File: classic.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1492 lines) | stat: -rw-r--r-- 55,234 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Frank Celler.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the operations for the construction of the classical
##  group types.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{classic}">
##  The following functions return classical groups.
##  <P/>
##  For the linear, symplectic, and unitary groups (the latter in dimension
##  at least <M>3</M>),
##  the generators are taken from&nbsp;<Cite Key="Tay87"/>.
##  For the unitary groups in dimension <M>2</M>, the isomorphism of
##  SU<M>(2,q)</M> and SL<M>(2,q)</M> is used,
##  see for example&nbsp;<Cite Key="Hup67"/>.
##  <P/>
##  The generators of the general and special orthogonal groups are taken
##  from&nbsp;<Cite Key="IshibashiEarnest94"/> and
##  <Cite Key="KleidmanLiebeck90"/>,
##  except that the generators of the groups in odd dimension in even
##  characteristic are constructed via the isomorphism to a symplectic group,
##  see for example&nbsp;<Cite Key="Car72a"/>.
##  <P/>
##  The generators of the groups <M>\Omega^\epsilon(d, q)</M> are taken
##  from&nbsp;<Cite Key="RylandsTalor98"/>,
##  except that in odd dimension and even characteristic,
##  the generators of SO<M>(d, q)</M> are taken for <M>\Omega(d, q)</M>.
##  Note that the generators claimed
##  in&nbsp;<Cite Key="RylandsTalor98" Where="Section 4.5 and 4.6"/>
##  do not describe orthogonal groups, one would have to transpose these
##  matrices in order to get groups that respect the required forms.
##  The matrices from&nbsp;<Cite Key="RylandsTalor98"/> generate groups
##  of the right isomorphism types but not orthogonal groups,
##  except in the case <M>(d,q) = (5,2)</M>,
##  where the matrices from&nbsp;<Cite Key="RylandsTalor98"/> generate
##  the simple group <M>S_4(2)'</M> and not the group <M>S_4(2)</M>.
##  <P/>
##  The generators for the semilinear groups are constructed from the
##  generators of the corresponding linear groups plus one additional
##  generator that describes the action of the group of field automorphisms;
##  for prime integers <M>p</M> and positive integers <M>f</M>,
##  this yields the matrix groups <M>Gamma</M>L<M>(d, p^f)</M> and
##  <M>Sigma</M>L<M>(d, p^f)</M> as groups of <M>d f \times df</M> matrices
##  over the field with <M>p</M> elements.
##  <P/>
##  For symplectic and orthogonal matrix groups returned by the functions
##  described below, the invariant bilinear form is stored as the value of
##  the attribute <Ref Attr="InvariantBilinearForm"/>.
##  Analogously, the invariant sesquilinear form defining the unitary groups
##  is stored as the value of the attribute
##  <Ref Attr="InvariantSesquilinearForm"/>).
##  The defining quadratic form of orthogonal groups is stored as the value
##  of the attribute <Ref Attr="InvariantQuadraticForm"/>.
##  <P/>
##  Note that due to the different sources for the generators,
##  the invariant forms for the groups <M>\Omega(e,d,q)</M> are in general
##  different from the forms for SO<M>(e,d,q)</M> and GO<M>(e,d,q)</M>.
##  If version at least 1.2.6 of the <Package>Forms</Package> package is
##  loaded then compatible groups can be created by specifying the desired
##  form, see the sections below.
##  <#/GAPDoc>
##


#############################################################################
##
#O  GeneralLinearGroupCons( <filter>, <d>, <R> )
##
##  <ManSection>
##  <Oper Name="GeneralLinearGroupCons" Arg='filter, d, R'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralLinearGroupCons", [ IsGroup, IsPosInt, IsRing ] );


#############################################################################
##
#F  GeneralLinearGroup( [<filt>, ]<d>, <R> )  . . . . .  general linear group
#F  GL( [<filt>, ]<d>, <R> )
#F  GeneralLinearGroup( [<filt>, ]<d>, <q> )
#F  GL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="GeneralLinearGroup">
##  <ManSection>
##  <Heading>GeneralLinearGroup</Heading>
##  <Func Name="GeneralLinearGroup" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="GL" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="GeneralLinearGroup" Arg='[filt, ]d, q'
##   Label="for dimension and field size"/>
##  <Func Name="GL" Arg='[filt, ]d, q'
##   Label="for dimension and field size"/>
##
##  <Description>
##  The first two forms construct a group isomorphic to the general linear
##  group GL( <A>d</A>, <A>R</A> ) of all <M><A>d</A> \times <A>d</A></M>
##  matrices that are invertible over the ring <A>R</A>,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  The third and the fourth form construct the general linear group over the
##  finite field with <A>q</A> elements.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the general linear group as a matrix group in
##  its natural action (see also&nbsp;<Ref Prop="IsNaturalGL"/>,
##  <Ref Prop="IsNaturalGLnZ"/>).
##  <P/>
##  Currently supported rings <A>R</A> are finite fields,
##  the ring <Ref Var="Integers" Label="global variable"/>,
##  and residue class rings <C>Integers mod <A>m</A></C>,
##  see <Ref Sect="Residue Class Rings"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> GL(4,3);
##  GL(4,3)
##  gap> GL(2,Integers);
##  GL(2,Integers)
##  gap> GL(3,Integers mod 12);
##  GL(3,Z/12Z)
##  ]]></Example>
##  <P/>
##  <Index Key="OnLines" Subkey="example"><C>OnLines</C></Index>
##  Using the <Ref Func="OnLines"/> operation it is possible to obtain the
##  corresponding projective groups in a permutation action:
##  <P/>
##  <Example><![CDATA[
##  gap> g:=GL(4,3);;Size(g);
##  24261120
##  gap> pgl:=Action(g,Orbit(g,Z(3)^0*[1,0,0,0],OnLines),OnLines);;
##  gap> Size(pgl);
##  12130560
##  ]]></Example>
##  <P/>
##  If you are interested only in the projective group as a permutation group
##  and not in the correspondence between its moved points and the points in
##  the projective space, you can also use <Ref Func="PGL"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "GeneralLinearGroup", function ( arg )
  if Length( arg ) = 2 then
    if IsRing( arg[2] ) then
      return GeneralLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
    elif IsPrimePowerInt( arg[2] ) then
      return GeneralLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
    fi;
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    if IsRing( arg[3] ) then
      return GeneralLinearGroupCons( arg[1], arg[2], arg[3] );
    elif IsPrimePowerInt( arg[3] ) then
      return GeneralLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
    fi;
  fi;
  Error( "usage: GeneralLinearGroup( [<filter>, ]<d>, <R> )" );
end );

DeclareSynonym( "GL", GeneralLinearGroup );


