File: algsc.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1152 lines) | stat: -rw-r--r-- 37,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains methods for elements of algebras given by structure
##  constants (s.~c.).
##
##  The family of s.~c. algebra elements has the following components.
##
##  `sctable' :
##        the structure constants table,
##  `names' :
##        list of names of the basis vectors (for printing only),
##  `zerocoeff' :
##        the zero coefficient (needed already for the s.~c. table),
##  `defaultTypeDenseCoeffVectorRep' :
##        the type of s.~c. algebra elements that are represented by
##        a dense list of coefficients.
##
##  If the family has *not* the category `IsFamilyOverFullCoefficientsFamily'
##  then it has the component `coefficientsDomain'.
##


#T need for the norm of a quaternion?
#T (note: returns an element in the coefficients domain, not in the algebra!
#T f( a b[1] + b b[2] + c b[3] + d b[4] ) = a^2 +b^2 +c^2 + d^2.)
#T
#T     NormQuat := function( quat )
#T         if not IsQuaternion( quat ) then
#T           Error( "<quat> must be a quaternion" );
#T         fi;
#T         return Sum( List( ExtRepOfObj( quat ), c -> c^2 ) );
#T     end;

#############################################################################
##
#M  IsWholeFamily( <V> )  . . . . . . . for s.~c. algebra elements collection
##
InstallMethod( IsWholeFamily,
    "for s. c. algebra elements collection",
    [ IsSCAlgebraObjCollection and IsLeftModule and IsFreeLeftModule ],
    function( V )
    local Fam;
    Fam:= ElementsFamily( FamilyObj( V ) );
    if IsFamilyOverFullCoefficientsFamily( Fam ) then
      return     IsWholeFamily( LeftActingDomain( V ) )
             and IsFullSCAlgebra( V );
    else
      return     LeftActingDomain( V ) = Fam!.coefficientsDomain
             and IsFullSCAlgebra( V );
    fi;
    end );


#############################################################################
##
#M  IsFullSCAlgebra( <V> )  . . . . . . for s.~c. algebra elements collection
##
InstallMethod( IsFullSCAlgebra,
    "for s. c. algebra elements collection",
    [ IsSCAlgebraObjCollection and IsAlgebra ],
    V -> Dimension(V) = Length( ElementsFamily( FamilyObj( V ) )!.names ) );


#############################################################################
##
#R  IsDenseCoeffVectorRep( <obj> )
##
##  This representation uses a coefficients vector
##  w.r.t. the basis that is known for the whole family.
##
##  The external representation is the coefficients vector,
##  which is stored at position 1 in the object.
##
if IsHPCGAP then
DeclareRepresentation( "IsDenseCoeffVectorRep",
    IsAtomicPositionalObjectRep, [ 1 ] );
else
DeclareRepresentation( "IsDenseCoeffVectorRep",
    IsPositionalObjectRep, [ 1 ] );
fi;


#############################################################################
##
#M  ObjByExtRep( <Fam>, <descr> ) . . . . . . . .  for s.~c. algebra elements
##
##  Check whether the coefficients list <coeffs> has the right length,
##  and lies in the correct family.
##  If the coefficients family of <Fam> has a uniquely determined zero
##  element, we need to check only whether the family of <descr> is the
##  collections family of the coefficients family of <Fam>.
##
InstallMethod( ObjByExtRep,
    "for s. c. algebra elements family",
    [ IsSCAlgebraObjFamily, IsHomogeneousList ],
    function( Fam, coeffs )
    if    IsFamilyOverFullCoefficientsFamily( Fam )
       or not IsBound( Fam!.coefficientsDomain ) then
      TryNextMethod();
    elif Length( coeffs ) <> Length( Fam!.names ) then
      Error( "<coeffs> must be a list of length ", Length( Fam!.names ) );
    elif not ForAll( coeffs, c -> c in Fam!.coefficientsDomain ) then
      Error( "all in <coeffs> must lie in `<Fam>!.coefficientsDomain'" );
    fi;
    return Objectify( Fam!.defaultTypeDenseCoeffVectorRep,
                      [ Immutable( coeffs ) ] );
    end );

