1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
<Section Label="Rees Matrix Semigroups">
<Heading>Rees Matrix Semigroups</Heading>
In this section, we describe the functions in &GAP; for Rees matrix
and 0-matrix semigroups and their subsemigroups. The importance of these
semigroups lies in the fact that Rees matrix semigroups over groups are
exactly the completely simple semigroups, and Rees 0-matrix semigroups over
groups are the completely 0-simple semigroups. <P/>
Let <M>I</M> and <M>J</M> be sets, let <M>S</M> be a semigroup, and let
<M>P=(p_{ji})_{j\in J, i\in I}</M> be a <M>|J|\times |I|</M> matrix with
entries in <M>S</M>. Then the <E>Rees matrix semigroup</E> with underlying
semigroup <M>S</M> and matrix <M>P</M> is just the direct product
<M>I\times S \times J</M> with multiplication defined by
<Display>(i, s, j)(k, t, l)=(i,s\cdot p_{j,k}\cdot t, l).</Display>
Rees 0-matrix semigroups are defined as follows. If <M>I</M>, <M>J</M>,
<M>S</M>, and <M>P</M> are as above and <M>0</M> denotes a new element, then
the <E>Rees 0-matrix semigroup</E> with underlying semigroup <M>S</M> and
matrix <M>P</M> is <M>(I\times S\times J)\cup \{0\}</M> with multiplication
defined by
<Display>(i, s, j)(k, t, l)=(i, s\cdot p_{j,k}\cdot t, l)</Display>
when <M>p_{j,k}</M> is not <M>0</M> and <M>0</M> if <M>p_{j,k}</M> is 0.<P/>
If <M>R</M> is a Rees matrix or 0-matrix semigroup, then the <E>rows</E> of
<M>R</M> is the index set <M>I</M>, the <E>columns</E> of <M>R</M> is the
index set <M>J</M>, the semigroup <M>S</M> is the <E>underlying semigroup</E>
of <M>R</M>, and the <E>matrix</E> <M>P</M> is the matrix of <M>S</M>. <P/>
Thoroughout this section, wherever the distinction is unimportant, we will
refer to Rees matrix or 0-matrix semigroups collectively as Rees matrix
semigroups.<P/>
Multiplication of elements of a Rees matrix semigroup obviously depends on
the matrix used to create the semigroup. Hence elements of a Rees matrix
semigroup can only be created with reference to the semigroup to which they
belong. More specifically, every collection or semigroup of Rees matrix
semigroup elements is created from a specific Rees matrix semigroup, which
contains the whole family of its elements. So, it is not possible to
multiply or compare elements belonging to distinct Rees matrix semigroups,
since they belong to different families. For example, this situation is
similar to free groups, but it is different to permutations, which belong to a
single family, and where arbitrary permutations can be compared and multiplied
without reference to any group containing them. <P/>
A subsemigroup of a Rees matrix semigroup is not necessarily a Rees matrix
semigroup. Every semigroup consisting of elements of a Rees matrix semigroup
satisfies the property <Ref Filt="IsReesMatrixSubsemigroup"/> and every
semigroup of Rees 0-matrix semigroup elements satisfies
<Ref Filt="IsReesZeroMatrixSubsemigroup"/>. <P/>
Rees matrix and 0-matrix semigroups can be created using the operations
<Ref Oper="ReesMatrixSemigroup"/> and <Ref Oper="ReesZeroMatrixSemigroup"/>,
respectively, from an underlying semigroup and a matrix. Rees matrix
semigroups created in this way contain the whole family of their elements.
Every element of a Rees matrix semigroup belongs to a unique semigroup
created in this way; every subsemigroup of a Rees matrix semigroup
is a subsemigroup of a unique semigroup created in this way.<P/>
Subsemigroups of Rees matrix semigroups can also be created by specifying
generators. A subsemigroup of a Rees matrix semigroup <M>I\times U\times J</M>
satisfies <Ref Prop="IsReesMatrixSemigroup"/> if and only if it is equal to
<M>I'\times U'\times J'</M> where <M>I'\subseteq I</M>, <M>J'\subseteq J</M>,
and <M>U'</M> is a subsemigroup of <M>U</M>.
