File: adjoin.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (63 lines) | stat: -rw-r--r-- 2,376 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Steve Linton.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the declarations for functions pertaining to
##  adjoining an identity element to a semigroup.
##


DeclareCategory("IsMonoidByAdjoiningIdentityElt", IsMultiplicativeElementWithOne and IsAssociativeElement);
DeclareCategory("IsMonoidByAdjoiningIdentity", IsMonoid);

DeclareAttribute("AdjoinedIdentityFamily", IsFamily);
DeclareAttribute("UnderlyingSemigroupFamily", IsFamily);
DeclareAttribute("AdjoinedIdentityDefaultType", IsFamily);

DeclareRepresentation("IsMonoidByAdjoiningIdentityEltRep", IsPositionalObjectRep, 1);

###########################################################################
##
#A  MonoidByAdjoiningIdentity( <semigroup> )
##
##  this attribute stores the monoid obtained from <semigroup> by adjoining
##  an identity. Even if <semigroup> happens to be a monoid, the resultant
##  monoid has a new identity adjoined.
##

DeclareAttribute("MonoidByAdjoiningIdentity", IsSemigroup);

###########################################################################
##
#A  UnderlyingSemigroupOfMonoidByAdjoiningIdentity( <monoid> )
##
##  this attribute stores the original semigroup that <monoid> was made from.
##

DeclareAttribute("UnderlyingSemigroupOfMonoidByAdjoiningIdentity", IsMonoidByAdjoiningIdentity );

###########################################################################
##
#A  MonoidByAdjoiningIdentityElt( <elt> )
##
##  the result of this function is the corresponding element in the category
##  MonoidByAdjoiningIdentityElt with IsOne set to false.
##

DeclareAttribute("MonoidByAdjoiningIdentityElt", IsMultiplicativeElement and IsAssociativeElement);

###########################################################################
##
#A  UnderlyingSemigroupOfMonoidByAdjoiningIdentity( <monoidelt> )
##
##  this attribute stores the original semigroup element that <monoidelt>
##  was made from.
##

DeclareAttribute("UnderlyingSemigroupElementOfMonoidByAdjoiningIdentityElt", IsMonoidByAdjoiningIdentityElt);