#############################################################################
##
#O  GeneralOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="GeneralOrthogonalGroupCons" Arg='filter, e, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsPosInt ] );
DeclareConstructor( "GeneralOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsRing ] );


#############################################################################
##
#F  GeneralOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q>[, <form>] )
#F  GeneralOrthogonalGroup( [<filt>, ]<form> )
#F  GO( [<filt>, ][<e>, ]<d>, <q>[, <form>] )
#F  GO( [<filt>, ]<form> )
##
##  <#GAPDoc Label="GeneralOrthogonalGroup">
##  <ManSection>
##  <Func Name="GeneralOrthogonalGroup" Arg='[filt, ][e, ]d, q[, form]'/>
##  <Func Name="GeneralOrthogonalGroup" Arg='[filt, ]form' Label="for a form"/>
##  <Func Name="GO" Arg='[filt, ][e, ]d, q[, form]'/>
##  <Func Name="GO" Arg='[filt, ]form' Label="for a form"/>
##
##  <Description>
##  constructs a group isomorphic to the
##  general orthogonal group GO( <A>e</A>, <A>d</A>, <A>q</A> ) of those
##  <M><A>d</A> \times <A>d</A></M> matrices over the field with <A>q</A>
##  elements that respect a non-singular quadratic form
##  (see&nbsp;<Ref Attr="InvariantQuadraticForm"/>) specified by <A>e</A>,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  The value of <A>e</A> must be <M>0</M> for odd <A>d</A> (and can
##  optionally be  omitted in this case), respectively one of <M>1</M> or
##  <M>-1</M> for even <A>d</A>.
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the general orthogonal group itself.
##  <P/>
##  If version at least 1.2.6 of the <Package>Forms</Package> package is
##  loaded then the desired quadratic form can be specified via <A>form</A>,
##  which can be either a matrix
##  or a form object in <Ref Filt="IsQuadraticForm" BookName="Forms"/>
##  or a group with stored <Ref Attr="InvariantQuadraticForm"/> value
##  (and then this form is taken).
##  <P/>
##  A given <A>form</A> determines <A>e</A> and <A>d</A>, and also <A>q</A>
##  except if <A>form</A> is a matrix that does not store its
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value.
##  These parameters can be entered, and an error is signalled if they do
##  not fit to the given <A>form</A>.
##  <P/>
##  If <A>form</A> is not given then a default is chosen as described in the
##  introduction to Section <Ref Sect="Classical Groups"/>.
##  <P/>
##  Note that in&nbsp;<Cite Key="KleidmanLiebeck90"/>,
##  GO is defined as the stabilizer
##  <M>\Delta(V, F, \kappa)</M> of the quadratic form, up to scalars,
##  whereas our GO is called <M>I(V, F, \kappa)</M> there.
##  <P/>
##  <Example><![CDATA[
##  gap> GeneralOrthogonalGroup( 5, 3 );
##  GO(0,5,3)
##  gap> GeneralOrthogonalGroup( -1, 8, 2 );
##  GO(-1,8,2)
##  gap> GeneralOrthogonalGroup( IsPermGroup, -1, 8, 2 );
##  Perm_GO(-1,8,2)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "DescribesInvariantQuadraticForm",
    obj -> IsMatrixOrMatrixObj( obj ) or
           ( IsBoundGlobal( "IsQuadraticForm" ) and
             ValueGlobal( "IsQuadraticForm" )( obj ) ) or
           ( IsGroup( obj ) and HasInvariantQuadraticForm( obj ) ) );

BindGlobal( "GeneralOrthogonalGroup", function ( arg )
  local filt, form;

  if IsFilter( First( arg ) ) then
    filt:= Remove( arg, 1 );
  else
    filt:= IsMatrixGroup;
  fi;
  if DescribesInvariantQuadraticForm( Last( arg ) ) then
    form:= Remove( arg );
    if Length( arg ) = 0 then
      # ( [<filt>, ]<form> )
      return GeneralOrthogonalGroupCons( filt, form );
    elif Length( arg ) = 2 and IsPosInt( arg[1] )
                           and ( IsPosInt( arg[2] ) or IsRing( arg[2] ) ) then
      # ( [<filt>, ]<d>, <q>, form ) or ( [<filt>, ]<d>, <R>, form )
      return GeneralOrthogonalGroupCons( filt, 0, arg[1], arg[2], form );
    elif Length( arg ) = 3 and IsInt( arg[1] ) and IsPosInt( arg[2] )
                           and ( IsPosInt( arg[3] ) or IsRing( arg[3] ) ) then
      # ( [<filt>, ]<e>, <d>, <q>, form ) or ( [<filt>, ]<e>, <d>, <R>, form )
      return GeneralOrthogonalGroupCons( filt, arg[1], arg[2], arg[3], form );
    fi;
  elif Length( arg ) = 2 and IsPosInt( arg[1] )
                         and ( IsPosInt( arg[2] ) or IsRing( arg[2] ) ) then
    # ( [<filt>, ]<d>, <q> ) or ( [<filt>, ]<d>, <R> )
    return GeneralOrthogonalGroupCons( filt, 0, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsInt( arg[1] ) and IsPosInt( arg[2] )
                         and ( IsPosInt( arg[3] ) or IsRing( arg[3] ) ) then
    # ( [<filt>, ]<e>, <d>, <q> ) or ( [<filt>, ]<e>, <d>, <R> )
    return GeneralOrthogonalGroupCons( filt, arg[1], arg[2], arg[3] );
  fi;
  Error( "usage: GeneralOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q>[, <form>] )\n",
         "or GeneralOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q>[, <form>] )\n",
         "or GeneralOrthogonalGroup( [<filt>, ]<form> )" );
end );

DeclareSynonym( "GO", GeneralOrthogonalGroup );