The analogous statements holds for Rees 0-matrix semigroups. <P/>
It is not necessarily the case that a simple subsemigroups of Rees matrix
semigroups satisfies <Ref Prop="IsReesMatrixSemigroup"/>. A Rees matrix semigroup is
simple if and only if its underlying semigroup is simple.
A finite semigroup is simple if and only if it is isomorphic to a Rees matrix
semigroup over a group; this isomorphism can be obtained explicitly using
<Ref Attr="IsomorphismReesMatrixSemigroup"/>.<P/>
Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to
satisfy <Ref Prop="IsReesZeroMatrixSemigroup"/>. A Rees 0-matrix semigroup
with more than 2 elements is 0-simple if and only if every row and every
column of its matrix contains a non-zero entry, and its underlying semigroup
is simple. A finite semigroup is 0-simple if and only if it is isomorphic to a
Rees 0-matrix semigroup over a group; again this isomorphism can be found by
using <Ref Attr="IsomorphismReesZeroMatrixSemigroup"/>.<P/>
Elements of a Rees matrix or 0-matrix semigroup belong to the categories
<Ref Filt="IsReesMatrixSemigroupElement"/> and
<Ref Filt="IsReesZeroMatrixSemigroupElement"/>, respectively.
Such elements can be created directly using the functions
<Ref Func="ReesMatrixSemigroupElement"/> and
<Ref Func="ReesZeroMatrixSemigroupElement"/>. <P/>
A semigroup in &GAP; can either satisfies <Ref Prop="IsReesMatrixSemigroup"/>
or <Ref Prop="IsReesZeroMatrixSemigroup"/> but not both.
<ManSection>
<Oper Name="ReesMatrixSemigroup" Arg="S, mat"/>
<Oper Name="ReesZeroMatrixSemigroup" Arg="S, mat"/>
<Returns>A Rees matrix or 0-matrix semigroup.</Returns>
<Description>
When <A>S</A> is a semigroup and <A>mat</A> is an <C>m</C> by <C>n</C>
matrix with entries in <A>S</A>, the function <Ref Oper="ReesMatrixSemigroup"/>
returns the <C>n</C> by <C>m</C> Rees matrix semigroup over <A>S</A> with
multiplication defined by <A>mat</A>. <P/>
The arguments of <Ref Oper="ReesZeroMatrixSemigroup"/> should be a semigroup
<A>S</A> and an <C>m</C> by <C>n</C> matrix <A>mat</A> with entries in
<A>S</A> or equal to the integer <C>0</C>. <Ref Oper="ReesZeroMatrixSemigroup"/>
returns the <C>n</C> by <C>m</C> Rees 0-matrix semigroup over <A>S</A>
with multiplication defined by <A>mat</A>. In &GAP; a Rees 0-matrix
semigroup always contains a multiplicative zero element, regardless of
whether there are any entries in <A>mat</A> which are equal to <C>0</C>.
