1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
|
<Chapter Label="Transformations">
<Heading>Transformations</Heading>
This chapter describes the functions in &GAP; for transformations.
<P/>
A <E>transformation</E> in &GAP; is simply a function from the positive
integers to the positive integers. Transformations are to semigroup
theory what permutations are to group theory, in the sense that every
semigroup can be realised as a semigroup of transformations. In &GAP;
transformation semigroups are always finite, and so only finite
semigroups can be realised in this way.
<P/>
A transformation in &GAP; acts on the positive integers (up to some
architecture dependent limit) on the right. The image of a point
<C>i</C> under a transformation <C>f</C> is expressed as <C>i ^ f</C> in
&GAP;. This action is also implemented by the function <Ref
Func="OnPoints"/>. If <C>i ^ f</C> is different from <C>i</C>, then
<C>i</C> is <E>moved</E> by <E>f</E> and otherwise it is <E>fixed</E> by
<C>f</C>. Transformations in &GAP; are created using the operations
described in Section <Ref Sect="sect:CreatingTransformations"/>.
<P/>
The <E>degree</E> of a transformation <C>f</C> is usually defined as the
largest positive integer where <C>f</C> is defined. In previous
versions of &GAP;, transformations were only defined on positive
integers less than their degree, it was only possible to multiply
transformations of equal degree, and a transformation did not act on any
point exceeding its degree. Starting with version 4.7 of &GAP;,
transformations behave more like permutations, in that they fix
unspecified points and it is possible to multiply arbitrary
transformations; see Chapter <Ref Chap="Permutations"/>. The definition
of the degree of a transformation <C>f</C> in the current version of
&GAP; is the largest value <C>n</C> such that <C>n ^ f <> n</C> or
<C>i ^ f = n</C> for some <C>i <> n</C>. Equivalently, the degree of
a transformation is the least value <C>n</C> such that
<C>[ n + 1, n + 2, ... ]</C> is fixed pointwise by <C>f</C>.
<P/>
The transformations of a given degree belong to the full transformation
semigroup of that degree; see <Ref Func="FullTransformationSemigroup"/>.
Transformation semigroups are hence subsemigroups of the full
transformation semigroup.
<P/>
It is possible to use transformations in &GAP; without reference to the
degree, much as it is possible to use permutations in this way.
However, for backwards compatibility, and because it is sometimes
useful, it is possible to access the degree of a transformation using
<Ref Func="DegreeOfTransformation"/>. Certain attributes of
transformations are also calculated with respect to the degree, such as
the rank, image set, or kernel (these values can also be calculated with
respect to any positive integer). So, it is possible to ignore the
degree of a transformation if you prefer to think of transformations as
acting on the positive integers in a similar way to permutations. For
example, this approach is used in the <Package>FR</Package> package. It
is also possible to think of transformations as only acting on the
positive integers not exceeding their degree. For example, this was the
approach formerly used in &GAP; and it is also useful in the
<Package>Semigroups</Package> package.
<P/>
Transformations are displayed, by default, using the list
<C>[ 1 ^ f .. n ^ f ]</C> where <C>n</C> is the degree of <C>f</C>.
This behaviour differs from that of versions of &GAP; earlier than 4.7.
See Section <Ref Sect="sect:DisplayingTransformations"/> for more information.
<P/>
The <E>rank</E> of a transformation on the positive integers up to
<C>n</C> is the number of distinct points in <C>[ 1 ^ f .. n ^ f ]</C>.
The <E>kernel</E> of a transformation <C>f</C> on <C>[ 1 .. n ]</C> is
the equivalence relation on <C>[ 1 .. n ]</C> consisting of those pairs
<C>(i, j)</C> of positive integers such that <C>i ^ f = j ^ f</C>. The
kernel of a transformation is represented in two ways: as a partition of
<C>[ 1 .. n ]</C> or as the image list of a transformation <C>g</C> such
that the kernel of <C>g</C> on <C>[ 1 .. n ]</C> equals the kernel of
<C>f</C> and <C>j ^ g = i</C> for all <C>j</C> in <C>i</C>th class. The
latter is referred to as the <E>flat kernel</E> of <C>f</C>. For any
given transformation <C>f</C> and value <C>n</C>, there is a unique
transformation <C>g</C> with this property.
<P/>
A <E>functional digraph</E> is a directed graph where every vertex has
out-degree <M>1</M>. A transformation <A>f</A> can be thought of as a
functional digraph with vertices the positive integers and edges from
<C>i</C> to <C>i ^ f</C> for every <C>i</C>. A <E>component</E> of a
transformation is defined as a component of the corresponding functional
digraph. More specifically, <C>i</C> and <C>j</C> are in the same
component if and only if there are <M>i = v_0, v_1, \ldots, v_n = j</M>
such that either <M>v_{k+1}=v_{k}^f</M> or <M>v_{k}=v_{k+1}^f</M> for
all <M>k</M>. A <E>cycle</E> of a transformation is defined as a cycle
(or strongly connected component) of the corresponding functional
digraph. More specifically, <C>i</C> belongs to a cycle of <A>f</A> if
there are <M>i=v_0, v_1, \ldots, v_n=i</M> such that either
<M>v_{k+1}=v_{k}^f</M> or <M>v_{k}=v_{k+1}^f</M> for all <M>k</M>.
<P/>
Internally, &GAP; stores a transformation <C>f</C> as a list consisting
of the images <C>i ^ f</C> for all values of <C>i</C> less than a value
which is at least the degree of <C>f</C> and which is determined at the
time of the creation of <C>f</C>. When the degree of a transformation
<C>f</C> is at most 65536, the images of points under <C>f</C> are
stored as 16-bit integers, the kernel and image set are subobjects of
<C>f</C> which are plain lists of &GAP; integers. When the degree of
<C>f</C> is greater than 65536, the images of points under <C>f</C> are
stored as 32-bit integers; the kernel and image set are stored in the
same way as before. A transformation belongs to <C>IsTrans2Rep</C> if
it is stored using 16-bit integers and to <C>IsTrans4Rep</C> if it is
stored using 32-bit integers.
<P/>
<Section>
<Heading>The family and categories of transformations</Heading>
<ManSection>
<Filt Name="IsTransformation" Arg="obj" Type="Category"/>
<Description>
Every transformation in &GAP; belongs to the category
<C>IsTransformation</C>. Basic operations for transformations are
<Ref Oper="ImageListOfTransformation"/>,
<Ref Attr="ImageSetOfTransformation"/>,
<Ref Attr="KernelOfTransformation"/>,
<Ref Attr="FlatKernelOfTransformation"/>,
<Ref Attr="RankOfTransformation"
Label="for a transformation and a list"/>,
<Ref Func="DegreeOfTransformation"/>,
multiplication of two transformations via <K>*</K>, and
exponentiation with the first argument a positive integer <C>i</C>
and second argument a transformation <C>f</C> where the result is
the image <C>i ^ f</C> of the point <C>i</C> under <C>f</C>.
</Description>
</ManSection>
<ManSection>
<Filt Name="IsTransformationCollection" Arg="obj" Type="Category"/>
<Description>
Every collection of transformations belongs to the category
<C>IsTransformationCollection</C>. For example, transformation
semigroups belong to <C>IsTransformationCollection</C>.
</Description>
</ManSection>
<ManSection>
<Fam Name="TransformationFamily"/>
<Description>
The family of all transformations is <C>TransformationFamily</C>.
</Description>
</ManSection>
</Section>
<!-- *************************************************************** -->
<Section Label="sect:CreatingTransformations">
<Heading>Creating transformations</Heading>
There are several ways of creating transformations in &GAP;, which are
described in this section.
<!-- *************************************************************** -->
<ManSection>
<Oper Name="Transformation" Arg="list" Label="for an image list"/>
<Oper Name="Transformation" Arg="list, func"
Label="for a list and function"/>
<Oper Name="TransformationList" Arg="list" Label="for an image list"/>
<Returns>A transformation.</Returns>
<Description>
<C>TransformationList</C> returns the transformation <C>f</C> such
that <C>i ^ <A>f</A> = <A>list</A>[i]</C> if <C>i</C> is between
<C>1</C> and the length of <A>list</A> and <C>i ^ <A>f</A> = i</C>
if <C>i</C> is larger than the length of <A>list</A>. An error will
occur in <C>TransformationList</C> if <A>list</A> is not dense, if
<A>list</A> contains an element which is not a positive integer,
or if <A>list</A> contains an integer not in
<C>[ 1 .. Length( <A>list</A> ) ]</C>.