#############################################################################
##
#O  GeneralUnitaryGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="GeneralUnitaryGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralUnitaryGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  GeneralUnitaryGroup( [<filt>, ]<d>, <q>[, <form>] )
#F  GeneralUnitaryGroup( [<filt>, ]<form> )
#F  GU( [<filt>, ]<d>, <q>[, <form>] )
#F  GU( [<filt>, ]<form> )
##
##  <#GAPDoc Label="GeneralUnitaryGroup">
##  <ManSection>
##  <Func Name="GeneralUnitaryGroup" Arg='[filt, ]d, q[, form]'/>
##  <Func Name="GeneralUnitaryGroup" Arg='[filt, ]form' Label="for a form"/>
##  <Func Name="GU" Arg='[filt, ]d, q[, form]'/>
##  <Func Name="GU" Arg='[filt, ]form' Label="for a form"/>
##
##  <Description>
##  constructs a group isomorphic to the general unitary group
##  GU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <M><A>q</A>^2</M> elements
##  that respect a fixed nondegenerate sesquilinear form,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the general unitary group itself.
##  <P/>
##  If version at least 1.2.6 of the <Package>Forms</Package> package is
##  loaded then the desired sesquilinear form can be specified via
##  <A>form</A>, which can be either a matrix
##  or a form object in <Ref Filt="IsHermitianForm" BookName="Forms"/>
##  or a group with stored <Ref Attr="InvariantSesquilinearForm"/> value
##  (and then this form is taken).
##  <P/>
##  A given <A>form</A> determines <A>d</A>, and also <A>q</A>
##  except if <A>form</A> is a matrix that does not store its
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value.
##  These parameters can be entered, and an error is signalled if they do
##  not fit to the given <A>form</A>.
##  <P/>
##  If <A>form</A> is not given then a default is chosen as described in the
##  introduction to Section <Ref Sect="Classical Groups"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> GeneralUnitaryGroup( 3, 5 );
##  GU(3,5)
##  gap> GeneralUnitaryGroup( IsPermGroup, 3, 5 );
##  Perm_GU(3,5)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "DescribesInvariantHermitianForm",
    obj -> IsMatrixOrMatrixObj( obj ) or
           ( IsBoundGlobal( "IsHermitianForm" ) and
             ValueGlobal( "IsHermitianForm" )( obj ) ) or
           ( IsGroup( obj ) and HasInvariantSesquilinearForm( obj ) ) );

BindGlobal( "GeneralUnitaryGroup", function ( arg )
  local filt, form;

  if IsFilter( First( arg ) ) then
    filt:= Remove( arg, 1 );
  else
    filt:= IsMatrixGroup;
  fi;
  if DescribesInvariantHermitianForm( Last( arg ) ) then
    form:= Remove( arg );
    if Length( arg ) = 0 then
      # ( [<filt>, ]<form> )
      return GeneralUnitaryGroupCons( filt, form );
    elif Length( arg ) = 2 and IsPosInt( arg[1] ) and IsPosInt( arg[2] ) then
      # ( [<filt>, ]<d>, <q>, <form> )
      return GeneralUnitaryGroupCons( filt, arg[1], arg[2], form );
    fi;
  elif Length( arg ) = 2 and IsPosInt( arg[1] ) and IsPosInt( arg[2] ) then
    # ( [<filt>, ]<d>, <q> )
    return GeneralUnitaryGroupCons( filt, arg[1], arg[2] );
  fi;
  Error( "usage: GeneralUnitaryGroup( [<filt>, ]<d>, <q>[, <form>] )\n",
         "or GeneralUnitaryGroup( [<filt>, ]<form> )" );
end );

DeclareSynonym( "GU", GeneralUnitaryGroup );


#############################################################################
##
#O  SpecialLinearGroupCons( <filter>, <d>, <R> )
##
##  <ManSection>
##  <Oper Name="SpecialLinearGroupCons" Arg='filter, d, R'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialLinearGroupCons", [ IsGroup, IsInt, IsRing ] );


#############################################################################
##
#F  SpecialLinearGroup( [<filt>, ]<d>, <R> )  . . . . .  special linear group
#F  SL( [<filt>, ]<d>, <R> )
#F  SpecialLinearGroup( [<filt>, ]<d>, <q> )
#F  SL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="SpecialLinearGroup">
##  <ManSection>
##  <Heading>SpecialLinearGroup</Heading>
##  <Func Name="SpecialLinearGroup" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="SL" Arg='[filt, ]d, R'
##   Label="for dimension and a ring"/>
##  <Func Name="SpecialLinearGroup" Arg='[filt, ]d, q'
##   Label="for dimension and a field size"/>
##  <Func Name="SL" Arg='[filt, ]d, q'
##   Label="for dimension and a field size"/>
##
##  <Description>
##  The first two forms construct a group isomorphic to the special linear
##  group SL( <A>d</A>, <A>R</A> ) of all those
##  <M><A>d</A> \times <A>d</A></M> matrices over the ring <A>R</A> whose
##  determinant is the identity of <A>R</A>,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  The third and the fourth form construct the special linear group over the
##  finite field with <A>q</A> elements.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the special linear group as a matrix group in
##  its natural action (see also&nbsp;<Ref Prop="IsNaturalSL"/>,
##  <Ref Prop="IsNaturalSLnZ"/>).
##  <P/>
##  Currently supported rings <A>R</A> are finite fields,
##  the ring <Ref Var="Integers"/>,
##  and residue class rings <C>Integers mod <A>m</A></C>,
##  see <Ref Sect="Residue Class Rings"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> SpecialLinearGroup(2,2);
##  SL(2,2)
##  gap> SL(3,Integers);
##  SL(3,Integers)
##  gap> SL(4,Integers mod 4);
##  SL(4,Z/4Z)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialLinearGroup", function ( arg )
  if Length( arg ) = 2  then
    if IsRing( arg[2] ) then
      return SpecialLinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
    elif IsPrimePowerInt( arg[2] ) then
      return SpecialLinearGroupCons( IsMatrixGroup, arg[1], GF( arg[2] ) );
    fi;
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    if IsRing( arg[3] ) then
      return SpecialLinearGroupCons( arg[1], arg[2], arg[3] );
    elif IsPrimePowerInt( arg[3] ) then
      return SpecialLinearGroupCons( arg[1], arg[2], GF( arg[3] ) );
    fi;
  fi;
  Error( "usage: SpecialLinearGroup( [<filter>, ]<d>, <R> )" );

end );

DeclareSynonym( "SL", SpecialLinearGroup );


#############################################################################
##
#O  SpecialOrthogonalGroupCons( <filter>, <e>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SpecialOrthogonalGroupCons" Arg='filter, e, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsPosInt ] );
DeclareConstructor( "SpecialOrthogonalGroupCons",
    [ IsGroup, IsInt, IsPosInt, IsRing ] );


