File: semigrp.xml

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (149 lines) | stat: -rw-r--r-- 4,650 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %A  semigrp.xml                GAP documentation                Thomas Breuer -->
<!-- %% -->
<!-- %% -->
<!-- %Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland -->
<!-- %Y  Copyright (C) 2002 The GAP Group -->
<!-- %% -->

<Chapter Label="Semigroups">
<Heading>Semigroups and Monoids</Heading>

This chapter describes functions for creating semigroups and monoids
and determining information about them.

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:IsSemigroup">
<Heading>Semigroups</Heading>

<#Include Label="IsSemigroup">
<#Include Label="Semigroup">
<#Include Label="Subsemigroup">
<#Include Label="IsSubsemigroup">
<#Include Label="SemigroupByGenerators">
<#Include Label="AsSemigroup">
<#Include Label="AsSubsemigroup">
<#Include Label="GeneratorsOfSemigroup">
<#Include Label="IsGeneratorsOfSemigroup">
<#Include Label="FreeSemigroup">
<#Include Label="SemigroupByMultiplicationTable">

</Section>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<Section Label="sect:IsMonoid">
<Heading>Monoids</Heading>

<#Include Label="IsMonoid">
<#Include Label="Monoid">
<#Include Label="Submonoid">
<#Include Label="MonoidByGenerators">
<#Include Label="AsMonoid">
<#Include Label="AsSubmonoid">
<#Include Label="GeneratorsOfMonoid">
<#Include Label="TrivialSubmonoid">
<#Include Label="FreeMonoid">
<#Include Label="MonoidByMultiplicationTable">

</Section>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<#Include SYSTEM "invsgp.xml">

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Properties of Semigroups">
<Heading>Properties of Semigroups</Heading>

The following functions determine information
about semigroups.

<#Include Label="IsRegularSemigroup">
<#Include Label="IsRegularSemigroupElement">
<#Include Label="InversesOfSemigroupElement">
<#Include Label="IsSimpleSemigroup">
<#Include Label="IsZeroSimpleSemigroup">
<#Include Label="IsZeroGroup">
<#Include Label="IsReesCongruenceSemigroup">
<#Include Label="IsInverseSemigroup">

</Section>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Ideals of semigroups">
<Heading>Ideals of semigroups</Heading>

Ideals of semigroups are the same as ideals of the semigroup when
considered as a magma.
For documentation on ideals for magmas, see <Ref Func="Magma"/>.

<#Include Label="SemigroupIdealByGenerators">
<#Include Label="ReesCongruenceOfSemigroupIdeal">
<#Include Label="IsLeftSemigroupIdeal">
</Section>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Congruences on semigroups">
<Heading>Congruences on semigroups</Heading>

An equivalence or a congruence on a semigroup is the
equivalence or congruence on the semigroup considered as a magma.
So, to deal with equivalences and congruences on semigroups,
magma functions are used.
For documentation on equivalences and congruences on magmas,
see <Ref Func="Magma"/>.

<#Include Label="IsSemigroupCongruence">
<#Include Label="IsReesCongruence">

</Section>

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Quotients">
<Heading>Quotients</Heading>

Given a semigroup and a congruence on the semigroup, one
can construct a new semigroup: the quotient semigroup.
The following functions deal with quotient semigroups in &GAP;.

<#Include Label="[1]{semiquo}">
<#Include Label="IsQuotientSemigroup">
<#Include Label="HomomorphismQuotientSemigroup">
<#Include Label="QuotientSemigroupPreimage">

</Section>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="Green's Relations">
<Heading>Green's Relations</Heading>

<#Include Label="[1]{semirel}">
<#Include Label="GreensRRelation">
<#Include Label="IsGreensRelation">
<#Include Label="IsGreensClass">
<#Include Label="IsGreensLessThanOrEqual">
<#Include Label="RClassOfHClass">
<#Include Label="EggBoxOfDClass">
<#Include Label="DisplayEggBoxOfDClass">
<#Include Label="GreensRClassOfElement">
<#Include Label="GreensRClasses">
<#Include Label="GroupHClassOfGreensDClass">
<#Include Label="IsGroupHClass">
<#Include Label="IsRegularDClass">
<#Include Label="DisplaySemigroup">

</Section>

<#Include SYSTEM "reesmat.xml">

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
</Chapter>


<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- %% -->
<!-- %E -->