<P/>
<C>TransformationList</C> is the analogue in the context of
transformations of <Ref Func="PermList"/>. <C>Transformation</C>
is a synonym of <C>TransformationList</C> when the argument is a
list.
<P/>
When the arguments are a list of positive integers <A>list</A> and
a function <A>func</A>, <C>Transformation</C> returns the
transformation <C>f</C> such that
<C><A>list</A>[i] ^ f = <A>func</A>( <A>list</A>[i] )</C> if
<C>i</C> is in the range <C>[ 1 .. Length( <A>list</A> ) ]</C> and
<C>f</C> fixes all other points.
<Example><![CDATA[
gap> SetUserPreference( "NotationForTransformations", "input" );
gap> f := Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] );
Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] )
gap> f := TransformationList( [ 2, 3, 3, 1 ] );
Transformation( [ 2, 3, 3, 1 ] )
gap> SetUserPreference( "NotationForTransformations", "fr" );
gap> f := Transformation( [ 10, 11 ], x -> x ^ 2 );
<transformation: 1,2,3,4,5,6,7,8,9,100,121>
gap> SetUserPreference( "NotationForTransformations", "input" );
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Oper Name="Transformation" Arg="src, dst"
Label="for a source and destination"/>
<Oper Name="TransformationListList" Arg="src, dst"
Label="for a source and destination"/>
<Returns>A transformation.</Returns>
<Description>
If <A>src</A> and <A>dst</A> are lists of positive integers of the
same length, such that <A>src</A> contains no element twice,
then <C>TransformationListList( <A>src</A>, <A>dst</A> )</C> returns
a transformation <C>f</C> such that
<C>src[i] ^ <A>f</A> = dst[i]</C>. The transformation <A>f</A>
fixes all points larger than the maximum of the entries in
<A>src</A> and <A>dst</A>.
<P/>
<C>TransformationListList</C> is the analogue in the context of
transformations of <Ref Func="MappingPermListList"/>.
<C>Transformation</C> is a synonym of
<C>TransformationListList</C> when its arguments are two lists of
positive integers.
<Example><![CDATA[
gap> Transformation( [ 10, 11 ],[ 11, 12 ] );
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 12 ] )
gap> TransformationListList( [ 1, 2, 3 ], [ 4, 5, 6 ] );
Transformation( [ 4, 5, 6, 4, 5, 6 ] )
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Oper Name="TransformationByImageAndKernel" Arg="im, ker"
Label="for an image and kernel"/>
<Returns>A transformation or <K>fail</K>.</Returns>
<Description>
This operation returns the transformation <C>f</C> where <C>i ^ f
= <A>im</A>[<A>ker</A>[i]]</C> for <C>i</C> in the range
<C>[ 1 .. Length( <A>ker</A> ) ]</C>. This transformation has flat
kernel equal to <A>ker</A> and image set equal to
<C>Set( <A>im</A> )</C>.
<P/>
The argument <A>im</A> should be a duplicate free list of
positive integers and <A>ker</A> should be the flat kernel of a
transformation with rank equal to the length of <A>im</A>. If the
arguments do not fulfil these conditions, then <K>fail</K> is
returned.
<Example><![CDATA[
gap> TransformationByImageAndKernel( [ 8, 1, 3, 4 ],
> [ 1, 2, 3, 1, 2, 1, 2, 4 ] );
Transformation( [ 8, 1, 3, 8, 1, 8, 1, 4 ] )
gap> TransformationByImageAndKernel( [ 1, 3, 8, 4 ],
> [ 1, 2, 3, 1, 2, 1, 2, 4 ] );
Transformation( [ 1, 3, 8, 1, 3, 1, 3, 4 ] )
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Oper Name="Idempotent" Arg="im, ker"/>
<Returns>A transformation or <K>fail</K>.</Returns>
<Description>
<Ref Oper="Idempotent"/> returns the idempotent transformation
with image set <A>im</A> and flat kernel <A>ker</A> if such a
transformation exists and <K>fail</K> if it does not.
More specifically, a transformation is returned when the argument
<A>im</A> is a set of positive integers and <A>ker</A> is the flat
kernel of a transformation with rank equal to the length of
<A>im</A> and where <A>im</A> has one element in every class of
the kernel corresponding to <A>ker</A>.
<P/>
Note that this is function does not always return the same
transformation as <C>TransformationByImageAndKernel</C> with the
same arguments.
<Example><![CDATA[
gap> Idempotent( [ 2, 4, 6, 7, 8, 10, 11 ],
> [ 1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5 ] );
Transformation( [ 8, 2, 8, 4, 4, 6, 7, 8, 10, 10, 11, 7 ] )
gap> TransformationByImageAndKernel( [ 2, 4, 6, 7, 8, 10, 11 ],
> [ 1, 2, 1, 3, 3, 4, 5, 1, 6, 6, 7, 5 ] );
Transformation( [ 2, 4, 2, 6, 6, 7, 8, 2, 10, 10, 11, 8 ] )
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Oper Name="TransformationOp" Arg="obj, list[, func]"/>
<Oper Name="TransformationOpNC" Arg="obj, list[, func]"/>
<Returns>A transformation or <K>fail</K>.</Returns>
<Description>
<Ref Oper="TransformationOp"/> returns the transformation that
corresponds to the action of the object <A>obj</A> on the domain
or list <A>list</A> via the function <A>func</A>. If the optional
third argument <A>func</A> is not specified, then the action <Ref
Func="OnPoints"/> is used by default. Note that the returned
transformation refers to the positions in <A>list</A> even if
<A>list</A> itself consists of integers.
<P/>
This function is the analogue in the context of transformations of
<Ref Func="Permutation"
Label = "for a group, an action domain, etc."/>.
<P/>
If <A>obj</A> does not map elements of <A>list</A> into
<A>list</A>, then <K>fail</K> is returned.
<P/>
<Ref Oper="TransformationOpNC"/> does not check that <A>obj</A>
maps elements of <A>list</A> to elements of <A>list</A> or that a
transformation is defined by the action of <A>obj</A> on
<A>list</A> via <A>func</A>. This function should be used only
with caution, and in situations where it is guaranteed that the
arguments have the required properties.
<Example><![CDATA[
gap> f := Transformation( [ 10, 2, 3, 10, 5, 10, 7, 2, 5, 6 ] );;
gap> TransformationOp( f, [ 2, 3 ] );
IdentityTransformation
gap> TransformationOp( f, [ 1, 2, 3 ] );
fail
gap> S := SemigroupByMultiplicationTable( [ [ 1, 1, 1 ],
> [ 1, 1, 1 ],
> [ 1, 1, 2 ] ] );;
gap> TransformationOp( Elements( S )[1], S, OnRight );
Transformation( [ 1, 1, 1 ] )
gap> TransformationOp( Elements( S )[3], S, OnRight );
Transformation( [ 1, 1, 2 ] )
]]></Example>
</Description>
</ManSection>
<ManSection>
<Oper Name="TransformationNumber" Arg="m, n"/>
<Oper Name="NumberTransformation" Arg="f[, n]"/>
<Returns>A transformation or a number.</Returns>
<Description>
These functions implement a bijection from the transformations with
degree at most <A>n</A> to the numbers
<C>[ 1 .. <A>n</A> ^ <A>n</A> ]</C>.
<P/>
More precisely, if <A>m</A> and <A>n</A> are positive integers
such that <A>m</A> is at most <C><A>n</A> ^ <A>n</A></C>, then
<C>TransformationNumber</C> returns the <A>m</A>th transformation
with degree at most <A>n</A>.
<P/>
If <A>f</A> is a transformation and <A>n</A> is a positive
integer, which is greater than or equal to the degree of <A>f</A>,
then <C>NumberTransformation</C> returns the number in <C>[ 1 ..
<A>n</A> ^ <A>n</A> ]</C> that corresponds to <A>f</A>. If the
optional second argument <A>n</A> is not specified, then the
degree of <A>f</A> is used by default.
<Example><![CDATA[
gap> f := Transformation( [ 3, 3, 5, 3, 3 ] );;
gap> NumberTransformation( f, 5 );
1613
gap> NumberTransformation( f, 10 );
2242256790
gap> TransformationNumber( 2242256790, 10 );
Transformation( [ 3, 3, 5, 3, 3 ] )
gap> TransformationNumber( 1613, 5 );
Transformation( [ 3, 3, 5, 3, 3 ] )]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection><Heading>RandomTransformation</Heading>
<Oper Name="RandomTransformation" Arg="n"/>
<Returns>A random transformation.</Returns>
<Description>
If <A>n</A> is a positive integer, then
<C>RandomTransformation</C> returns a random transformation with
degree at most <A>n</A>.