#############################################################################
##
#F  SpecialOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q>[, <form>] )
#F  SpecialOrthogonalGroup( [<filt>, ]<form> )
#F  SO( [<filt>, ][<e>, ]<d>, <q>[, <form>] )
#F  SO( [<filt>, ]<form> )
##
##  <#GAPDoc Label="SpecialOrthogonalGroup">
##  <ManSection>
##  <Func Name="SpecialOrthogonalGroup" Arg='[filt, ][e, ]d, q[, form]'/>
##  <Func Name="SpecialOrthogonalGroup" Arg='[filt, ]form' Label="for a form"/>
##  <Func Name="SO" Arg='[filt, ][e, ]d, q[, form]'/>
##  <Func Name="SO" Arg='[filt, ]form' Label="for a form"/>
##
##  <Description>
##  constructs a group isomorphic to the
##  special orthogonal group SO( <A>e</A>, <A>d</A>, <A>q</A> ),
##  which is the subgroup of all those matrices in the general orthogonal
##  group (see&nbsp;<Ref Func="GeneralOrthogonalGroup"/>) that have
##  determinant one, in the category given by the filter <A>filt</A>.
##  (The index of SO( <A>e</A>, <A>d</A>, <A>q</A> ) in
##  GO( <A>e</A>, <A>d</A>, <A>q</A> ) is <M>2</M> if <A>q</A> is
##  odd, and <M>1</M> if <A>q</A> is even.)
##  Also interesting is the group Omega( <A>e</A>, <A>d</A>, <A>q</A> ),
##  see <Ref Oper="Omega" Label="construct an orthogonal group"/>,
##  which is of index <M>2</M> in SO( <A>e</A>, <A>d</A>, <A>q</A> ),
##  except in the case <M><A>d</A> = 1</M>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the special orthogonal group itself.
##  <P/>
##  If version at least 1.2.6 of the <Package>Forms</Package> package is
##  loaded then the desired quadratic form can be specified via <A>form</A>,
##  which can be either a matrix
##  or a form object in <Ref Filt="IsQuadraticForm" BookName="Forms"/>
##  or a group with stored <Ref Attr="InvariantQuadraticForm"/> value
##  (and then this form is taken).
##  <P/>
##  A given <A>form</A> determines <A>e</A> and <A>d</A>, and also <A>q</A>
##  except if <A>form</A> is a matrix that does not store its
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value.
##  These parameters can be entered, and an error is signalled if they do
##  not fit to the given <A>form</A>.
##  <P/>
##  If <A>form</A> is not given then a default is chosen as described in the
##  introduction to Section <Ref Sect="Classical Groups"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> SpecialOrthogonalGroup( 5, 3 );
##  SO(0,5,3)
##  gap> SpecialOrthogonalGroup( -1, 8, 2 );  # here SO and GO coincide
##  GO(-1,8,2)
##  gap> SpecialOrthogonalGroup( IsPermGroup, 5, 3 );
##  Perm_SO(0,5,3)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialOrthogonalGroup", function ( arg )
  local filt, form;

  if IsFilter( First( arg ) ) then
    filt:= Remove( arg, 1 );
  else
    filt:= IsMatrixGroup;
  fi;
  if DescribesInvariantQuadraticForm( Last( arg ) ) then
    form:= Remove( arg );
    if Length( arg ) = 0 then
      # ( [<filt>, ]<form> )
      return SpecialOrthogonalGroupCons( filt, form );
    elif Length( arg ) = 2 and IsPosInt( arg[1] )
                           and ( IsPosInt( arg[2] ) or IsRing( arg[2] ) ) then
      # ( [<filt>, ]<d>, <q>, form ) or ( [<filt>, ]<d>, <R>, form )
      return SpecialOrthogonalGroupCons( filt, 0, arg[1], arg[2], form );
    elif Length( arg ) = 3 and IsInt( arg[1] ) and IsPosInt( arg[2] )
                           and ( IsPosInt( arg[3] ) or IsRing( arg[3] ) ) then
      # ( [<filt>, ]<e>, <d>, <q>, form ) or ( [<filt>, ]<e>, <d>, <R>, form )
      return SpecialOrthogonalGroupCons( filt, arg[1], arg[2], arg[3], form );
    fi;
  elif Length( arg ) = 2 and IsPosInt( arg[1] )
                         and ( IsPosInt( arg[2] ) or IsRing( arg[2] ) ) then
    # ( [<filt>, ]<d>, <q> ) or ( [<filt>, ]<d>, <R> )
    return SpecialOrthogonalGroupCons( filt, 0, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsInt( arg[1] ) and IsPosInt( arg[2] )
                         and ( IsPosInt( arg[3] ) or IsRing( arg[3] ) ) then
    # ( [<filt>, ]<e>, <d>, <q> ) or ( [<filt>, ]<e>, <d>, <R> )
    return SpecialOrthogonalGroupCons( filt, arg[1], arg[2], arg[3] );
  fi;
  Error( "usage: SpecialOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q>[, <form>] )\n",
         "or SpecialOrthogonalGroup( [<filt>, ]<form> )" );
end );

DeclareSynonym( "SO", SpecialOrthogonalGroup );


#############################################################################
##
#O  SpecialUnitaryGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SpecialUnitaryGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialUnitaryGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  SpecialUnitaryGroup( [<filt>, ]<d>, <q>[, <form>] )
#F  SpecialUnitaryGroup( [<filt>, ]<form> )
#F  SU( [<filt>, ]<d>, <q>[, <form>] )
#F  SU( [<filt>, ]<form> )
##
##  <#GAPDoc Label="SpecialUnitaryGroup">
##  <ManSection>
##  <Func Name="SpecialUnitaryGroup" Arg='[filt, ]d, q[, form]'/>
##  <Func Name="SpecialUnitaryGroup" Arg='[filt, ]form' Label="for a form"/>
##  <Func Name="SU" Arg='[filt, ]d, q[, form]'/>
##  <Func Name="SU" Arg='[filt, ]form' Label="for a form"/>
##
##  <Description>
##  constructs a group isomorphic to the special unitary group
##  SU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <M><A>q</A>^2</M> elements
##  whose determinant is the identity of the field and that respect a fixed
##  nondegenerate sesquilinear form,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the special unitary group itself.
##  <P/>
##  If version at least 1.2.6 of the <Package>Forms</Package> package is
##  loaded then the desired sesquilinear form can be specified via
##  <A>form</A>, which can be either a matrix
##  or a form object in <Ref Filt="IsHermitianForm" BookName="Forms"/>
##  or a group with stored <Ref Attr="InvariantSesquilinearForm"/> value
##  (and then this form is taken).
##  <P/>
##  A given <A>form</A> determines <A>d</A>, and also <A>q</A>
##  except if <A>form</A> is a matrix that does not store its
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value.
##  These parameters can be entered, and an error is signalled if they do
##  not fit to the given <A>form</A>.
##  <P/>
##  If <A>form</A> is not given then a default is chosen as described in the
##  introduction to Section <Ref Sect="Classical Groups"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> SpecialUnitaryGroup( 3, 5 );
##  SU(3,5)
##  gap> SpecialUnitaryGroup( IsPermGroup, 3, 5 );
##  Perm_SU(3,5)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialUnitaryGroup", function ( arg )
  local filt, form;

  if IsFilter( First( arg ) ) then
    filt:= Remove( arg, 1 );
  else
    filt:= IsMatrixGroup;
  fi;
  if DescribesInvariantHermitianForm( Last( arg ) ) then
    form:= Remove( arg );
    if Length( arg ) = 0 then
      # ( [<filt>, ]<form> )
      return SpecialUnitaryGroupCons( filt, form );
    elif Length( arg ) = 2 and IsPosInt( arg[1] ) and IsPosInt( arg[2] ) then
      # ( [<filt>, ]<d>, <q>, form)
      return SpecialUnitaryGroupCons( filt, arg[1], arg[2], form );
    fi;

  elif Length( arg ) = 2 and IsPosInt( arg[1] ) and IsPosInt( arg[2] ) then
    # ( [<filt>, ]<d>, <q> )
    return SpecialUnitaryGroupCons( filt, arg[1], arg[2] );
  fi;
  Error( "usage: SpecialUnitaryGroup( [<filt>, ]<d>, <q>[, <form>] )\n",
         "or SpecialUnitaryGroup( [<filt>, ]<form> )" );
end );

