the inverse semigroup <A>S</A> to an
     inverse semigroup of partial permutations.<P/>

     <C>IsomorphismPartialPermMonoid(<A>S</A>)</C> returns an isomorphism from
     the inverse semigroup <A>S</A> to an inverse monoid of partial
     permutations, if possible.<P/>

     We only describe <C>IsomorphismPartialPermMonoid</C>,
     the corresponding statements for <C>IsomorphismPartialPermSemigroup</C>
     also hold.

     <List>
       <Mark>Partial permutation semigroups</Mark>
       <Item>
         If <A>S</A> is a partial permutation semigroup that does not satisfy
         <Ref Filt="IsMonoid"/> but where
         <C>MultiplicativeNeutralElement(<A>S</A>)&lt;>fail</C>, then
         <C>IsomorphismPartialPermMonoid(<A>S</A>)</C> returns an isomorphism
         from <A>S</A> to an inverse monoid of partial permutations.
       </Item>

      <Mark>Permutation groups</Mark>
      <Item>
        If <A>S</A> is a permutation group, then
        <C>IsomorphismPartialPermMonoid</C> returns an isomorphism from
        <A>S</A> to an inverse monoid of partial permutations on the set
        <C>MovedPoints(<A>S</A>)</C> obtained using
        <Ref Meth="AsPartialPerm" Label="for a permutation"/>.
        The inverse of this isomorphism is obtained using
        <Ref Attr="AsPermutation"/>.
      </Item>

      <Mark>Transformation semigroups</Mark>
      <Item>
        If <A>S</A> is a transformation semigroup which is mathematically a
        monoid but which does not necessarily belong to the category <Ref Filt
          = "IsMonoid"/>, then
        <C>IsomorphismPartialPermMonoid</C> returns an isomorphism from
        <A>S</A> to an inverse monoid of partial permutations.
      </Item>
    </List>
    <Example><![CDATA[
gap> S := InverseSemigroup(
> PartialPerm( [ 1, 2, 3, 4, 5 ], [ 4, 2, 3, 1, 5 ] ),
> PartialPerm( [ 1, 2, 4, 5 ], [ 3, 1, 4, 2 ] ) );;
gap> IsMonoid(S);
false
gap> Size(S);
508
gap> iso := IsomorphismPartialPermMonoid(S);
MappingByFunction( <inverse partial perm semigroup of size 508,
 rank 5 with 2 generators>, <inverse partial perm monoid of size 508,
 rank 5 with 2 generators>
 , function( object ) ... end, function( object ) ... end )
gap> Size(S);
508
gap> Size(Range(iso));
508
gap> G := Group((1,2)(3,8)(4,6)(5,7), (1,3,4,7)(2,5,6,8), (1,4)(2,6)(3,7)(5,8));;
gap> IsomorphismPartialPermSemigroup(G);
MappingByFunction( Group([ (1,2)(3,8)(4,6)(5,7), (1,3,4,7)
(2,5,6,8), (1,4)(2,6)(3,7)
(5,8) ]), <partial perm group of rank 8 with 3 generators>
, function( p ) ... end, <Attribute "AsPermutation"> )
gap> S := Semigroup(Transformation( [ 2, 5, 1, 7, 3, 7, 7 ] ),
> Transformation( [ 3, 6, 5, 7, 2, 1, 7 ] ) );;
gap> iso := IsomorphismPartialPermMonoid(S);;
gap> MultiplicativeNeutralElement(S) ^ iso;
<identity partial perm on [ 1, 2, 3, 4, 5, 6 ]>
gap> One(Range(iso));
<identity partial perm on [ 1, 2, 3, 4, 5, 6 ]>
gap> MovedPoints(Range(iso));
[ 1 .. 5 ]]]></Example>
  </Description>
</ManSection>
</Section>
</Chapter>