<Log>
gap> RandomTransformation( 6 );
Transformation( [ 2, 1, 2, 1, 1, 2 ] )</Log>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Var Name="IdentityTransformation"/>
<Description>
This variable is bound to the identity transformation,
which has degree <C>0</C>.
<Example><![CDATA[
gap> IdentityTransformation;
IdentityTransformation
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Oper Name="ConstantTransformation" Arg="m, n"/>
<Returns>A transformation.</Returns>
<Description>
This function returns a constant transformation <C>f</C> such that
<C>i ^ f = <A>n</A></C> for all <C>i</C> less than or equal to
<A>m</A>, when <A>n</A> and <A>m</A> are positive integers.
<Example><![CDATA[
gap> ConstantTransformation( 5, 1 );
Transformation( [ 1, 1, 1, 1, 1 ] )
gap> ConstantTransformation( 6, 4 );
Transformation( [ 4, 4, 4, 4, 4, 4 ] )
]]></Example>
</Description>
</ManSection>
</Section>
<!-- *************************************************************** -->
<Section Label="sect:ChangingRepTransformations">
<Heading>Changing the representation of a transformation</Heading>
It is possible that a transformation in &GAP; can be represented as
another type of object, or that another type of &GAP; object can be
represented as a transformation.
<P/>
The operations <Ref Attr="AsPermutation"/> and <Ref Meth="AsPartialPerm"
Label="for a transformation and a positive integer"/> can be used to
convert transformations into permutations or partial permutations,
where appropriate. In this section we describe functions for
converting other types of objects into transformations.
<ManSection>
<Attr Name="AsTransformation" Arg="f[, n]"/>
<Returns>A transformation.</Returns>
<Description>
<C>AsTransformation</C>
returns the permutation, transformation, partial permutation or binary
relation <A>f</A> as a transformation.
<List>
<Mark>for permutations</Mark>
<Item>
If <A>f</A> is a permutation and <A>n</A> is a non-negative
integer, then <C>AsTransformation( <A>f</A>, <A>n</A> )</C>
returns the transformation <C>g</C> such that <C>i ^ g = i ^ f</C>
for all <C>i</C> in the range <C>[ 1 .. <A>n</A> ]</C>.
<P/>
If no non-negative integer <A>n</A> is specified, then the largest
moved point of <A>f</A> is used as the value for <A>n</A>; see
<Ref Attr="LargestMovedPoint" Label="for a permutation"/>.
</Item>
<Mark>for transformations</Mark>
<Item>
If <A>f</A> is a transformation and <A>n</A> is a non-negative
integer less than the degree of <A>f</A> such that <A>f</A> is a
transformation of <C>[ 1 .. <A>n</A> ]</C>, then
<C>AsTransformation</C> returns the restriction of <A>f</A> to
<C>[ 1 .. <A>n</A> ]</C>.
<P/>
If <A>f</A> is a transformation and <A>n</A> is not specified or
is greater than or equal to the degree of <A>f</A>, then
<A>f</A> is returned.
</Item>
<Mark>for partial permutations</Mark>
<Item>
A partial permutation <A>f</A> can be converted into a
transformation <C>g</C> as follows. The degree <C>m</C> of
<C>g</C> is equal to the maximum of <A>n</A>, the largest moved
point of <A>f</A> plus <C>1</C>, and the largest image of a moved
point plus <C>1</C>. The transformation <C>g</C> agrees with
<A>f</A> on the domain of <A>f</A> and maps the points in
<C>[ 1 .. m ]</C>, which are not in the domain of <A>f</A> to
<C>n</C>, i.e. <C>i ^ g = i ^ <A>f</A></C> for all <C>i</C> in the
domain of <A>f</A>, <C>i ^ g = n</C> for all <C>i</C> in
<C>[ 1 .. n ]</C>, and <C>i ^ g = i</C> for all <C>i</C> greater
than <A>n</A>. <C>AsTransformation( <A>f</A> )</C> returns the
transformation <C>g</C> defined in the previous sentences. <P/>
If the optional argument <A>n</A> is not present, then the default
value of the maximum of the largest moved point and the largest
image of a moved point of <A>f</A> plus <C>1</C> is used.
</Item>
<Mark>for binary relations</Mark>
<Item>
In the case that <A>f</A> is a binary relation, which defines
a transformation, <C>AsTransformation</C> returns that
transformation.
</Item>
</List>
<Example><![CDATA[
gap> f := Transformation( [ 3, 5, 3, 4, 1, 2 ] );;
gap> AsTransformation( f, 5 );
Transformation( [ 3, 5, 3, 4, 1 ] )
gap> AsTransformation( f, 10 );
Transformation( [ 3, 5, 3, 4, 1, 2 ] )
gap> AsTransformation( (1,3)(2,4) );
Transformation( [ 3, 4, 1, 2 ] )
gap> AsTransformation( (1,3)(2,4), 10 );
Transformation( [ 3, 4, 1, 2 ] )
gap> f := PartialPerm( [ 1, 2, 3, 4, 5, 6 ], [ 6, 7, 1, 4, 3, 2 ] );
[5,3,1,6,2,7](4)
gap> AsTransformation( f, 11 );
Transformation( [ 6, 7, 1, 4, 3, 2, 11, 11, 11, 11, 11 ] )
gap> AsPartialPerm( last, DomainOfPartialPerm( f ) );
[5,3,1,6,2,7](4)
gap> AsTransformation( f, 14 );
Transformation( [ 6, 7, 1, 4, 3, 2, 14, 14, 14, 14, 14, 14, 14, 14 ] )
gap> AsPartialPerm( last, DomainOfPartialPerm( f ) );
[5,3,1,6,2,7](4)
gap> AsTransformation( f );
Transformation( [ 6, 7, 1, 4, 3, 2, 8, 8 ] )
gap> AsTransformation( Transformation( [ 1, 1, 2 ] ), 0 );
IdentityTransformation
]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="RestrictedTransformation" Arg="f, list"/>
<Returns>A transformation.</Returns>
<Description>
<C>RestrictedTransformation</C> returns the new transformation
<C>g</C> such that <C> i ^ g = i ^ <A>f</A></C> for all <C>i</C> in
<A>list</A> and such that <C>i ^ g = i</C> for all <C>i</C> not in
<A>list</A>.
<P/>
<Example><![CDATA[
gap> f := Transformation( [ 2, 10, 5, 9, 10, 9, 6, 3, 8, 4, 6, 5 ] );;
gap> RestrictedTransformation( f, [ 1, 2, 3, 10, 11, 12 ] );
Transformation( [ 2, 10, 5, 4, 5, 6, 7, 8, 9, 4, 6, 5 ] )]]></Example>
</Description>
</ManSection>
<ManSection>
<Func Name="PermutationOfImage" Arg="f"/>
<Returns>A permutation or <K>fail</K>.</Returns>
<Description>
If the transformation <A>f</A> is a permutation of the points in its
image, then <C>PermutationOfImage</C> returns this permutation. If
<A>f</A> does not permute its image, then <K>fail</K> is returned.
<P/>
If <A>f</A> happens to be a permutation, then
<C>PermutationOfImage</C> with argument <A>f</A> returns the same
value as <C>AsPermutation</C> with argument <A>f</A>.
<Example><![CDATA[
gap> f := Transformation( [ 5, 8, 3, 5, 8, 6, 2, 2, 7, 8 ] );;
gap> PermutationOfImage( f );
fail
gap> f := Transformation( [ 8, 2, 10, 2, 4, 4, 7, 6, 9, 10 ] );;
gap> PermutationOfImage( f );
fail
gap> f := Transformation( [ 1, 3, 6, 6, 2, 10, 2, 3, 10, 5 ] );;
gap> PermutationOfImage( f );
(2,3,6,10,5)
gap> f := Transformation( [ 5, 2, 8, 4, 1, 8, 10, 3, 5, 7 ] );;
gap> PermutationOfImage( f );
(1,5)(3,8)(7,10)
]]></Example>
</Description>
</ManSection>
</Section>
<!-- *************************************************************** -->
<!-- *************************************************************** -->
<Section Label="sect:OperatorsTransformations">
<Heading>Operators for transformations</Heading>
<ManSection>
<Meth Name="\^" Arg="i, f" Label="for a positive integer and a transformation"/>
<Description>
<C><A>i</A> ^ <A>f</A></C>
returns the image of the positive integer <A>i</A> under the
transformation <A>f</A>.
