1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Thomas Breuer.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file declares the operations for additive cosets.
##
#############################################################################
##
#C IsAdditiveCoset( <D> )
##
## An additive coset is an external additive set whose additively acting
## domain is an additive group.
## The additive coset and its additively acting domain lie in the same
## family.
##
## Note that additive cosets for non-commutative addition are not supported.
##
DeclareCategory( "IsAdditiveCoset",
IsExtASet and IsAssociativeAOpESum and IsTrivialAOpEZero );
#############################################################################
##
#O AdditiveCoset( <A>, <a> )
##
DeclareOperation( "AdditiveCoset", [ IsAdditiveGroup, IsAdditiveElement ] );
|