1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Alexander Hulpke.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file contains the methods for the construction of the basic fp group
## types.
##
#############################################################################
##
#M TrivialGroupCons( <IsPcGroup> )
##
InstallMethod( TrivialGroupCons, "fp group",
[ IsFpGroup and IsTrivial ],
filter -> FreeGroup(0));
#############################################################################
##
#M AbelianGroupCons( <IsFpGroup and IsFinite>, <ints> )
##
InstallMethod( AbelianGroupCons, "fp group", true,
[ IsFpGroup and IsAbelian, IsList ], 0,
function( filter, ints )
local f,g,i,j,rels,gfam,fam;
if not ForAll( ints, x -> IsInfinity(x) or (IsInt(x) and x >= 0) ) then
Error( "<ints> must be a list of integers" );
fi;
f := FreeGroup(IsSyllableWordsFamily, Length(ints));
g := GeneratorsOfGroup(f);
rels:=[];
for i in [1..Length(ints)] do
for j in [1..i-1] do
Add(rels,Comm(g[i],g[j]));
od;
if IsPosInt(ints[i]) then
Add(rels,g[i]^ints[i]);
fi;
od;
g:=f/rels;
if ForAll(ints,IsPosInt) then
SetSize( g, Product(ints) );
else
SetSize( g, infinity );
fi;
fam:=FamilyObj(One(f));
gfam:=FamilyObj(One(g));
gfam!.redorders:=ints;
SetFpElementNFFunction(gfam,function(x)
local u,e,i,j,n;
u:=UnderlyingElement(x);
e:=ExtRepOfObj(u); # syllable form
# bring in correct order and reduction
n:=ListWithIdenticalEntries(Length(gfam!.redorders),0);
for i in [1,3..Length(e)-1] do
j:=e[i];
if IsPosInt(gfam!.redorders[j]) then
n[j]:=n[j]+e[i+1] mod gfam!.redorders[j];
else
n[j]:=n[j]+e[i+1];
fi;
od;
e:=[];
for i in [1..Length(gfam!.redorders)] do
if n[i]<>0 then
Add(e,i);
Add(e,n[i]);
fi;
od;
return ObjByExtRep(fam,e);
end);
SetReducedMultiplication(g);
SetIsAbelian( g, true );
return g;
end );
#############################################################################
##
#M CyclicGroupCons( <IsFpGroup>, <n> )
##
InstallOtherMethod( CyclicGroupCons, "fp group", true,
[ IsFpGroup and IsCyclic, IsObject ], 0,
function( filter, n )
local f,g,fam,gfam;
if n=infinity then
return FreeGroup("a");
elif not IsPosInt(n) then
TryNextMethod();
fi;
f:=FreeGroup( IsSyllableWordsFamily, "a" );
g:=f/[f.1^n];
SetSize(g,n);
fam:=FamilyObj(One(f));
gfam:=FamilyObj(One(g));
SetFpElementNFFunction(gfam,function(x)
local u,e;
u:=UnderlyingElement(x);
e:=ExtRepOfObj(u); # syllable form
if Length(e)=0 or (e[2]>=0 and e[2]<n) then
return u;
elif e[2] mod n=0 then
return One(f);
else
e:=[e[1],e[2] mod n];
return ObjByExtRep(fam,e);
fi;
end);
SetReducedMultiplication(g);
return g;
end );
#############################################################################
##
#M DihedralGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( DihedralGroupCons,
"fp group",
true,
[ IsFpGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local f,rels,g;
if n mod 2 = 1 then
TryNextMethod();
elif n = 2 then return
CyclicGroup( IsFpGroup, 2 );
fi;
f := FreeGroup( IsSyllableWordsFamily, "r", "s" );
rels:= [f.1^(n/2),f.2^2,f.1^f.2*f.1];
g := f/rels;
SetSize(g,n);
SetReducedMultiplication(g);
return g;
end );
InstallOtherMethod( DihedralGroupCons,
"fp group",
true,
[ IsFpGroup and IsFinite,
IsInfinity ],
0,
function( filter, inf )
local f,rels,g;
f := FreeGroup( IsSyllableWordsFamily, "r", "s" );
rels:= [f.2^2,f.1^f.2*f.1];
g := f/rels;
SetSize(g,infinity);
SetReducedMultiplication(g);
return g;
end );
#############################################################################
##
#M DicyclicGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( DicyclicGroupCons,
"fp group",
true,
[ IsFpGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local f,rels,g;
if 0 <> n mod 4 then
TryNextMethod();
elif n = 4 then return
CyclicGroup( IsFpGroup, 4 );
fi;
f := FreeGroup( IsSyllableWordsFamily, "r", "s" );
rels:= [ f.1^2/f.2^(n/4), f.2^(n/2), f.2^f.1*f.2 ];
g := f/rels;
SetSize(g,n);
if n <= 10^4 then SetReducedMultiplication(g); fi;
return g;
end );
#############################################################################
##
#M ElementaryAbelianGroupCons( <IsFpGroup and IsFinite>, <n> )
##
InstallMethod( ElementaryAbelianGroupCons,
"fp group",
true,
[ IsFpGroup and IsFinite and IsElementaryAbelian,
IsInt and IsPosRat ],
0,
function( filter, n )
if n = 1 then
return CyclicGroupCons( IsFpGroup, 1 );
elif not IsPrimePowerInt(n) then
Error( "<n> must be a prime power" );
fi;
n:= AbelianGroupCons( IsFpGroup, Factors(n) );
SetIsElementaryAbelian( n, true );
return n;
end );
#############################################################################
##
#M FreeAbelianGroupCons( <IsFpGroup>, <rank> )
##
InstallMethod( FreeAbelianGroupCons,
"fp group",
true,
[ IsFpGroup and IsAbelian,
IsInt and IsPosRat ],
0,
function( filter, rank )
return AbelianGroupCons( filter, ListWithIdenticalEntries(rank, 0) );
# TODO: Add the following if it ever moves from Polycyclic to the GAP core:
#SetIsFreeAbelian( G, true );
end );
|