</Description>
</ManSection>
<ManSection>
<Meth Name="\^" Arg="f, g" Label="for a transformation and a permutation"/>
<Description>
<C><A>f</A> ^ <A>g</A></C>
returns <C><A>g</A> ^ -1 * <A>f</A> * <A>g</A></C> when
<A>f</A> is a transformation and <A>g</A> is a permutation
<Ref Oper="\^"/>.
This operation requires essentially the same number of steps as
multiplying a transformation by a permutation, which is
approximately one third of the number required to first invert
<A>g</A>, take the product with <A>f</A>, and then the product
with <A>g</A>.
</Description>
</ManSection>
<ManSection>
<Meth Name="\*" Arg="f, g" Label="for transformations"/>
<Description>
<C><A>f</A> * <A>g</A></C>
returns the composition of <A>f</A> and <A>g</A> when <A>f</A> and
<A>g</A> are transformations or permutations. The product of a
permutation and a transformation is returned as a transformation.
</Description>
</ManSection>
<ManSection>
<Meth Name="\/" Arg="f, g" Label="for a transformation and a permutation"/>
<Description>
<C><A>f</A> / <A>g</A></C>
returns <C><A>f</A> * <A>g</A> ^ -1</C> when <A>f</A> is a
transformation and <A>g</A> is a permutation. This operation
requires essentially the same number of steps as multiplying a
transformation by a permutation, which is approximately half the
number required to first invert <A>g</A> and then take the product
with <A>f</A>.
</Description>
</ManSection>
<ManSection>
<Meth Name="LeftQuotient" Arg="g, f" Label="for a permutation and transformation"/>
<Description>
returns <C><A>g</A> ^ -1 * <A>f</A></C> when <A>f</A> is a
transformation and <A>g</A> is a permutation. This operation uses
essentially the same number of steps as multiplying a
transformation by a permutation, which is approximately half the
number required to first invert <A>g</A> and then take the product
with <A>f</A>.
</Description>
</ManSection>
<ManSection>
<Meth Name="\<" Arg="i, f" Label="for transformations"/>
<Description>
<Index Subkey="for transformations">smaller</Index>
<C><A>f</A> < <A>g</A></C>
returns <K>true</K> if the image list of <A>f</A> is
lexicographically less than the image list of <A>g</A> and
<K>false</K> if it is not.
</Description>
</ManSection>
<ManSection>
<Meth Name="\=" Arg="f, g" Label="for transformations"/>
<Description>
<Index Subkey="for transformations">equality</Index>
<C><A>f</A> = <A>g</A></C>
returns <K>true</K> if the transformation <A>f</A> equals the
transformation <A>g</A> and returns <K>false</K> if it does not.
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Oper Name="PermLeftQuoTransformation" Arg="f, g"/>
<Func Name="PermLeftQuoTransformationNC" Arg="f, g"/>
<Returns>A permutation.</Returns>
<Description>
Returns the permutation on the image set of <A>f</A> induced by
<C><A>f</A> ^ -1 * <A>g</A></C> when the transformations <A>f</A>
and <A>g</A> have equal kernel and image set.
<P/>
<C>PermLeftQuoTransformation</C> verifies that <A>f</A> and
<A>g</A> have equal kernels and image sets, and returns an error
if they do not. <C>PermLeftQuoTransformationNC</C> does no
checks.
<Example><![CDATA[
gap> f := Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );;
gap> g := Transformation( [ 5, 7, 1, 6, 4, 3, 2, 1 ] );;
gap> PermLeftQuoTransformation( f, g );
(1,6,7)
gap> PermLeftQuoTransformation( g, f );
(1,7,6)
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Func Name="IsInjectiveListTrans" Arg="list, obj"/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
The argument <A>obj</A> should be a transformation or the list of
images of a transformation and <A>list</A> should be a list of
positive integers. <C>IsInjectiveListTrans</C> checks if
<A>obj</A> is injective on <A>list</A>.
<P/>
More precisely, if <A>obj</A> is a transformation, then we define
<C>f := <A>obj</A></C> and if <A>obj</A> is the image list of a
transformation we define <C>f := Transformation( <A>obj</A> )</C>.
<C>IsInjectiveListTrans</C> returns <K>true</K> if <C>f</C> is
injective on <A>list</A> and <K>false</K> if it is not. If
<A>list</A> is not duplicate free, then <K>false</K> is returned.
<P/>
<Example><![CDATA[
gap> f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;
gap> IsInjectiveListTrans( [ 1, 5 ], f );
true
gap> IsInjectiveListTrans( [ 5, 1 ], f );
true
gap> IsInjectiveListTrans( [ 5, 1, 5, 1, 1, ], f );
false
gap> IsInjectiveListTrans( [ 5, 1, 2, 3 ], [ 1, 2, 3, 4, 5 ] );
true
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Oper Name="ComponentTransformationInt" Arg="f, n" />
<Returns>A list of positive integers.</Returns>
<Description>
If <A>f</A> is a transformation and <A>n</A> is a positive integer,
then <C>ComponentTransformationInt</C> returns those elements
<C>i</C> such that <C><A>n</A> ^ <A>f</A> ^ j = i</C> for some
positive integer <C>j</C>, i.e. the elements of the component of
<A>f</A> containing <A>n</A> that can be obtained by applying powers
of <A>f</A> to <A>n</A>.
<Example><![CDATA[
gap> f := Transformation( [ 6, 2, 8, 4, 7, 5, 8, 3, 5, 8 ] );;
gap> ComponentTransformationInt( f, 1 );
[ 1, 6, 5, 7, 8, 3 ]
gap> ComponentTransformationInt( f, 12 );
[ 12 ]
gap> ComponentTransformationInt( f, 5 );
[ 5, 7, 8, 3 ]
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Oper Name="PreImagesOfTransformation" Arg="f, n"/>
<Returns>A set of positive integers.</Returns>
<Description>
Returns the preimages of the positive integer <A>n</A> under the
transformation <A>f</A>, i.e. the positive integers <C>i</C> such
that <C>i ^ <A>f</A> = n</C>.
<Example><![CDATA[
gap> f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;
gap> PreImagesOfTransformation( f, 1 );
[ 8, 9 ]
gap> PreImagesOfTransformation( f, 3 );
[ ]
gap> PreImagesOfTransformation( f, 100 );
[ 100 ]
]]></Example>
</Description>
</ManSection>
</Section>
<!-- *************************************************************** -->
<Section Label="sect:AttributesTransformations">
<Heading>Attributes for transformations</Heading>
In this section we describe the functions available in &GAP; for finding
various properties and attributes of transformations.
<ManSection>
<Func Name="DegreeOfTransformation" Arg="f"/>
<Attr Name="DegreeOfTransformationCollection" Arg="coll"/>
<Returns>A positive integer.</Returns>
<Description>
The <E>degree</E> of a transformation <A>f</A> is the largest
value such that <C>n ^ <A>f</A> <> n</C> or
<C>i ^ <A>f</A> = n</C> for some <C>i <> n</C>. Equivalently,
the degree of a transformation is the least value <C>n</C> such
that <C>[ n + 1, n + 2, ... ]</C> is fixed pointwise by <A>f</A>.
<P/>
The degree of a collection of transformations <A>coll</A> is
the maximum degree of any transformation in <A>coll</A>.
<Example><![CDATA[
gap> DegreeOfTransformation( IdentityTransformation );
0
gap> DegreeOfTransformationCollection(
> [ Transformation( [ 1, 3, 4, 1 ] ),
> Transformation( [ 3, 1, 1, 3, 4 ] ),
> Transformation( [ 2, 4, 1, 2 ] ) ] );
5
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Oper Name="ImageListOfTransformation" Arg="f[, n]"/>
<Oper Name="ListTransformation" Arg="f[, n]"/>
<Returns>The list of images of a transformation.</Returns>
<Description>
Returns the list of images of <C>[ 1 .. <A>n</A> ]</C> under the
transformation <A>f</A>, which is
<C>[ 1 ^ <A>f</A> .. <A>n</A> ^ <A>f</A> ]</C>. If the optional
second argument <A>n</A> is not present, then the degree of
<A>f</A> is used by default.
<P/>
This is the analogue for transformations of <Ref Func="ListPerm"/>
for permutations.
<Example><![CDATA[
gap> f := Transformation( [ 2 ,3, 4, 2, 4 ] );;
gap> ImageListOfTransformation( f );
[ 2, 3, 4, 2, 4 ]
gap> ImageListOfTransformation( f, 10 );
[ 2, 3, 4, 2, 4, 6, 7, 8, 9, 10 ]
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Attr Name="ImageSetOfTransformation" Arg="f[, n]"/>
<Returns>The set of images of the transformation.</Returns>
<Description>
Returns the set of points in the list of images of
<C>[ 1 .. <A>n</A> ]</C> under <A>f</A>, i.e. the sorted list of
images with duplicates removed. If the optional second argument
<A>n</A> is not given, then the degree of <A>f</A> is used.
