1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A semigrp.xml GAP documentation Thomas Breuer -->
<!-- %% -->
<!-- %% -->
<!-- %Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y Copyright (C) 2002 The GAP Group -->
<!-- %% -->
<Chapter Label="Semigroups">
<Heading>Semigroups and Monoids</Heading>
This chapter describes functions for creating semigroups and monoids
and determining information about them.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:IsSemigroup">
<Heading>Semigroups</Heading>
<#Include Label="IsSemigroup">
<#Include Label="Semigroup">
<#Include Label="Subsemigroup">
<#Include Label="IsSubsemigroup">
<#Include Label="SemigroupByGenerators">
<#Include Label="AsSemigroup">
<#Include Label="AsSubsemigroup">
<#Include Label="GeneratorsOfSemigroup">
<#Include Label="IsGeneratorsOfSemigroup">
<#Include Label="FreeSemigroup">
<#Include Label="SemigroupByMultiplicationTable">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:IsMonoid">
<Heading>Monoids</Heading>
<#Include Label="IsMonoid">
<#Include Label="Monoid">
<#Include Label="Submonoid">
<#Include Label="MonoidByGenerators">
<#Include Label="AsMonoid">
<#Include Label="AsSubmonoid">
<#Include Label="GeneratorsOfMonoid">
<#Include Label="TrivialSubmonoid">
<#Include Label="FreeMonoid">
<#Include Label="MonoidByMultiplicationTable">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<#Include SYSTEM "invsgp.xml">
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Properties of Semigroups">
<Heading>Properties of Semigroups</Heading>
The following functions determine information
about semigroups.
<#Include Label="IsRegularSemigroup">
<#Include Label="IsRegularSemigroupElement">
<#Include Label="InversesOfSemigroupElement">
<#Include Label="IsSimpleSemigroup">
<#Include Label="IsZeroSimpleSemigroup">
<#Include Label="IsZeroGroup">
<#Include Label="IsReesCongruenceSemigroup">
<#Include Label="IsInverseSemigroup">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Ideals of semigroups">
<Heading>Ideals of semigroups</Heading>
Ideals of semigroups are the same as ideals of the semigroup when
considered as a magma.
For documentation on ideals for magmas, see <Ref Func="Magma"/>.
<#Include Label="SemigroupIdealByGenerators">
<#Include Label="ReesCongruenceOfSemigroupIdeal">
<#Include Label="IsLeftSemigroupIdeal">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Congruences on semigroups">
<Heading>Congruences on semigroups</Heading>
An equivalence or a congruence on a semigroup is the
equivalence or congruence on the semigroup considered as a magma.
So, to deal with equivalences and congruences on semigroups,
magma functions are used.
For documentation on equivalences and congruences on magmas,
see <Ref Func="Magma"/>.
<#Include Label="IsSemigroupCongruence">
<#Include Label="IsReesCongruence">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Quotients">
<Heading>Quotients</Heading>
Given a semigroup and a congruence on the semigroup, one
can construct a new semigroup: the quotient semigroup.
The following functions deal with quotient semigroups in &GAP;.
<#Include Label="[1]{semiquo}">
<#Include Label="IsQuotientSemigroup">
<#Include Label="HomomorphismQuotientSemigroup">
<#Include Label="QuotientSemigroupPreimage">
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Green's Relations">
<Heading>Green's Relations</Heading>
<#Include Label="[1]{semirel}">
<#Include Label="GreensRRelation">
<#Include Label="IsGreensRelation">
<#Include Label="IsGreensClass">
<#Include Label="IsGreensLessThanOrEqual">
<#Include Label="RClassOfHClass">
<#Include Label="EggBoxOfDClass">
<#Include Label="DisplayEggBoxOfDClass">
<#Include Label="GreensRClassOfElement">
<#Include Label="GreensRClasses">
<#Include Label="GroupHClassOfGreensDClass">
<#Include Label="IsGroupHClass">
<#Include Label="IsRegularDClass">
<#Include Label="DisplaySemigroup">
</Section>
<#Include SYSTEM "reesmat.xml">
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
</Chapter>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->
|