InstallMethod( ObjByExtRep,
    "for s. c. alg. elms. family with coefficients family",
    [ IsSCAlgebraObjFamily and IsFamilyOverFullCoefficientsFamily,
      IsHomogeneousList ],
    function( Fam, coeffs )
    if not IsIdenticalObj( CoefficientsFamily( Fam ),
                        ElementsFamily( FamilyObj( coeffs ) ) ) then
      Error( "family of <coeffs> does not fit to <Fam>" );
    elif Length( coeffs ) <> Length( Fam!.names ) then
      Error( "<coeffs> must be a list of length ", Length( Fam!.names ) );
    fi;
    return Objectify( Fam!.defaultTypeDenseCoeffVectorRep,
                      [ Immutable( coeffs ) ] );
    end );


#############################################################################
##
#M  ExtRepOfObj( <elm> )  . . . . . . . . . . . .  for s.~c. algebra elements
##
InstallMethod( ExtRepOfObj,
    "for s. c. algebra element in dense coeff. vector rep.",
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    elm -> elm![1] );


#############################################################################
##
#M  Print( <elm> )  . . . . . . . . . . . . . . .  for s.~c. algebra elements
##
InstallMethod( PrintObj,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( elm )

    local F,      # family of `elm'
          names,  # generators names
          len,    # dimension of the algebra
          zero,   # zero element of the ring
          depth,  # first nonzero position in coefficients list
          one,    # identity element of the ring
          i;      # loop over the coefficients list

    F     := FamilyObj( elm );
    names := F!.names;
    elm   := ExtRepOfObj( elm );
    len   := Length( elm );

    # Treat the case that the algebra is trivial.
    if len = 0 then
      Print( "<zero of trivial s.c. algebra>" );
      return;
    fi;

    depth := PositionNonZero( elm );

    if len < depth then

      # Print the zero element.
      # (Note that the unique element of a zero algebra has a name.)
      Print( "0*", names[1] );

    else

      one:= One(  elm[1] );
      zero:= Zero( elm[1] );

      if elm[ depth ] <> one then
        Print( "(", elm[ depth ], ")*" );
      fi;
      Print( names[ depth ] );

      for i in [ depth+1 .. len ] do
        if elm[i] <> zero then
          Print( "+" );
          if elm[i] <> one then
            Print( "(", elm[i], ")*" );
          fi;
          Print( names[i] );
        fi;
      od;

    fi;
    end );

#############################################################################
##
#M  String( <elm> )  . . . . . . . . . . . . . . .  for s.~c. algebra elements
##
InstallMethod( String,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( elm )

    local F,      # family of `elm'
          s,      # string
          names,  # generators names
          len,    # dimension of the algebra
          zero,   # zero element of the ring
          depth,  # first nonzero position in coefficients list
          one,    # identity element of the ring
          i;      # loop over the coefficients list

    F     := FamilyObj( elm );
    names := F!.names;
    elm   := ExtRepOfObj( elm );
    len   := Length( elm );

    # Treat the case that the algebra is trivial.
    if len = 0 then
      return "<zero of trivial s.c. algebra>";
    fi;

    depth := PositionNonZero( elm );

    s:="";
    if len < depth then

      # Print the zero element.
      # (Note that the unique element of a zero algebra has a name.)
      Append(s, "0*");
      Append(s,names[1]);

    else

      one:= One(  elm[1] );
      zero:= Zero( elm[1] );

      if elm[ depth ] <> one then
        Add(s,'(');
        Append(s,String(elm[ depth ]));
        Append(s, ")*" );
      fi;
      Append(s, names[ depth ] );

      for i in [ depth+1 .. len ] do
        if elm[i] <> zero then
          Add(s, '+' );
          if elm[i] <> one then
            Add(s,'(');
            Append(s,String(elm[ i ]));
            Append(s, ")*" );
          fi;
          Append(s, names[ i ] );
        fi;
      od;

    fi;
    return s;
    end );