<P/>
<Example><![CDATA[
gap> f := Transformation( [ 5, 6, 7, 1, 4, 3, 2, 7 ] );;
gap> ImageSetOfTransformation( f );
[ 1, 2, 3, 4, 5, 6, 7 ]
gap> ImageSetOfTransformation( f, 10 );
[ 1, 2, 3, 4, 5, 6, 7, 9, 10 ]
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Attr Name="RankOfTransformation" Arg="f[, n]"
Label="for a transformation and a positive integer"/>
<Attr Name="RankOfTransformation" Arg="f[, list]"
Label="for a transformation and a list"/>
<Returns>The rank of a transformation.</Returns>
<Description>
When the arguments are a transformation <A>f</A> and a positive
integer <A>n</A>, <C>RankOfTransformation</C> returns the size of
the set of images of the transformation <A>f</A> in the range
<C>[ 1 .. <A>n</A> ]</C>. If the optional second argument
<A>n</A> is not specified, then the degree of <A>f</A> is used.
<P/>
When the arguments are a transformation <A>f</A> and a list
<A>list</A> of positive integers, this function returns the size
of the set of images of the transformation <A>f</A> on
<A>list</A>.
<Example><![CDATA[
gap> f := Transformation( [ 8, 5, 8, 2, 2, 8, 4, 7, 3, 1 ] );;
gap> ImageSetOfTransformation( f );
[ 1, 2, 3, 4, 5, 7, 8 ]
gap> RankOfTransformation( f );
7
gap> RankOfTransformation( f, 100 );
97
gap> RankOfTransformation( f, [ 2, 5, 8 ] );
3
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Attr Name="MovedPoints" Arg="f" Label="for a transformation"/>
<Attr Name="MovedPoints" Arg="coll"
Label="for a transformation coll"/>
<Returns>A set of positive integers.</Returns>
<Description>
When the argument is a transformation, <C>MovedPoints</C> returns
the set of positive integers <C>i</C> such that
<C>i ^ <A>f</A> <> i</C>.
<P/>
<C>MovedPoints</C> returns the set of points moved by some element of
the collection of transformations <A>coll</A>.
<Example><![CDATA[
gap> f := Transformation( [ 6, 10, 1, 4, 6, 5, 1, 2, 3, 3 ] );;
gap> MovedPoints( f );
[ 1, 2, 3, 5, 6, 7, 8, 9, 10 ]
gap> f := IdentityTransformation;
IdentityTransformation
gap> MovedPoints( f );
[ ]
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Attr Name="NrMovedPoints" Arg="f" Label="for a transformation"/>
<Attr Name="NrMovedPoints" Arg="coll"
Label="for a transformation coll"/>
<Returns>A positive integer.</Returns>
<Description>
When the argument is a transformation,<C>NrMovedPoints</C> returns
the number of positive integers <C>i</C> such that
<C>i ^ <A>f</A> <> i</C>.
<P/>
<C>MovedPoints</C> returns the number of points which are moved by at
least one element of the collection of transformations <A>coll</A>.
<Example><![CDATA[
gap> f := Transformation( [ 7, 1, 4, 3, 2, 7, 7, 6, 6, 5 ] );;
gap> NrMovedPoints( f );
9
gap> NrMovedPoints( IdentityTransformation );
0
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="SmallestMovedPoint" Arg="f" Label="for a transformation"/>
<Meth Name="SmallestMovedPoint" Arg="coll" Label="for a transformation coll"/>
<Returns>A positive integer or <K>infinity</K>.</Returns>
<Description>
<C>SmallestMovedPoint</C> returns the smallest positive integer
<C>i</C> such that <C>i ^ <A>f</A> <> i</C> if such an <C>i</C>
exists. If <A>f</A> is the identity transformation, then
<K>infinity</K> is returned.
<P/>
If the argument is a collection of transformations <A>coll</A>, then
the smallest point which is moved by at least one element of
<A>coll</A> is returned, if such a point exists. If <A>coll</A>
only contains identity transformations, then
<C>SmallestMovedPoint</C> returns <K>infinity</K>.
<Example><![CDATA[
gap> S := FullTransformationSemigroup( 5 );
<full transformation monoid of degree 5>
gap> SmallestMovedPoint( S );
1
gap> S := Semigroup( IdentityTransformation );
<trivial transformation group of degree 0 with 1 generator>
gap> SmallestMovedPoint( S );
infinity
gap> f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;
gap> SmallestMovedPoint( f );
4
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="LargestMovedPoint" Arg="f"
Label="for a transformation"/>
<Meth Name="LargestMovedPoint" Arg="coll"
Label="for a transformation coll"/>
<Returns>A positive integer.</Returns>
<Description>
<C>LargestMovedPoint</C> returns the largest positive integers
<C>i</C> such that <C>i ^ <A>f</A> <> i</C> if such an <C>i</C>
exists. If <A>f</A> is the identity transformation, then <C>0</C>
is returned.
<P/>
If the argument is a collection of transformations <A>coll</A>, then the
largest point which is moved by at least one element of <A>coll</A> is
returned, if such a point exists. If <A>coll</A> only contains identity
transformations, then <C>LargestMovedPoint</C> returns <C>0</C>.
<Example><![CDATA[
gap> S := FullTransformationSemigroup( 5 );
<full transformation monoid of degree 5>
gap> LargestMovedPoint( S );
5
gap> S := Semigroup( IdentityTransformation );
<trivial transformation group of degree 0 with 1 generator>
gap> LargestMovedPoint( S );
0
gap> f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;
gap> LargestMovedPoint( f );
5
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="SmallestImageOfMovedPoint" Arg="f"
Label="for a transformation"/>
<Meth Name="SmallestImageOfMovedPoint" Arg="coll"
Label="for a transformation coll"/>
<Returns>A positive integer or <K>infinity</K>.</Returns>
<Description>
<C>SmallestImageOfMovedPoint</C> returns the smallest positive
integer <C>i ^ <A>f</A></C> such that <C>i ^ <A>f</A> <> i</C> if
such an <C>i</C> exists. If <A>f</A> is the identity
transformation, then <K>infinity</K> is returned.<P/>
If the argument is a collection of transformations <A>coll</A>, then
the smallest integer which is the image a point moved by at least
one element of <A>coll</A> is returned, if such a point exists. If
<A>coll</A> only contains identity transformations, then
<C>SmallestImageOfMovedPoint</C> returns <K>infinity</K>.
<Example><![CDATA[
gap> S := FullTransformationSemigroup( 5 );
<full transformation monoid of degree 5>
gap> SmallestImageOfMovedPoint( S );
1
gap> S := Semigroup( IdentityTransformation );
<trivial transformation group of degree 0 with 1 generator>
gap> SmallestImageOfMovedPoint( S );
infinity
gap> f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;
gap> SmallestImageOfMovedPoint( f );
6
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="LargestImageOfMovedPoint" Arg="f"
Label="for a transformation"/>
<Meth Name="LargestImageOfMovedPoint" Arg="coll"
Label="for a transformation coll"/>
<Returns>A positive integer.</Returns>
<Description>
<C>LargestImageOfMovedPoint</C> returns the largest positive integer
<C>i ^ <A>f</A></C> such that <C>i ^ <A>f</A> <> i</C> if such an
<C>i</C> exists. If <A>f</A> is the identity transformation, then
<C>0</C> is returned.
<P/>
If the argument is a collection of transformations <A>coll</A>, then
the largest integer which is the image a point moved by at least one
element of <A>coll</A> is returned, if such a point exists. If
<A>coll</A> only contains identity transformations, then
<C>LargestImageOfMovedPoint</C> returns <C>0</C>.
<Example><![CDATA[
gap> S := FullTransformationSemigroup( 5 );
<full transformation monoid of degree 5>
gap> LargestImageOfMovedPoint( S );
5
gap> S := Semigroup( IdentityTransformation );;
gap> LargestImageOfMovedPoint( S );
0
gap> f := Transformation( [ 1, 2, 3, 6, 6, 6 ] );;
gap> LargestImageOfMovedPoint( f );
6
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="FlatKernelOfTransformation" Arg="f[, n]"/>
<Returns>The flat kernel of a transformation.</Returns>
<Description>
If the kernel classes of the transformation <A>f</A> on
<C>[ 1 .. <A>n</A> ]</C> are <M>K_1, \dots, K_r</M>, then
<C>FlatKernelOfTransformation</C> returns a list <C>L</C> such
that <C>L[i] = j</C> for all <C>i</C> in <M>K_j</M>. For a given
transformation and positive integer <A>n</A>, there is a unique
such list.