DeclareSynonym( "SU", SpecialUnitaryGroup );


#############################################################################
##
#O  SymplecticGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SymplecticGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SymplecticGroupCons", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareConstructor( "SymplecticGroupCons", [ IsGroup, IsPosInt, IsRing ] );


#############################################################################
##
#F  SymplecticGroup( [<filt>, ]<d>, <q>[, <form>] ) . . . .  symplectic group
#F  SymplecticGroup( [<filt>, ]<form> ) . . . . . . . . . .  symplectic group
#F  Sp( [<filt>, ]<d>, <q>[, <form>] )
#F  Sp( [<filt>, ]<form> )
#F  SP( [<filt>, ]<d>, <q>[, <form>] )
#F  SP( [<filt>, ]<form> )
##
##  <#GAPDoc Label="SymplecticGroup">
##  <ManSection>
##  <Heading>SymplecticGroup</Heading>
##  <Func Name="SymplecticGroup" Arg='[filt, ]d, q[, form]'
##   Label="for dimension and field size"/>
##  <Func Name="SymplecticGroup" Arg='[filt, ]d, ring[, form]'
##   Label="for dimension and a ring"/>
##  <Func Name="SymplecticGroup" Arg='[filt, ]form'
##   Label="for form"/>
##  <Func Name="Sp" Arg='[filt, ]d, q[, form]'
##   Label="for dimension and field size"/>
##  <Func Name="Sp" Arg='[filt, ]d, ring[, form]'
##   Label="for dimension and a ring"/>
##  <Func Name="Sp" Arg='[filt, ]form'
##   Label="for form"/>
##  <Func Name="SP" Arg='[filt, ]d, q[, form]'
##   Label="for dimension and field size"/>
##  <Func Name="SP" Arg='[filt, ]d, ring[, form]'
##   Label="for dimension and a ring"/>
##  <Func Name="SP" Arg='[filt, ]form'
##   Label="for form"/>
##
##  <Description>
##  constructs a group isomorphic to the symplectic group
##  Sp( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <A>q</A> elements (respectively the ring
##  <A>ring</A>)
##  that respect a fixed nondegenerate symplectic form,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the symplectic group itself.
##  <P/>
##  At the moment finite fields or residue class rings
##  <C>Integers mod <A>q</A></C>, with <A>q</A> an odd prime power, are
##  supported.
##  <P/>
##  If version at least 1.2.6 of the <Package>Forms</Package> package is
##  loaded and the arguments describe a matrix group over a finite field then
##  the desired bilinear form can be specified via <A>form</A>,
##  which can be either a matrix
##  or a form object in <Ref Filt="IsBilinearForm" BookName="Forms"/>
##  or a group with stored <Ref Attr="InvariantBilinearForm"/> value
##  (and then this form is taken).
##  <P/>
##  A given <A>form</A> determines and <A>d</A>, and also <A>q</A>
##  except if <A>form</A> is a matrix that does not store its
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value.
##  These parameters can be entered, and an error is signalled if they do
##  not fit to the given <A>form</A>.
##  <P/>
##  If <A>form</A> is not given then a default is chosen as described in the
##  introduction to Section <Ref Sect="Classical Groups"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> SymplecticGroup( 4, 2 );
##  Sp(4,2)
##  gap> g:=SymplecticGroup(6,Integers mod 9);
##  Sp(6,Z/9Z)
##  gap> Size(g);
##  95928796265538862080
##  gap> SymplecticGroup( IsPermGroup, 4, 2 );
##  Perm_Sp(4,2)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "DescribesInvariantBilinearForm",
    obj -> IsMatrixOrMatrixObj( obj ) or
           ( IsBoundGlobal( "IsBilinearForm" ) and
             ValueGlobal( "IsBilinearForm" )( obj ) ) or
           ( IsGroup( obj ) and HasInvariantBilinearForm( obj ) ) );

BindGlobal( "SymplecticGroup", function ( arg )
  local filt, form;

  if IsFilter( First( arg ) ) then
    filt:= Remove( arg, 1 );
  else
    filt:= IsMatrixGroup;
  fi;
  if DescribesInvariantBilinearForm( Last( arg ) ) then
    form:= Remove( arg );
    if Length( arg ) = 0 then
      # ( [<filt>, ]<form> )
      return SymplecticGroupCons( filt, form );
    elif Length( arg ) = 2 and IsPosInt( arg[1] )
                           and ( IsPosInt( arg[2] ) or IsRing( arg[2] ) ) then
      # ( [<filt>, ]<d>, <q>, <form> ) or ( [<filt>, ]<d>, <R>, <form> )
      return SymplecticGroupCons( filt, arg[1], arg[2], form );
    fi;
  elif Length( arg ) = 2 and IsPosInt( arg[1] )
                         and ( IsPosInt( arg[2] ) or IsRing( arg[2] ) ) then
    # ( [<filt>, ]<d>, <q> ) or ( [<filt>, ]<d>, <R> )
    return SymplecticGroupCons( filt, arg[1], arg[2] );
  fi;
  Error( "usage: SymplecticGroup( [<filt>, ]<d>, <q>[, <form>] )\n",
         "or SymplecticGroup( [<filt>, ]<d>, <R>[, <form>] )\n",
         "or SymplecticGroup( [<filt>, ]<form> )" );
end );

DeclareSynonym( "Sp", SymplecticGroup );
DeclareSynonym( "SP", SymplecticGroup );


