1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Alexander Hulpke.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file contains the categories, attributes, properties and operations
## for algebraic extensions of fields and their elements
#############################################################################
##
#C IsAlgebraicElement(<obj>)
##
## <#GAPDoc Label="IsAlgebraicElement">
## <ManSection>
## <Filt Name="IsAlgebraicElement" Arg='obj' Type='Category'/>
##
## <Description>
## is the category for elements of an algebraic extension.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAlgebraicElement", IsScalar and IsZDFRE and
IsAssociativeElement and IsAdditivelyCommutativeElement
and IsCommutativeElement);
DeclareCategoryCollections( "IsAlgebraicElement");
DeclareCategoryCollections( "IsAlgebraicElementCollection");
DeclareCategoryCollections( "IsAlgebraicElementCollColl");
#############################################################################
##
#C IsAlgebraicElementFamily Category for Families of Algebraic Elements
##
## <ManSection>
## <Filt Name="IsAlgebraicElementFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsAlgebraicElement" );
#############################################################################
##
#C IsAlgebraicExtension(<obj>)
##
## <#GAPDoc Label="IsAlgebraicExtension">
## <ManSection>
## <Filt Name="IsAlgebraicExtension" Arg='obj' Type='Category'/>
##
## <Description>
## is the category of algebraic extensions of fields.
## <Example><![CDATA[
## gap> IsAlgebraicExtension(e);
## true
## gap> IsAlgebraicExtension(Rationals);
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAlgebraicExtension", IsField );
#############################################################################
##
#A AlgebraicElementsFamilies List of AlgElm. families to one poly over
##
## <ManSection>
## <Attr Name="AlgebraicElementsFamilies" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "AlgebraicElementsFamilies",
IsUnivariatePolynomial, "mutable" );
#############################################################################
##
#O AlgebraicElementsFamily Create Family of alg elms
##
## <ManSection>
## <Oper Name="AlgebraicElementsFamily" Arg='obj'/>
##
## <Description>
## Arguments: base field, polynomial, check
## If check is true, then the irreducibility of the polynomial in
## polynomial ring over base field is checked.
## </Description>
## </ManSection>
##
DeclareOperation( "AlgebraicElementsFamily",
[IsField,IsUnivariatePolynomial,IsBool]);
#############################################################################
##
#O AlgebraicExtension(<K>,<f>)
##
## <#GAPDoc Label="AlgebraicExtension">
## <ManSection>
## <Oper Name="AlgebraicExtension" Arg='K,f[,nam]'/>
## <Oper Name="AlgebraicExtensionNC" Arg='K,f[,nam]'/>
##
## <Description>
## constructs an extension <A>L</A> of the field <A>K</A> by one root of the
## irreducible polynomial <A>f</A>, using Kronecker's construction.
## <A>L</A> is a field whose <Ref Attr="LeftActingDomain"/> value is
## <A>K</A>.
## The polynomial <A>f</A> is the <Ref Attr="DefiningPolynomial"/> value
## of <A>L</A> and the attribute
## <Ref Attr="RootOfDefiningPolynomial"/>
## of <A>L</A> holds a root of <A>f</A> in <A>L</A>.
## By default this root is printed as <C>a</C>, this string can be
## overwritten with the optional argument <A>nam</A>. <P/>
##
## The first version of the command checks that the polynomial <A>f</A>
## is an irreducible polynomial over <A>K</A>. This check is skipped with
## the <C>NC</C> variant.
## <Example><![CDATA[
## gap> x:=Indeterminate(Rationals,"x");;
## gap> p:=x^4+3*x^2+1;;
## gap> e:=AlgebraicExtension(Rationals,p);
## <algebraic extension over the Rationals of degree 4>
## gap> IsField(e);
## true
## gap> a:=RootOfDefiningPolynomial(e);
## a
## gap> l := AlgebraicExtensionNC(Rationals, x^24+3*x^2+1, "alpha");;
## gap> RootOfDefiningPolynomial(l)^50;
## 9*alpha^6+6*alpha^4+alpha^2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AlgebraicExtension",
[IsField,IsUnivariatePolynomial]);
DeclareOperation( "AlgebraicExtensionNC",
[IsField,IsUnivariatePolynomial]);
#############################################################################
##
#F MaxNumeratorCoeffAlgElm(<a>)
##
## <ManSection>
## <Func Name="MaxNumeratorCoeffAlgElm" Arg='a'/>
##
## <Description>
## maximal (absolute value, in numerator)
## coefficient in the representation of algebraic elm. <A>a</A>
## </Description>
## </ManSection>
##
DeclareOperation("MaxNumeratorCoeffAlgElm",[IsScalar]);
#############################################################################
##
#F AlgExtEmbeddedPol(<ext>,<pol>)
##
## <ManSection>
## <Func Name="AlgExtEmbeddedPol" Arg='ext,pol'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("AlgExtEmbeddedPol");
DeclareGlobalFunction("AlgExtSquareHensel");
#############################################################################
##
#F IdealDecompositionsOfPolynomial( <f> [:"onlyone"] ) finds ideal decompositions of rational f
##
## <#GAPDoc Label="IdealDecompositionsOfPolynomial">
## <ManSection>
## <Func Name="IdealDecompositionsOfPolynomial" Arg='pol'/>
##
## <Description>
## Let <M>f</M> be a univariate, rational, irreducible, polynomial. A
## pair <M>g</M>,<M>h</M> of polynomials of degree strictly
## smaller than that of <M>f</M>, such that <M>f(x)|g(h(x))</M> is
## called an ideal decomposition. In the context of field
## extensions, if <M>\alpha</M> is a root of <M>f</M> in a suitable extension
## and <M>Q</M> the field of rational numbers. Such decompositions correspond
## to (proper) subfields <M>Q < Q(\beta) < Q(\alpha)</M>,
## where <M>g</M> is the minimal polynomial of <M>\beta</M>.
## This function determines such decompositions up to equality of the subfields
## <M>Q(\beta)</M>, thus determining subfields of a given algebraic extension.
## It returns a list of pairs <M>[g,h]</M> (and an empty list if no such
## decomposition exists). If the option <A>onlyone</A> is given it returns at
## most one such decomposition (and performs faster).
## <Example><![CDATA[
## gap> x:=X(Rationals,"x");;pol:=x^8-24*x^6+144*x^4-288*x^2+144;;
## gap> l:=IdealDecompositionsOfPolynomial(pol);
## [ [ x^2+72*x+144, x^6-20*x^4+60*x^2-36 ],
## [ x^2-48*x+144, x^6-21*x^4+84*x^2-48 ],
## [ x^2+288*x+17280, x^6-24*x^4+132*x^2-288 ],
## [ x^4-24*x^3+144*x^2-288*x+144, x^2 ] ]
## gap> List(l,x->Value(x[1],x[2])/pol);
## [ x^4-16*x^2-8, x^4-18*x^2+33, x^4-24*x^2+120, 1 ]
## gap> IdealDecompositionsOfPolynomial(pol:onlyone);
## [ [ x^2+72*x+144, x^6-20*x^4+60*x^2-36 ] ]
## ]]></Example>
## In this example the given polynomial is regular with Galois group
## <M>Q_8</M>, as expected we get four proper subfields.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IdealDecompositionsOfPolynomial");
DeclareSynonym("DecomPoly",IdealDecompositionsOfPolynomial);
|