<P/>
If the optional second argument <A>n</A> is not present, then the
degree of <A>f</A> is used by default.
<Example><![CDATA[
gap> f := Transformation( [ 10, 3, 7, 10, 1, 5, 9, 2, 6, 10 ] );;
gap> FlatKernelOfTransformation( f );
[ 1, 2, 3, 1, 4, 5, 6, 7, 8, 1 ]
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="KernelOfTransformation" Arg="f[, n, bool]"/>
<Returns>The kernel of a transformation.</Returns>
<Description>
When the arguments are a transformation <A>f</A>, a positive
integer <A>n</A>, and <K>true</K>, <C>KernelOfTransformation</C>
returns the kernel of the transformation <A>f</A> on
<C>[ 1 .. <A>n</A> ]</C> as a set of sets of positive integers. If
the argument <A>bool</A> is <K>false</K>, then only the
non-singleton classes are returned. <P/>
The second and third arguments are optional, the default values
are the degree of <A>f</A> and <K>true</K>.
<Example><![CDATA[
gap> f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 11, 1, 12, 5 ] );;
gap> KernelOfTransformation( f );
[ [ 1, 4 ], [ 2, 5 ], [ 3 ], [ 6, 7 ], [ 8, 10 ], [ 9 ], [ 11 ],
[ 12 ] ]
gap> KernelOfTransformation( f, 5 );
[ [ 1, 4 ], [ 2, 5 ], [ 3 ] ]
gap> KernelOfTransformation( f, 5, false );
[ [ 1, 4 ], [ 2, 5 ] ]
gap> KernelOfTransformation( f, 15 );
[ [ 1, 4 ], [ 2, 5 ], [ 3 ], [ 6, 7 ], [ 8, 10 ], [ 9 ], [ 11 ],
[ 12 ], [ 13 ], [ 14 ], [ 15 ] ]
gap> KernelOfTransformation( f, false );
[ [ 1, 4 ], [ 2, 5 ], [ 6, 7 ], [ 8, 10 ] ]
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Func Name="InverseOfTransformation" Arg="f"/>
<Returns>A transformation.</Returns>
<Description>
<C>InverseOfTransformation</C> returns a semigroup inverse of the
transformation <A>f</A> in the full transformation semigroup. An
<E>inverse</E> of <A>f</A> is any transformation <C>g</C> such that
<C><A>f</A> * g * <A>f</A> = <A>f</A></C> and
<C>g * <A>f</A> * g = g</C>. Every transformation has at least one
inverse.
<Example><![CDATA[
gap> f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;
gap> g := InverseOfTransformation( f );
Transformation( [ 8, 1, 1, 1, 10, 2, 3, 1, 6, 1 ] )
gap> f * g * f;
Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] )
gap> g * f * g;
Transformation( [ 8, 1, 1, 1, 10, 2, 3, 1, 6, 1 ] )
]]></Example>
</Description>
</ManSection>
<ManSection>
<Attr Name="Inverse" Arg="f" Label="for a transformation"/>
<Returns>A transformation.</Returns>
<Description>
If the transformation <A>f</A> is a bijection, then <C>Inverse</C> or
<C><A>f</A> ^ -1</C> returns the inverse of <A>f</A>.
If <A>f</A> is not a bijection, then <K>fail</K> is returned.
<Example><![CDATA[
gap> Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] ) ^ -1;
fail
gap> Transformation( [ 2, 3, 1 ] ) ^ -1;
Transformation( [ 3, 1, 2 ] )
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Func Name="IndexPeriodOfTransformation" Arg="f"/>
<Returns>A pair of positive integers.</Returns>
<Description>
Returns the least positive integers <C>m</C> and <C>r</C> such
that <C><A>f</A> ^ (m + r) = <A>f</A> ^ m</C>, which are known as
the <E>index</E> and <E>period</E> of the transformation <A>f</A>.
<Example><![CDATA[
gap> f := Transformation( [ 3, 4, 4, 6, 1, 3, 3, 7, 1 ] );;
gap> IndexPeriodOfTransformation( f );
[ 2, 3 ]
gap> f ^ 2 = f ^ 5;
true
gap> IndexPeriodOfTransformation( IdentityTransformation );
[ 1, 1 ]
gap> IndexPeriodOfTransformation( Transformation( [ 1, 2, 1 ] ) );
[ 1, 1 ]
gap> IndexPeriodOfTransformation( Transformation( [ 1, 2, 3 ] ) );
[ 1, 1 ]
gap> IndexPeriodOfTransformation( Transformation( [ 1, 3, 2 ] ) );
[ 1, 2 ]
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="SmallestIdempotentPower" Arg="f"
Label="for a transformation"/>
<Returns>A positive integer.</Returns>
<Description>
This function returns the least positive integer <C>n</C> such
that the transformation <C><A>f</A> ^ n</C> is an idempotent. The
smallest idempotent power of <A>f</A> is the least multiple of the
period of <A>f</A> that is greater than or equal to the index of
<A>f</A>; see <Ref Func="IndexPeriodOfTransformation"/>.
<Example><![CDATA[
gap> f := Transformation( [ 6, 7, 4, 1, 7, 4, 6, 1, 3, 4 ] );;
gap> SmallestIdempotentPower( f );
3
gap> f := Transformation( [ 6, 6, 6, 2, 7, 1, 5, 3, 10, 6 ] );;
gap> SmallestIdempotentPower( f );
2
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="ComponentsOfTransformation" Arg="f" />
<Returns>A list of lists of positive integers.</Returns>
<Description>
<C>ComponentsOfTransformation</C> returns a list of the components
of the transformation <A>f</A>. Each component is a subset of
<C>[ 1 .. DegreeOfTransformation( f ) ]</C>, and the union of the
components is <C>[ 1 .. DegreeOfTransformation( f ) ]</C>.
<Example><![CDATA[
gap> f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
gap> ComponentsOfTransformation( f );
[ [ 1, 6, 4, 9 ], [ 2, 12, 3, 11, 5, 7, 10 ], [ 8 ] ]
gap> f := AsTransformation( (1,8,2,4,11,5,10)(3,7)(9,12) );
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
gap> ComponentsOfTransformation( f );
[ [ 1, 8, 2, 4, 11, 5, 10 ], [ 3, 7 ], [ 6 ], [ 9, 12 ] ]]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="NrComponentsOfTransformation" Arg="f" />
<Returns>A positive integer.</Returns>
<Description>
<C>NrComponentsOfTransformation</C> returns the number of components
of the transformation <A>f</A> on the range
<C>[ 1 .. DegreeOfTransformation( <A>f</A> ) ]</C>.
<Example><![CDATA[
gap> f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
gap> NrComponentsOfTransformation( f );
3
gap> f := AsTransformation( (1,8,2,4,11,5,10)(3,7)(9,12) );
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
gap> NrComponentsOfTransformation( f );
4
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="ComponentRepsOfTransformation" Arg="f" />
<Returns>A list of lists of positive integers.</Returns>
<Description>
<C>ComponentRepsOfTransformation</C> returns the representatives, in
the following sense, of the components of the transformation
<A>f</A>. For every <C>i</C> in
<C>[ 1 .. DegreeOfTransformation( f ) ]</C> there exists a
representative <C>j</C> and a positive integer <C>k</C> such that
<C>i ^ (<A>f</A> ^ k) = j</C>. The representatives returned by
<C>ComponentRepsOfTransformation</C> are partitioned according to
the component they belong to. <C>ComponentRepsOfTransformation</C>
returns the least number of representatives.
<Example><![CDATA[
gap> f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
gap> ComponentRepsOfTransformation( f );
[ [ 3, 10 ], [ 9 ], [ 8 ] ]
gap> f := AsTransformation( (1,8,2,4,11,5,10)(3,7)(9,12) );
Transformation( [ 8, 4, 7, 11, 10, 6, 3, 2, 12, 1, 5, 9 ] )
gap> ComponentRepsOfTransformation( f );
[ [ 1 ], [ 3 ], [ 6 ], [ 9 ] ]
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="CyclesOfTransformation" Arg="f[, list]" />
<Returns>A list of lists of positive integers.</Returns>
<Description>
When the arguments of this function are a transformation <A>f</A>
and a list <A>list</A>, it returns a list of the cycles of the
components of <A>f</A> containing any element of <A>list</A>.<P/>
If the optional second argument is not present, then the range
<C>[ 1 .. DegreeOfTransformation( <A>f</A> ) ]</C> is used as the
default value for <A>list</A>.