<Example><![CDATA[
gap> G:=Random(AllSmallGroups(Size, 32));;
gap> mat:=List([1..5], x-> List([1..3], y-> Random(G)));;
gap> S:=ReesMatrixSemigroup(G, mat);
<Rees matrix semigroup 3x5 over <pc group of size 32 with
5 generators>>
gap> mat:=[[(), 0, (), ()], [0, 0, 0, 0]];;
gap> S:=ReesZeroMatrixSemigroup(DihedralGroup(IsPermGroup, 8), mat);
<Rees 0-matrix semigroup 4x2 over Group([ (1,2,3,4), (2,4) ])>
]]></Example>
</Description>
</ManSection>
<ManSection>
<Oper Name="ReesMatrixSubsemigroup" Arg="R, I, U, J"/>
<Oper Name="ReesZeroMatrixSubsemigroup" Arg="R, I, U, J"/>
<Returns>A Rees matrix or 0-matrix subsemigroup.</Returns>
<Description>
The arguments of <Ref Oper="ReesMatrixSubsemigroup"/> should be a Rees matrix
semigroup <A>R</A>, subsets <A>I</A> and <A>J</A> of the rows and columns
of <A>R</A>, respectively, and a subsemigroup <A>U</A> of the underlying
semigroup of <A>R</A>. <Ref Oper="ReesMatrixSubsemigroup"/>
returns the subsemigroup of <A>R</A> generated by the direct product of
<A>I</A>, <A>U</A>, and <A>J</A>. <P/>
The usage and returned value of <Ref Oper="ReesZeroMatrixSubsemigroup"/> is
analogous when <A>R</A> is a Rees 0-matrix semigroup.
<Example><![CDATA[
gap> G:=CyclicGroup(IsPermGroup, 1007);;
gap> mat:=[[(), 0, 0], [0, (), 0], [0, 0, ()],
> [(), (), ()], [0, 0, ()]];;
gap> R:=ReesZeroMatrixSemigroup(G, mat);
<Rees 0-matrix semigroup 3x5 over
<permutation group of size 1007 with 1 generator>>
gap> ReesZeroMatrixSubsemigroup(R, [1,3], G, [1..5]);
<Rees 0-matrix semigroup 2x5 over
<permutation group of size 1007 with 1 generator>>
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="IsomorphismReesMatrixSemigroup" Arg="S"/>
<Attr Name="IsomorphismReesZeroMatrixSemigroup" Arg="S"/>
<Returns>An isomorphism.</Returns>
<Description>
Every finite simple semigroup is isomorphic to a Rees matrix semigroup
over a group, and every finite 0-simple semigroup is isomorphic to a Rees
0-matrix semigroup over a group.
<P/>
If the argument <A>S</A> is a simple semigroup, then
<Ref Attr="IsomorphismReesMatrixSemigroup"/> returns an isomorphism to a Rees
matrix semigroup over a group. If <A>S</A> is not simple, then
<Ref Attr="IsomorphismReesMatrixSemigroup"/> returns an error.
<P/>
If the argument <A>S</A> is a 0-simple semigroup, then
<Ref Attr="IsomorphismReesZeroMatrixSemigroup"/> returns an isomorphism to a
Rees 0-matrix semigroup over a group. If <A>S</A> is not 0-simple, then
<Ref Attr="IsomorphismReesZeroMatrixSemigroup"/> returns an error.
<P/>
See <Ref Prop="IsSimpleSemigroup"/> and
<Ref Prop="IsZeroSimpleSemigroup"/>.
<Example><![CDATA[
gap> S := Semigroup(Transformation([2, 1, 1, 2, 1]),
> Transformation([3, 4, 3, 4, 4]),
> Transformation([3, 4, 3, 4, 3]),
> Transformation([4, 3, 3, 4, 4]));;
gap> IsSimpleSemigroup(S);
true
gap> Range(IsomorphismReesMatrixSemigroup(S));
<Rees matrix semigroup 4x2 over Group([ (1,2) ])>
gap> mat := [[(), 0, 0],
> [0, (), 0],
> [0, 0, ()]];;
gap> R := ReesZeroMatrixSemigroup(Group((1,2,4,5,6)), mat);
<Rees 0-matrix semigroup 3x3 over Group([ (1,2,4,5,6) ])>
gap> U := ReesZeroMatrixSubsemigroup(R, [1, 2], Group(()), [2, 3]);
<subsemigroup of 3x3 Rees 0-matrix semigroup with 4 generators>
gap> IsZeroSimpleSemigroup(U);
false
gap> U := ReesZeroMatrixSubsemigroup(R, [2, 3], Group(()), [2, 3]);
<subsemigroup of 3x3 Rees 0-matrix semigroup with 3 generators>
gap> IsZeroSimpleSemigroup(U);
true
gap> Rows(U); Columns(U);
[ 2, 3 ]
[ 2, 3 ]
gap> V := Range(IsomorphismReesZeroMatrixSemigroup(U));
<Rees 0-matrix semigroup 2x2 over Group(())>
gap> Rows(V); Columns(V);
[ 1, 2 ]
[ 1, 2 ]]]></Example>
</Description>
</ManSection>
<ManSection>
<Filt Name="IsReesMatrixSemigroupElement" Arg="elt" Type="Category"/>
<Filt Name="IsReesZeroMatrixSemigroupElement" Arg="elt" Type="Category"/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
Every element of a Rees matrix semigroup belongs to the category
<Ref Filt="IsReesMatrixSemigroupElement"/>, and every element of a Rees 0-matrix
semigroup belongs to the category <Ref Filt="IsReesZeroMatrixSemigroupElement"/>.