#############################################################################
##
#O  OmegaCons( <filter>, <e>, <d>, <q> )  . . . . . . . . .  orthogonal group
##
##  <ManSection>
##  <Oper Name="OmegaCons" Arg='filter, d, e, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "OmegaCons", [ IsGroup, IsInt, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  Omega( [<filt>, ][<e>, ]<d>, <q>[, <form>] )
#O  Omega( [<filt>, ]<form> )
##
##  <#GAPDoc Label="Omega_orthogonal_groups">
##  <ManSection>
##  <Oper Name="Omega" Arg='[filt, ][e, ]d, q[, form]'
##   Label="construct an orthogonal group"/>
##  <Oper Name="Omega" Arg='[filt, ]form'
##   Label="construct an orthogonal group for a given quadratic form"/>
##
##  <Description>
##  constructs a group isomorphic to the
##  group <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ) of those
##  <M><A>d</A> \times <A>d</A></M> matrices over the field with <A>q</A>
##  elements that respect a non-singular quadratic form
##  (see&nbsp;<Ref Attr="InvariantQuadraticForm"/>) specified by <A>e</A>,
##  and that have square spinor norm in odd characteristic
##  or Dickson invariant <M>0</M> in even characteristic, respectively,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  For odd <A>q</A> and <M><A>d</A> \geq 2</M>, this group has always
##  index two in the corresponding special orthogonal group,
##  which will be conjugate in <M>GL(d,q)</M> to the group returned by
##  SO( <A>e</A>, <A>d</A>, <A>q</A> ),
##  see <Ref Func="SpecialOrthogonalGroup"/>,
##  but may fix a different form (see <Ref Sect="Classical Groups"/>).
##  <P/>
##  The value of <A>e</A> must be <M>0</M> for odd <A>d</A> (and can
##  optionally be omitted in this case), respectively one of <M>1</M> or
##  <M>-1</M> for even <A>d</A>.
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group is the group
##  <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ) itself.
##  <P/>
##  If version at least 1.2.6 of the <Package>Forms</Package> package is
##  loaded then the desired quadratic form can be specified via <A>form</A>,
##  which can be either a matrix
##  or a form object in <Ref Filt="IsQuadraticForm" BookName="Forms"/>
##  or a group with stored <Ref Attr="InvariantQuadraticForm"/> value
##  (and then this form is taken).
##  <P/>
##  A given <A>form</A> determines <A>e</A> and <A>d</A>, and also <A>q</A>
##  except if <A>form</A> is a matrix that does not store its
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value.
##  These parameters can be entered, and an error is signalled if they do
##  not fit to the given <A>form</A>.
##  <P/>
##  If <A>form</A> is not given then a default is chosen as described in the
##  introduction to Section <Ref Sect="Classical Groups"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> g:= Omega( 3, 5 );  StructureDescription( g );
##  Omega(0,3,5)
##  "A5"
##  gap> g:= Omega( 1, 4, 4 );  StructureDescription( g );
##  Omega(+1,4,4)
##  "A5 x A5"
##  gap> g:= Omega( -1, 4, 3 );  StructureDescription( g );
##  Omega(-1,4,3)
##  "A6"
##  gap> g:= Omega( IsPermGroup, 1, 6, 2 );  StructureDescription( g );
##  Perm_Omega(+1,6,2)
##  "A8"
##  gap> IsSubset( GO( 3, 5 ), Omega( 3, 5 ) );  # different forms!
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Omega", [ IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsInt, IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsFunction, IsPosInt, IsPosInt ] );
DeclareOperation( "Omega", [ IsFunction, IsInt, IsPosInt, IsPosInt ] );

DeclareOperation( "Omega", [ IsPosInt, IsRing ] );
DeclareOperation( "Omega", [ IsInt, IsPosInt, IsRing ] );
DeclareOperation( "Omega", [ IsFunction, IsPosInt, IsRing ] );
DeclareOperation( "Omega", [ IsFunction, IsInt, IsPosInt, IsRing ] );


#############################################################################
##
#O  GeneralSemilinearGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="GeneralSemilinearGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "GeneralSemilinearGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  GeneralSemilinearGroup( [<filt>, ]<d>, <q> )  .  general semilinear group
#F  GammaL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="GeneralSemilinearGroup">
##  <ManSection>
##  <Func Name="GeneralSemilinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="GammaL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  <Ref Func="GeneralSemilinearGroup"/> returns a group isomorphic to the
##  general semilinear group <M>\Gamma</M>L( <A>d</A>, <A>q</A> ) of
##  semilinear mappings of the vector space
##  <C>GF( </C><A>q</A><C> )^</C><A>d</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group consists of matrices of dimension
##  <A>d</A> <M>f</M> over the field with <M>p</M> elements,
##  where <A>q</A> <M>= p^f</M>, for a prime integer <M>p</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "GeneralSemilinearGroup", function( arg )
  if Length( arg ) = 2 then
    return GeneralSemilinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    return GeneralSemilinearGroupCons( arg[1], arg[2], arg[3] );
  fi;
  Error( "usage: GeneralSemilinearGroup( [<filter>, ]<d>, <q> )" );
end );

DeclareSynonym( "GammaL", GeneralSemilinearGroup );


#############################################################################
##
#O  SpecialSemilinearGroupCons( <filter>, <d>, <q> )
##
##  <ManSection>
##  <Oper Name="SpecialSemilinearGroupCons" Arg='filter, d, q'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareConstructor( "SpecialSemilinearGroupCons",
    [ IsGroup, IsPosInt, IsPosInt ] );


#############################################################################
##
#F  SpecialSemilinearGroup( [<filt>, ]<d>, <q> )  .  special semilinear group
#F  SigmaL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="SpecialSemilinearGroup">
##  <ManSection>
##  <Func Name="SpecialSemilinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="SigmaL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  <Ref Func="SpecialSemilinearGroup"/> returns a group isomorphic to the
##  special semilinear group <M>\Sigma</M>L( <A>d</A>, <A>q</A> ) of those
##  semilinear mappings of the vector space
##  <C>GF( </C><A>q</A><C> )^</C><A>d</A>
##  (see <Ref Func="GeneralSemilinearGroup"/>)
##  whose linear part has determinant one.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
##  and the returned group consists of matrices of dimension
##  <A>d</A> <M>f</M> over the field with <M>p</M> elements,
##  where <A>q</A> <M>= p^f</M>, for a prime integer <M>p</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "SpecialSemilinearGroup", function( arg )
  if Length( arg ) = 2 then
    return SpecialSemilinearGroupCons( IsMatrixGroup, arg[1], arg[2] );
  elif Length( arg ) = 3 and IsOperation( arg[1] ) then
    return SpecialSemilinearGroupCons( arg[1], arg[2], arg[3] );
  fi;
  Error( "usage: SpecialSemilinearGroup( [<filter>, ]<d>, <q> )" );
end );

DeclareSynonym( "SigmaL", SpecialSemilinearGroup );


#############################################################################
##
#F  DECLARE_PROJECTIVE_GROUPS_OPERATION( ... )
##
BindGlobal("DECLARE_PROJECTIVE_GROUPS_OPERATION",
  # (<name>,<abbreviation>,<fieldextdeg>,<sizefunc-or-fail>)
  function(nam,abbr,extdeg,szf)
local pnam,cons,opr;
  opr:=VALUE_GLOBAL(nam);
  pnam:=Concatenation("Projective",nam);
  cons:=NewConstructor(Concatenation(pnam,"Cons"),[IsGroup,IsInt,IsInt]);
  BindGlobal(Concatenation(pnam,"Cons"),cons);
  BindGlobal(pnam,function(arg)
    if Length(arg) = 2  then
      return cons( IsPermGroup, arg[1], arg[2] );
    elif IsOperation(arg[1]) then
      if Length(arg) = 3  then
        return cons( arg[1], arg[2], arg[3] );
      fi;
    fi;
    Error( "usage: ",pnam,"( [<filter>, ]<d>, <q> )" );
  end );
  DeclareSynonym(Concatenation("P",abbr),VALUE_GLOBAL(pnam));