<Example><![CDATA[
gap> f := Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] );
Transformation( [ 6, 12, 11, 1, 7, 6, 2, 8, 4, 7, 5, 12 ] )
gap> CyclesOfTransformation( f );
[ [ 6 ], [ 12 ], [ 8 ] ]
gap> CyclesOfTransformation( f, [ 1, 2, 4 ] );
[ [ 6 ], [ 12 ] ]
gap> CyclesOfTransformation( f, [ 1 .. 17 ] );
[ [ 6 ], [ 12 ], [ 8 ], [ 13 ], [ 14 ], [ 15 ], [ 16 ], [ 17 ] ]
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Oper Name="CycleTransformationInt" Arg="f, n" />
<Returns>A list of positive integers.</Returns>
<Description>
If <A>f</A> is a transformation and <A>n</A> is a positive
integer, then <C>CycleTransformationInt</C> returns the cycle of the
component of <A>f</A> containing <A>n</A>.
<Example><![CDATA[
gap> f := Transformation( [ 6, 2, 8, 4, 7, 5, 8, 3, 5, 8 ] );;
gap> CycleTransformationInt( f, 1 );
[ 8, 3 ]
gap> CycleTransformationInt( f, 12 );
[ 12 ]
gap> CycleTransformationInt( f, 5 );
[ 8, 3 ]
]]></Example>
</Description>
</ManSection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<ManSection>
<Attr Name="LeftOne" Arg="f" Label="for a transformation"/>
<Attr Name="RightOne" Arg="f" Label="for a transformation"/>
<Returns>A transformation.</Returns>
<Description>
<C>LeftOne</C> returns an idempotent transformation <C>e</C> such that
the kernel (with respect to the degree of <A>f</A>) of <C>e</C>
equals the kernel of the transformation <A>f</A> and
<C>e * <A>f</A> = f</C>.
<P/>
<C>RightOne</C> returns an idempotent transformation <C>e</C> such
that the image set (with respect to the degree of <A>f</A>) of
<C>e</C> equals the image set of <A>f</A> and
<C><A>f</A> * e = f</C>.
<Example><![CDATA[
gap> f := Transformation( [ 11, 10, 2, 11, 4, 4, 7, 6, 9, 10, 1, 11 ] );;
gap> e := RightOne( f );
Transformation( [ 1, 2, 2, 4, 4, 6, 7, 7, 9, 10, 11, 11 ] )
gap> IsIdempotent( e );
true
gap> f * e = f;
true
gap> e := LeftOne( f );
Transformation( [ 1, 2, 3, 1, 5, 5, 7, 8, 9, 2, 11, 1 ] )
gap> e * f = f;
true
gap> IsIdempotent( e );
true
]]></Example>
</Description>
</ManSection>
<ManSection>
<Oper Name="TrimTransformation" Arg="f[, n]"/>
<Returns>Nothing.</Returns>
<Description>
It can happen that the internal representation of a transformation
uses more memory than necessary. For example, this can happen when
composing transformations where it is possible that the resulting
transformation <A>f</A> belongs to <C>IsTrans4Rep</C> and
stores its images as 32-bit integers, while none of its moved
points exceeds 65536. The purpose of <C>TrimTransformation</C> is
to change the internal representation of such an <A>f</A> to
remove the trailing fixed points in the internal representation of
<A>f</A>.
<P/>
If the optional second argument <A>n</A> is provided, then the
internal representation of <A>f</A> is reduced to the images of
the first <A>n</A> positive integers. Please note that it must be
the case that <C>i ^ <A>f</A> <= n</C> for all <C>i</C> in the
range <C>[ 1 .. <A>n</A> ]</C> otherwise the resulting object will
not define a transformation.
<P/>
If the optional second argument is not included, then the
degree of <A>f</A> is used by default.
<P/>
The transformation <A>f</A> is changed in-place, and
nothing is returned by this function.
<Log><![CDATA[
gap> f := Transformation( [ 1 .. 2 ^ 16 ], x -> x + 1 );
<transformation on 65537 pts with rank 65536>
gap> g := Transformation( [ 1 .. 2 ^ 16 + 1 ],
> function( x )
> if x = 1 or x = 65537 then
> return x;
> else
> return x - 1;
> fi;
> end );
<transformation on 65536 pts with rank 65535>
gap> h := g * f;
Transformation( [ 2, 2 ] )
gap> DegreeOfTransformation( h ); IsTrans4Rep( h ); MemoryUsage( h );
65537
true
262188
gap> TrimTransformation( h ); h;
Transformation( [ 2, 2 ] )
gap> DegreeOfTransformation( h ); IsTrans4Rep( h ); MemoryUsage( h );
2
false
44
]]></Log>
</Description>
</ManSection>
</Section>
<!-- *************************************************************** -->
<Section Label="sect:DisplayingTransformations">
<Heading>Displaying transformations</Heading>
It is possible to change the way that &GAP; displays transformations
using the user preferences <C>TransformationDisplayLimit</C> and
<C>NotationForTransformations</C>; see Section <Ref
Func="UserPreference"/> for more information about user
preferences.
<P/>
If <C>f</C> is a transformation where the degree <C>n</C> of
<C>f</C> exceeds the value of the user preference
<C>TransformationDisplayLimit</C>, then <C>f</C> is displayed as:
<Log><transformation on n pts with rank r></Log> where <C>r</C>
is the rank of <C>f</C> relative to <C>n</C>. The idea is to
abbreviate the display of transformations defined on many points.
The default value for the <C>TransformationDisplayLimit</C> is
<C>100</C>.
<P/>
If the degree of <C>f</C> does not exceed the value of
<C>TransformationDisplayLimit</C>, then how <C>f</C> is displayed
depends on the value of the user preference
<C>NotationForTransformations</C>.
<P/>
There are two possible values for <C>NotationForTransformations</C>:
<List>
<Mark>input</Mark>
<Item>
With this option a transformation <A>f</A> is displayed in as:
<C>Transformation( ImageListOfTransformation( <A>f</A>, n ) )</C>
where <C>n</C> is the degree of <A>f</A>. The only exception is
the identity transformation, which is displayed as:
<C>IdentityTransformation</C>.
</Item>
<Mark>fr</Mark>
<Item>With this option a transformation <A>f</A> is displayed in as:
<C><transformation: ImageListOfTransformation( <A>f</A>, n )></C>
where <C>n</C> is the largest moved point of <A>f</A>. The only
exception is the identity transformation, which is displayed as:
<C><identity transformation></C>.
</Item>
</List>
<Log><![CDATA[
gap> SetUserPreference( "TransformationDisplayLimit", 12 );
gap> f := Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] );
<transformation on 12 pts with rank 10>
gap> SetUserPreference( "TransformationDisplayLimit", 100 );
gap> f;
Transformation( [ 3, 8, 12, 1, 11, 9, 9, 4, 10, 5, 10, 6 ] )
gap> SetUserPreference( "NotationForTransformations", "fr" );
gap> f;
<transformation: 3,8,12,1,11,9,9,4,10,5,10,6>
]]></Log>
</Section>
<!-- *************************************************************** -->
<Section Label="Making transformation semigroups">
<Heading>Semigroups of transformations</Heading>
As mentioned at the start of the chapter, every semigroup is isomorphic
to a semigroup of transformations, and in this section we describe the
functions in &GAP; specific to transformation semigroups. For more
information about semigroups in general see Chapter <Ref
Chap="Semigroups"/>.
<P/>
The <Package>Semigroups</Package> package contains many additional
functions and methods for computing with semigroups of transformations.
In particular, <Package>Semigroups</Package> contains more efficient
methods than those available in the &GAP; library (and in many cases
more efficient than any other software) for creating semigroups of
transformations, calculating their Green's classes, size, elements,
group of units, minimal ideal, small generating sets, testing
membership, finding the inverses of a regular element, factorizing
elements over the generators, and more.
Since a transformation semigroup is also a transformation collection,
there are special methods for
<Ref Attr="MovedPoints" Label="for a transformation coll"/>,
<Ref Attr="NrMovedPoints" Label="for a transformation coll"/>,
<Ref Meth="LargestMovedPoint" Label="for a transformation coll"/>,
<Ref Meth="SmallestMovedPoint" Label="for a transformation coll"/>,
<Ref Meth="LargestImageOfMovedPoint" Label="for a transformation coll"/>,
and
<Ref Meth="SmallestImageOfMovedPoint" Label="for a transformation coll"/>,
when applied to a transformation semigroup.