<Example><![CDATA[
gap> G:=Group((1,2,3));;
gap> mat:=[ [ (), (1,3,2) ], [ (1,3,2), () ] ];;
gap> R:=ReesMatrixSemigroup(G, mat);
<Rees matrix semigroup 2x2 over Group([ (1,2,3) ])>
gap> GeneratorsOfSemigroup(R);
[ (1,(1,2,3),1), (2,(),2) ]
gap> IsReesMatrixSemigroupElement(last[1]);
true
gap> IsReesZeroMatrixSemigroupElement(last2[1]);
false]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="ReesMatrixSemigroupElement" Arg="R, i, x, j"/>
<Func Name="ReesZeroMatrixSemigroupElement" Arg="R, i, x, j"/>
<Returns>An element of a Rees matrix or <C>0</C>-matrix semigroup.</Returns>
<Description>
The arguments of <A>ReesMatrixSemigroupElement</A> should be a
Rees matrix subsemigroup <A>R</A>, elements <A>i</A> and <A>j</A> of the
the rows and columns of <A>R</A>, respectively, and an element <A>x</A>
of the underlying semigroup of <A>R</A>.
<Ref Func="ReesMatrixSemigroupElement"/> returns the element of <A>R</A> with row
index <A>i</A>, underlying element <A>x</A> in the underlying semigroup of
<A>R</A>, and column index <A>j</A>, if such an element exist, if such an
element exists.<P/>
The usage of <Ref Func="ReesZeroMatrixSemigroupElement"/> is analogous to that
of <Ref Func="ReesMatrixSemigroupElement"/>, when <A>R</A> is a Rees 0-matrix
semigroup. <P/>
The row <A>i</A>, underlying element <A>x</A>, and column <A>j</A> of an
element <C>y</C> of a Rees matrix (or 0-matrix) semigroup can be
recovered from <C>y</C> using <C>y[1]</C>, <C>y[2]</C>, and <C>y[3]</C>,
respectively.<P/>
<Example><![CDATA[
gap> G:=Group((1,2,3));;
gap> mat:=[ [ 0, () ], [ (1,3,2), (1,3,2) ] ];;
gap> R:=ReesZeroMatrixSemigroup(G, mat);
<Rees 0-matrix semigroup 2x2 over Group([ (1,2,3) ])>
gap> ReesZeroMatrixSemigroupElement(R, 1, (1,2,3), 2);
(1,(1,2,3),2)
gap> MultiplicativeZero(R);
0]]></Example>
</Description>
</ManSection>
<ManSection>
<Filt Name="IsReesMatrixSubsemigroup" Arg="R" Type="Synonym" />
<Filt Name="IsReesZeroMatrixSubsemigroup" Arg="R" Type="Synonym"/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
Every semigroup consisting of elements of a Rees matrix
semigroup satisfies the property <Ref Filt="IsReesMatrixSubsemigroup"/> and
every semigroup of Rees 0-matrix semigroup elements satisfies
<Ref Filt="IsReesZeroMatrixSubsemigroup"/>. <P/>
Note that a subsemigroup of a Rees matrix semigroup is not necessarily a
Rees matrix semigroup.