  # install a method to get the permutation action on lines
  InstallMethod( cons,"action on lines",
      [ IsPermGroup, IsPosInt,IsPosInt ],
  function(fil,n,q)
  local g,f,p;
    g:=opr(IsMatrixGroup,n,q);
    f:=GF(q^extdeg);
    p:=ProjectiveActionOnFullSpace(g,f,n);
    if szf<>fail then
      SetSize(p,szf(n,q,g));
    fi;
    return p;
  end);

end);


#############################################################################
##
#F  ProjectiveGeneralLinearGroup( [<filt>, ]<d>, <q> )
#F  PGL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveGeneralLinearGroup">
##  <ManSection>
##  <Func Name="ProjectiveGeneralLinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PGL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective general linear group
##  PGL( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <A>q</A> elements, modulo the
##  centre, in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  <P/>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralLinearGroup","GL",1,
  # size function
  function(n,q,g)
    return Size(g)/(q-1);
  end);


#############################################################################
##
#F  ProjectiveSpecialLinearGroup( [<filt>, ]<d>, <q> )
#F  PSL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSpecialLinearGroup">
##  <ManSection>
##  <Func Name="ProjectiveSpecialLinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PSL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective special linear group
##  PSL( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <A>q</A> elements whose determinant is the
##  identity of the field, modulo the centre,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialLinearGroup","SL",1,
  # size function
  function(n,q,g)
    return Size(g)/Gcd(n,q-1);
  end);


#############################################################################
##
#F  ProjectiveGeneralUnitaryGroup( [<filt>, ]<d>, <q> )
#F  PGU( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveGeneralUnitaryGroup">
##  <ManSection>
##  <Func Name="ProjectiveGeneralUnitaryGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PGU" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective general unitary group
##  PGU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <M><A>q</A>^2</M> elements that respect
##  a fixed nondegenerate sesquilinear form,
##  modulo the centre, in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("GeneralUnitaryGroup","GU",2,
  # size function
  function(n,q,g)
    return Size(g)/(q+1);
  end);


#############################################################################
##
#F  ProjectiveSpecialUnitaryGroup( [<filt>, ]<d>, <q> )
#F  PSU( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSpecialUnitaryGroup">
##  <ManSection>
##  <Func Name="ProjectiveSpecialUnitaryGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PSU" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective special unitary group
##  PSU( <A>d</A>, <A>q</A> ) of those <M><A>d</A> \times <A>d</A></M>
##  matrices over the field with <M><A>q</A>^2</M> elements that respect
##  a fixed nondegenerate sesquilinear form and have determinant 1,
##  modulo the centre, in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SpecialUnitaryGroup","SU",2,
  # size function
  function(n,q,g)
    return Size(g)/Gcd(n,q+1);
  end);


#############################################################################
##
#F  ProjectiveSymplecticGroup( [<filt>, ]<d>, <q> )
#F  PSP( [<filt>, ]<d>, <q> )
#F  PSp( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSymplecticGroup">
##  <ManSection>
##  <Func Name="ProjectiveSymplecticGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PSP" Arg='[filt, ]d, q'/>
##  <Func Name="PSp" Arg='[filt, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective symplectic group
##  PSp(<A>d</A>,<A>q</A>) of those <M><A>d</A> \times <A>d</A></M> matrices
##  over the field with <A>q</A> elements that respect a fixed nondegenerate
##  symplectic form, modulo the centre,
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_GROUPS_OPERATION("SymplecticGroup","SP",1,
  # size function
  function(n,q,g)
    return Size(g)/Gcd(2,q-1);
  end);
DeclareSynonym( "PSp", PSP );


#############################################################################
##
#F  DECLARE_PROJECTIVE_ORTHOGONAL_GROUPS_OPERATION( ... )
##
BindGlobal("DECLARE_PROJECTIVE_ORTHOGONAL_GROUPS_OPERATION",
  # ( <name>, <abbreviation>, <sizefunc-or-fail> )
  function( nam, abbr, szf )
    local pnam,cons,opr;

    opr:= VALUE_GLOBAL( nam );
    pnam:= Concatenation( "Projective", nam );
    cons:= NewConstructor( Concatenation( pnam, "Cons" ),
                           [ IsGroup, IsInt, IsInt, IsInt ] );
    BindGlobal( Concatenation( pnam, "Cons" ), cons );
    BindGlobal( pnam, function( arg )
      if Length( arg ) = 2 then
        return cons( IsPermGroup, 0, arg[1], arg[2] );
      elif Length( arg ) = 3 and ForAll( arg, IsInt ) then
        return cons( IsPermGroup, arg[1], arg[2], arg[3] );
      elif IsOperation( arg[1] ) then
        if Length( arg ) = 3 then
          return cons( arg[1], 0, arg[2], arg[3] );
        elif Length( arg ) = 4 then
          return cons( arg[1], arg[2], arg[3], arg[4] );
        fi;
      fi;
      Error( "usage: ", pnam, "( [<filter>, ][<e>, ]<d>, <q> )" );
    end );

  DeclareSynonym( Concatenation( "P", abbr ), VALUE_GLOBAL( pnam ) );

  # Install a method to get the permutation action on lines.
  InstallMethod( cons, "action on lines",
    [ IsPermGroup, IsInt, IsPosInt, IsPosInt ],
    function( filter, e, n, q )
    local g, p;

    g:= opr( IsMatrixGroup, e, n, q );
    p:= ProjectiveActionOnFullSpace( g, GF( q ), n );
    if szf <> fail then
      SetSize( p, szf( e, n, q, g ) );
    fi;

    return p;
    end );
end );


#############################################################################
##
#F  ProjectiveGeneralOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> )
#F  PGO( [<filt>, ][<e>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveGeneralOrthogonalGroup">
##  <ManSection>
##  <Func Name="ProjectiveGeneralOrthogonalGroup" Arg='[filt, ][e, ]d, q'/>
##  <Func Name="PGO" Arg='[filt, ][e, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective group
##  PGO( <A>e</A>, <A>d</A>, <A>q</A> )
##  of GO( <A>e</A>, <A>d</A>, <A>q</A> ),
##  modulo the centre
##  (see <Ref Func="GeneralOrthogonalGroup"/>),
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_ORTHOGONAL_GROUPS_OPERATION( "GeneralOrthogonalGroup", "GO",
  function( e, n, q, g )
    if ( n mod 2 = 0 and ( q^(n/2) - e ) mod 2 = 0 ) or
       ( n mod 2 = 1 and ( q - 1 ) mod 2 = 0 ) then
      return Size( g ) / 2;
    else
      return Size( g );
    fi;
  end );