<!-- *************************************************************** -->
<ManSection>
<Filt Name="IsTransformationSemigroup" Arg="obj" Type="Synonym"/>
<Filt Name="IsTransformationMonoid" Arg="obj" Type="Synonym"/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
A <E>transformation semigroup</E> is simply a semigroup consisting of
transformations. An object <A>obj</A> is a transformation semigroup in
&GAP; if it satisfies <Ref Filt="IsSemigroup"/> and <Ref
Filt="IsTransformationCollection"/>.
<P/>
A <E>transformation monoid</E> is a monoid consisting of
transformations. An object <A>obj</A> is a transformation monoid in
&GAP; if it satisfies <Ref Filt="IsMonoid"/> and <Ref
Filt="IsTransformationCollection"/>.
<P/>
Note that it is possible for a transformation semigroup to have a
multiplicative neutral element (i.e. an identity element) but not to
satisfy <C>IsTransformationMonoid</C>. For example,
<Example><![CDATA[
gap> f := Transformation( [ 2, 6, 7, 2, 6, 9, 9, 1, 1, 5 ] );;
gap> S := Semigroup( f, One( f ) );
<commutative transformation monoid of degree 10 with 1 generator>
gap> IsMonoid( S );
true
gap> IsTransformationMonoid( S );
true
gap> S := Semigroup(
> Transformation( [ 3, 8, 1, 4, 5, 6, 7, 1, 10, 10 ] ),
> Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10 ] ) );
<transformation semigroup of degree 10 with 2 generators>
gap> One( S );
fail
gap> MultiplicativeNeutralElement( S );
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 10, 10 ] )
gap> IsMonoid( S );
false
]]></Example>
In this example <C>S</C> cannot be converted into a monoid using
<Ref Oper="AsMonoid"/> since the <Ref Attr="One"/> of any element in
<C>S</C> differs from the multiplicative neutral element.
<P/>
For more details see <Ref Filt="IsMagmaWithOne"/>.
</Description>
</ManSection>
<ManSection>
<Attr Name="DegreeOfTransformationSemigroup" Arg="S"/>
<Returns>A non-negative integer.</Returns>
<Description>
The <E>degree</E> of a transformation semigroup <A>S</A> is just the
maximum of the degrees of the elements of <A>S</A>.
<Example><![CDATA[
gap> S := Semigroup(
> Transformation( [ 3, 8, 1, 4, 5, 6, 7, 1, 10, 10, 11 ] ),
> Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 11 ] ) );
<transformation semigroup of degree 10 with 2 generators>
gap> DegreeOfTransformationSemigroup( S );
10
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Func Name="FullTransformationSemigroup" Arg="n"/>
<Func Name="FullTransformationMonoid" Arg="n"/>
<Returns>The full transformation semigroup of degree <A>n</A>.</Returns>
<Description>
If <A>n</A> is a positive integer, then
<C>FullTransformationSemigroup</C> returns the monoid consisting of
all transformations with degree at most <A>n</A>, called the
<E>full transformation semigroup</E>.
<P/>
The full transformation semigroup is regular, has
<C><A>n</A> ^ <A>n</A></C> elements, and is generated by any set
containing transformations that generate the symmetric group on
<A>n</A> points and any transformation of rank <C><A>n</A> - 1</C>.
<P/>
<C>FulTransformationMonoid</C> is a synonym for
<C>FullTransformationSemigroup</C>.
<Example><![CDATA[
gap> FullTransformationSemigroup( 1234 );
<full transformation monoid of degree 1234>
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Prop Name="IsFullTransformationSemigroup" Arg="S"/>
<Prop Name="IsFullTransformationMonoid" Arg="S"/>
<Returns><K>true</K> or <K>false</K>.</Returns>
<Description>
If the transformation semigroup <A>S</A> of degree <C>n</C> contains
every transformation of degree at most <C>n</C>, then
<C>IsFullTransformationSemigroup</C> returns <K>true</K> and otherwise
it returns <K>false</K>.
<P/>
<C>IsFullTransformationMonoid</C> is a synonym of
<C>IsFullTransformationSemigroup</C>. It is common in the literature
for the full transformation monoid to be referred to as the full
transformation semigroup.
<Example><![CDATA[
gap> S := Semigroup( AsTransformation( (1,3,4,2), 5 ),
> AsTransformation( (1,3,5), 5 ),
> Transformation( [ 1, 1, 2, 3, 4 ] ) );
<transformation semigroup of degree 5 with 3 generators>
gap> IsFullTransformationSemigroup( S );
true
gap> S;
<full transformation monoid of degree 5>
gap> IsFullTransformationMonoid( S );
true
gap> S := FullTransformationSemigroup( 5 );;
gap> IsFullTransformationSemigroup( S );
true
]]></Example>
</Description>
</ManSection>
<!-- *************************************************************** -->
<ManSection>
<Attr Name="IsomorphismTransformationSemigroup" Arg="S"/>
<Attr Name="IsomorphismTransformationMonoid" Arg="S"/>
<Returns>An isomorphism to a transformation semigroup or monoid.</Returns>
<Description>
Returns an isomorphism from the finite semigroup <A>S</A> to a
transformation semigroup. For most types of objects in &GAP; the
degree of this transformation semigroup will be equal to the size of
<A>S</A> plus <C>1</C>.
<P/>
Let <C><A>S</A> ^ 1</C> denote the monoid obtained from <A>S</A> by
adjoining an identity element. Then <A>S</A> acts faithfully on
<C><A>S</A> ^ 1</C> by right multiplication, i.e. every element of
<A>S</A> describes a transformation on <C>1, .. , |S| + 1</C>. The
isomorphism from <A>S</A> to the transformation semigroup described in
this way is called the <E>right regular representation</E> of
<A>S</A>. In most cases, <C>IsomorphismTransformationSemigroup</C>
will return the right regular representation of <A>S</A>.
<P/>
As exceptions, if <A>S</A> is a permutation group or a partial perm
semigroup, then the elements of <A>S</A> act naturally and faithfully
by transformations on the values from <C>1</C> to the largest moved
point of <A>S</A>.
<P/>
If <A>S</A> is a finitely presented semigroup, then the Todd-Coxeter
approach will be attempted.<P/>
<C>IsomorphismTransformationMonoid</C> differs from
<C>IsomorphismTransformationSemigroup</C>
only in that its range is a transformation monoid, and not only a
semigroup, when the semigroup <A>S</A> is a monoid.
<Log><![CDATA[
gap> S := Semigroup( [ [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ^ 0 ] ],
> [ [ Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],
> [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ] ] );;
gap> Size( S );
81
gap> IsomorphismTransformationSemigroup( S );;
gap> S := SymmetricInverseSemigroup( 4 );
<symmetric inverse monoid of degree 4>
gap> IsomorphismTransformationMonoid( S );
MappingByFunction( <symmetric inverse monoid of degree 4>,
<transformation monoid of degree 5 with 4 generators>
, function( x ) ... end, <Operation "AsPartialPerm"> )
gap> G := Group( (1,2,3) );
Group([ (1,2,3) ])
gap> IsomorphismTransformationMonoid( G );
MappingByFunction( Group([ (1,2,3) ]), <commutative transformation
monoid of degree 3 with 1 generator>
, function( x ) ... end, function( x ) ... end )]]></Log>
</Description>
</ManSection>
<ManSection>
<Attr Name="AntiIsomorphismTransformationSemigroup" Arg="S"/>
<Returns>An anti-isomorphism.</Returns>
<Description>
If <A>S</A> is a semigroup, then
<C>AntiIsomorphismTransformationSemigroup</C> returns an anti-isomorphism
from <A>S</A> to a transformation semigroup. At present, the degree of the
resulting transformation semigroup equals the size of <A>S</A> plus
<M>1</M>, and, consequently, this function is of limited use. <P/>
<Example><![CDATA[
gap> S := Semigroup( Transformation( [ 5, 5, 1, 1, 3 ] ),
> Transformation( [ 2, 4, 1, 5, 5 ] ) );
<transformation semigroup of degree 5 with 2 generators>
gap> Size( S );
172
gap> AntiIsomorphismTransformationSemigroup( S );
MappingByFunction( <transformation semigroup of size 172, degree 5
with 2 generators>, <transformation semigroup of degree 173 with 2
generators>, function( x ) ... end, function( x ) ... end )
]]></Example>
</Description>
</ManSection>
</Section>
</Chapter>
|