<Example><![CDATA[
gap> G:=DihedralGroup(32);;
gap> mat:=List([1..2], x-> List([1..10], x-> Random(G)));;
gap> R:=ReesMatrixSemigroup(G, mat);
<Rees matrix semigroup 10x2 over <pc group of size 32 with
5 generators>>
gap> S:=Semigroup(GeneratorsOfSemigroup(R));
<subsemigroup of 10x2 Rees matrix semigroup with 14 generators>
gap> IsReesMatrixSubsemigroup(S);
true
gap> S:=Semigroup(GeneratorsOfSemigroup(R)[1]);
<subsemigroup of 10x2 Rees matrix semigroup with 1 generator>
gap> IsReesMatrixSubsemigroup(S);
true]]></Example>
</Description>
</ManSection>
<ManSection>
<Prop Name="IsReesMatrixSemigroup" Arg="R"/>
<Prop Name="IsReesZeroMatrixSemigroup" Arg="R"/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
A subsemigroup of a Rees matrix semigroup <M>I\times U\times J</M>
satisfies <Ref Prop="IsReesMatrixSemigroup"/> if and only if it is equal to
<M>I'\times U'\times J'</M> where <M>I'\subseteq I</M>, <M>J'\subseteq J</M>,
and <M>U'</M> is a subsemigroup of <M>U</M>.
It can be costly to check that a subsemigroup defined by generators satisfies
<Ref Prop="IsReesMatrixSemigroup"/>.
The analogous statements holds for Rees 0-matrix semigroups. <P/>
It is not necessarily the case that a simple subsemigroups of Rees matrix
semigroups satisfies <Ref Prop="IsReesMatrixSemigroup"/>. A Rees matrix
semigroup is simple if and only if its underlying semigroup is simple.
A finite semigroup is simple if and only if it is isomorphic to a Rees matrix
semigroup over a group; this isomorphism can be obtained explicitly using
<Ref Attr="IsomorphismReesMatrixSemigroup"/>.<P/>
Similarly, 0-simple subsemigroups of Rees 0-matrix semigroups do not have to
satisfy <Ref Prop="IsReesZeroMatrixSemigroup"/>. A Rees 0-matrix
semigroup with more than 2 elements is 0-simple if and only if every row
and every column of its matrix contains a non-zero entry, and its
underlying semigroup is simple. A finite semigroup is 0-simple if and only
if it is isomorphic to a Rees 0-matrix semigroup over a group; again this
isomorphism can be found by using <Ref Attr="IsomorphismReesMatrixSemigroup"/>.
<Example><![CDATA[
gap> G:=PSL(2,5);;
gap> mat:=[ [ 0, (), 0, (2,6,3,5,4) ],
> [ (), 0, (), 0 ], [ 0, 0, 0, () ] ];;
gap> R:=ReesZeroMatrixSemigroup(G, mat);
<Rees 0-matrix semigroup 4x3 over Group([ (3,5)(4,6), (1,2,5)
(3,4,6) ])>
gap> IsReesZeroMatrixSemigroup(R);
true
gap> U:=ReesZeroMatrixSubsemigroup(R, [1..3], Group(()), [1..2]);
<subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators>
gap> IsReesZeroMatrixSemigroup(U);
true
gap> V:=Semigroup(GeneratorsOfSemigroup(U));
<subsemigroup of 4x3 Rees 0-matrix semigroup with 4 generators>
gap> IsReesZeroMatrixSemigroup(V);
true
gap> S:=Semigroup(Transformation([1,1]), Transformation([1,2]));
<commutative transformation monoid of degree 2 with 1 generator>
gap> IsSimpleSemigroup(S);
false
gap> mat:=[[0, One(S), 0, One(S)], [One(S), 0, One(S), 0],
> [0, 0, 0, One(S)]];;
gap> R:=ReesZeroMatrixSemigroup(S, mat);;
gap> U:=ReesZeroMatrixSubsemigroup(R, [1..3],
> Semigroup(Transformation([1,1])), [1..2]);
<subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators>
gap> V:=Semigroup(GeneratorsOfSemigroup(U));
<subsemigroup of 4x3 Rees 0-matrix semigroup with 6 generators>
gap> IsReesZeroMatrixSemigroup(V);
true
gap> T:=Semigroup(
> ReesZeroMatrixSemigroupElement(R, 3, Transformation( [ 1, 1 ] ), 3),
> ReesZeroMatrixSemigroupElement(R, 2, Transformation( [ 1, 1 ] ), 2));
<subsemigroup of 4x3 Rees 0-matrix semigroup with 2 generators>
gap> IsReesZeroMatrixSemigroup(T);
false]]></Example>
</Description>
</ManSection>
<ManSection>
<Oper Name="Matrix" Arg="R" Label="for Rees matrix semigroups"/>
<Attr Name="MatrixOfReesMatrixSemigroup" Arg="R"/>
<Attr Name="MatrixOfReesZeroMatrixSemigroup" Arg="R"/>
<Returns>A matrix.</Returns>
<Description>
If <A>R</A> is a Rees matrix or 0-matrix semigroup, then
<Ref Attr="MatrixOfReesMatrixSemigroup"/> respectively <Ref Attr="MatrixOfReesZeroMatrixSemigroup"/>
return the matrix used to define multiplication in
<A>R</A>. For convenience, one may also abbreviate either to
<Ref Oper="Matrix" Label="for Rees matrix semigroups"/>. <P/>
More specifically, if <A>R</A> is a Rees matrix or 0-matrix semigroup,
which is a proper subsemigroup of another such semigroup, then
<Ref Oper="Matrix" Label="for Rees matrix semigroups"/> returns the matrix used to define the Rees matrix (or
0-matrix) semigroup consisting of the whole family to which the elements
of <A>R</A> belong. Thus, for example, a <C>1</C> by <C>1</C> Rees matrix
semigroup can have a <C>65</C> by <C>15</C> matrix. <P/>
Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have
a matrix. Such a subsemigroup <A>R</A> has a matrix if and
only if it satisfies <Ref Prop="IsReesMatrixSemigroup"/> or
<Ref Prop="IsReesZeroMatrixSemigroup"/>.
<Example><![CDATA[
gap> G:=AlternatingGroup(5);;
gap> mat:=[[(), (), ()], [(), (), ()]];;
gap> R:=ReesMatrixSemigroup(G, mat);
<Rees matrix semigroup 3x2 over Alt( [ 1 .. 5 ] )>
gap> Matrix(R);
[ [ (), (), () ], [ (), (), () ] ]
gap> R:=ReesMatrixSubsemigroup(R, [1,2], Group(()), [2]);
<subsemigroup of 3x2 Rees matrix semigroup with 2 generators>
gap> Matrix(R);
[ [ (), (), () ], [ (), (), () ] ]
]]></Example>
</Description>
</ManSection>
<ManSection><Heading>Rows and columns</Heading>
<Attr Name="Rows" Arg="R"/>
<Attr Name="Columns" Arg="R"/>
<Returns>The rows or columns of <A>R</A>.</Returns>
<Description>
<Ref Attr="Rows"/> returns the rows of the Rees matrix or 0-matrix semigroup
<A>R</A>. Note that the rows of the semigroup correspond to the columns of
the matrix used to define multiplication in <A>R</A>.<P/>
<Ref Attr="Columns"/> returns the columns of the Rees matrix or 0-matrix
semigroup <A>R</A>. Note that the columns of the semigroup correspond to
the rows of the matrix used to define multiplication in <A>R</A>.<P/>
Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have
rows or columns. Such a subsemigroup <A>R</A> has rows and columns if and
only if it satisfies <Ref Prop="IsReesMatrixSemigroup"/> or
<Ref Prop="IsReesZeroMatrixSemigroup"/>.