#############################################################################
##
#F  ProjectiveSpecialOrthogonalGroup( [<filt>, ][<e>, ]<d>, <q> )
#F  PSO( [<filt>, ][<e>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSpecialOrthogonalGroup">
##  <ManSection>
##  <Func Name="ProjectiveSpecialOrthogonalGroup" Arg='[filt, ][e, ]d, q'/>
##  <Func Name="PSO" Arg='[filt, ][e, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective group
##  PSO( <A>e</A>, <A>d</A>, <A>q</A> )
##  of SO( <A>e</A>, <A>d</A>, <A>q</A> ),
##  modulo the centre
##  (see <Ref Func="SpecialOrthogonalGroup"/>),
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_ORTHOGONAL_GROUPS_OPERATION( "SpecialOrthogonalGroup", "SO",
  function( e, n, q, g )
    if n mod 2 = 0 and ( q^(n/2) - e ) mod 2 = 0 then
      return Size( g ) / 2;
    else
      return Size( g );
    fi;
  end );


#############################################################################
##
#F  ProjectiveOmega( [<filt>, ][<e>, ]<d>, <q> )
#F  POmega( [<filt>, ][<e>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveOmega">
##  <ManSection>
##  <Func Name="ProjectiveOmega" Arg='[filt, ][e, ]d, q'/>
##  <Func Name="POmega" Arg='[filt, ][e, ]d, q'/>
##
##  <Description>
##  constructs a group isomorphic to the projective group
##  P<M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> )
##  of <M>\Omega</M>( <A>e</A>, <A>d</A>, <A>q</A> ),
##  modulo the centre
##  (see <Ref Oper="Omega" Label="construct an orthogonal group"/>),
##  in the category given by the filter <A>filt</A>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_ORTHOGONAL_GROUPS_OPERATION( "Omega", "Omega",
  function( e, n, q, g )
    if n mod 2 = 0 and ( q^(n/2) - e ) mod 4 = 0 then
      return Size( g ) / 2;
    else
      return Size( g );
    fi;
  end );


#############################################################################
##
#F  DECLARE_PROJECTIVE_SEMILINEAR_GROUPS_OPERATION( ... )
##
BindGlobal( "DECLARE_PROJECTIVE_SEMILINEAR_GROUPS_OPERATION",
  function( name, abbrname, lineargroup, sizefun )
  local opr, pname, consname, cons;

  opr:= VALUE_GLOBAL( name );
  pname:= Concatenation( "Projective", name );
  consname:= Concatenation( pname, "Cons" );
  DeclareConstructor( consname, [ IsGroup, IsInt, IsInt ] );
  cons:= ValueGlobal( consname );

  BindGlobal( pname, function( arg )
    if Length( arg ) = 2 then
      return cons( IsPermGroup, arg[1], arg[2] );
    elif IsOperation( arg[1] ) then
      if Length( arg ) = 3 then
        return cons( arg[1], arg[2], arg[3] );
      fi;
    fi;
    Error( "usage: ", pname, "( [<filter>, ]<d>, <q> )" );
  end );

  DeclareSynonym( Concatenation( "P", abbrname ), VALUE_GLOBAL( pname ) );

  # Install a method to get the permutation action on lines.
  InstallMethod( cons,
      "action on lines",
      [ IsPermGroup, IsPosInt, IsPosInt ],
      function( filt, n, q )
      local lin, facts, d, p, F, points, gens, indices, g;

      lin:= lineargroup( IsMatrixGroup, n, q );
      facts:= Factors( Integers, q );
      d:= Length( facts );
      p:= facts[1];

      if n = 1 then
        return CyclicGroup( filt, d );
      fi;

      F:= GF( q );
      points:= Set( NormedRowVectors( F^n ), v -> ImmutableVector( F, v ) );
      gens:= List( GeneratorsOfGroup( lin ),
                   mat -> Permutation( mat, points, OnLines ) );

      # Apply the field automorphism to the normed vectors.
      if d > 1 then
        Apply( points, v -> ImmutableVector( F, List( v, x -> x^p ) ) );
        indices:= [ 1 .. Length( points ) ];
        SortParallel( points, indices );
        Add( gens, PermList( indices ) );
      fi;

      g:= GroupWithGenerators( gens );
      SetSize( g, sizefun( n, q, d, lin ) );

      return g;
  end );
end );


#############################################################################
##
#F  ProjectiveGeneralSemilinearGroup( [<filt>, ]<d>, <q> )
#F  PGammaL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveGeneralSemilinearGroup">
##  <ManSection>
##  <Func Name="ProjectiveGeneralSemilinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PGammaL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  <Ref Func="ProjectiveGeneralSemilinearGroup"/> returns a group
##  isomorphic to the factor group of the general semilinear group
##  <C>GammaL(</C> <A>d</A>, <A>q</A> <C>)</C> modulo the center of its
##  normal subgroup <C>GL(</C> <A>d</A>, <A>q</A> <C>)</C>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space <C>GF(</C><A>q</A><C>)^</C><A>d</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_SEMILINEAR_GROUPS_OPERATION( "GeneralSemilinearGroup",
    "GammaL", GL, { n, q, d, lin } -> d * Size( lin ) / (q-1) );


#############################################################################
##
#F  ProjectiveSpecialSemilinearGroup( [<filt>, ]<d>, <q> )
#F  PSigmaL( [<filt>, ]<d>, <q> )
##
##  <#GAPDoc Label="ProjectiveSpecialSemilinearGroup">
##  <ManSection>
##  <Func Name="ProjectiveSpecialSemilinearGroup" Arg='[filt, ]d, q'/>
##  <Func Name="PSigmaL" Arg='[filt, ]d, q'/>
##
##  <Description>
##  <Ref Func="ProjectiveSpecialSemilinearGroup"/> returns a group
##  isomorphic to the factor group of the special semilinear group
##  <C>SigmaL(</C> <A>d</A>, <A>q</A> <C>)</C> modulo the center of its
##  normal subgroup <C>SL(</C> <A>d</A>, <A>q</A> <C>)</C>.
##  <P/>
##  If <A>filt</A> is not given it defaults to <Ref Filt="IsPermGroup"/>,
##  and the returned group is the action on lines of the underlying vector
##  space <C>GF(</C><A>q</A><C>)^</C><A>d</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DECLARE_PROJECTIVE_SEMILINEAR_GROUPS_OPERATION( "SpecialSemilinearGroup",
    "SigmaL", SL, { n, q, d, lin } -> d * Size( lin ) / Gcd( n, q-1 ) );