<Example><![CDATA[
gap> G:=Group((1,2,3));;
gap> mat:=List([1..100], x-> List([1..200], x->Random(G)));;
gap> R:=ReesZeroMatrixSemigroup(G, mat);
<Rees 0-matrix semigroup 200x100 over Group([ (1,2,3) ])>
gap> Rows(R);
[ 1 .. 200 ]
gap> Columns(R);
[ 1 .. 100 ]
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="UnderlyingSemigroup" Arg="R"
Label="for a Rees matrix semigroup"/>
<Attr Name="UnderlyingSemigroup" Arg="R"
Label="for a Rees 0-matrix semigroup"/>
<Returns>A semigroup.</Returns>
<Description>
<Ref Attr="UnderlyingSemigroup" Label="for a Rees matrix semigroup" />
returns the underlying semigroup of the Rees
matrix or 0-matrix semigroup <A>R</A>. <P/>
Arbitrary subsemigroups of Rees matrix or 0-matrix semigroups do not have
an underlying semigroup. Such a subsemigroup <A>R</A> has an underlying
semigroup if and only if it satisfies <Ref Prop="IsReesMatrixSemigroup"/>
or <Ref Prop="IsReesZeroMatrixSemigroup"/>.
<Example><![CDATA[
gap> S:=Semigroup(Transformation( [ 2, 1, 1, 2, 1 ] ),
> Transformation( [ 3, 4, 3, 4, 4 ] ), Transformation([ 3, 4, 3, 4, 3 ] ),
> Transformation([ 4, 3, 3, 4, 4 ] ) );;
gap> R:=Range(IsomorphismReesMatrixSemigroup(S));
<Rees matrix semigroup 4x2 over Group([ (1,2) ])>
gap> UnderlyingSemigroup(R);
Group([ (1,2) ])
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="AssociatedReesMatrixSemigroupOfDClass" Arg="D"/>
<Returns>A Rees matrix or 0-matrix semigroup.</Returns>
<Description>
If <A>D</A> is a regular &D;-class of a finite semigroup <C>S</C>, then
there is a standard way of associating a Rees matrix semigroup to
<A>D</A>. If <A>D</A> is a subsemigroup of <C>S</C>, then <A>D</A> is
simple and hence is isomorphic to a Rees matrix semigroup. In this case,
the associated Rees matrix semigroup of <A>D</A> is just the Rees matrix
semigroup isomorphic to <A>D</A>. <P/>
If <A>D</A> is not a subsemigroup of <C>S</C>, then we define a semigroup
with elements <A>D</A> and a new element <C>0</C> with multiplication of
<M>x,y\in D</M> defined by:
<Alt Not="Text">
<Display>
xy=\left\{\begin{array}{ll}
x*y\ (\textrm{in }S)&\textrm{if }x*y\in D\\
0&\textrm{if }xy\not\in D.
\end{array}\right.
</Display>
</Alt>
<Alt Only="Text">
<C>xy</C> equals the product of <C>x</C> and <C>y</C> if it belongs to
<A>D</A> and <C>0</C> if it does not. <P/>
</Alt>
The semigroup thus defined is 0-simple and hence is isomorphic to a Rees
0-matrix semigroup. This semigroup can also be described as the Rees
quotient of the ideal generated by <A>D</A> by it maximal subideal. The
associated Rees matrix semigroup of <A>D</A> is just the Rees 0-matrix
semigroup isomorphic to the semigroup defined above.
<Log><![CDATA[
gap> S:=FullTransformationSemigroup(5);;
gap> D:=GreensDClasses(S)[3];
{Transformation( [ 1, 1, 1, 2, 3 ] )}
gap> AssociatedReesMatrixSemigroupOfDClass(D);
<Rees 0-matrix semigroup 25x10 over Group([ (1,2)(3,5)(4,6), (1,3)
(2,4)(5,6) ])>
]]></Log>
</Description>
</ManSection>
</Section>
|