#############################################################################
##
#M  One( <Fam> )
##
##  Compute the identity (if exists) from the s.~c. table.
##
InstallMethod( One,
    "for family of s. c. algebra elements",
    [ IsSCAlgebraObjFamily ],
    function( F )
    local one;
    one:= IdentityFromSCTable( F!.sctable );
    if one <> fail then
      one:= ObjByExtRep( F, one );
    fi;
    return one;
    end );


#############################################################################
##
#M  \=( <x>, <y> )  . . . . . . . . . . equality of two s.~c. algebra objects
#M  \<( <x>, <y> )  . . . . . . . . . comparison of two s.~c. algebra objects
#M  \+( <x>, <y> )  . . . . . . . . . . . .  sum of two s.~c. algebra objects
#M  \-( <x>, <y> )  . . . . . . . . . difference of two s.~c. algebra objects
#M  \*( <x>, <y> )  . . . . . . . . . .  product of two s.~c. algebra objects
#M  Zero( <x> ) . . . . . . . . . . . . . .  zero of an s.~c. algebra element
#M  AdditiveInverse( <x> )  . .  additive inverse of an s.~c. algebra element
#M  Inverse( <x> )  . . . . . . . . . . . inverse of an s.~c. algebra element
##
InstallMethod( \=,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y ) return ExtRepOfObj( x ) = ExtRepOfObj( y ); end );

InstallMethod( \=,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y ) return x![1] = y![1]; end );

InstallMethod( \<,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y ) return ExtRepOfObj( x ) < ExtRepOfObj( y ); end );

InstallMethod( \<,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ], 0,
    function( x, y ) return x![1] < y![1]; end );

InstallMethod( \+,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj(x), ExtRepOfObj(x) + ExtRepOfObj(y) );
    end );

InstallMethod( \+,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] + y![1] );
    end );

InstallMethod( \-,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj(x), ExtRepOfObj(x) - ExtRepOfObj(y) );
    end );

InstallMethod( \-,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] - y![1] );
    end );

InstallMethod( \*,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y )
    local F;
    F:= FamilyObj( x );
    return ObjByExtRep( F, SCTableProduct( F!.sctable,
                        ExtRepOfObj( x ), ExtRepOfObj( y ) ) );
    end );

InstallMethod( \*,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    local F;
    F:= FamilyObj( x );
    return ObjByExtRep( F, SCTableProduct( F!.sctable, x![1], y![1] ) );
    end );

InstallMethod( \*,
    "for ring element and s. c. algebra element",
    IsCoeffsElms,
    [ IsRingElement, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * ExtRepOfObj( y ) );
    end );

InstallMethod( \*,
    "for ring element and s. c. algebra element in dense vector rep.",
    IsCoeffsElms,
    [ IsRingElement, IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * y![1] );
    end );

InstallMethod( \*,
    "for s. c. algebra element and ring element",
    IsElmsCoeffs,
    [ IsSCAlgebraObj, IsRingElement ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) * y );
    end );

InstallMethod( \*,
    "for s. c. algebra element in dense vector rep. and ring element",
    IsElmsCoeffs,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsRingElement ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] * y );
    end );

InstallMethod( \*,
    "for integer and s. c. algebra element",
    [ IsInt, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * ExtRepOfObj( y ) );
    end );

InstallMethod( \*,
    "for integer and s. c. algebra element in dense vector rep.",
    [ IsInt, IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * y![1] );
    end );

InstallMethod( \*,
    "for s. c. algebra element and integer",
    [ IsSCAlgebraObj, IsInt ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) * y );
    end );

InstallMethod( \*,
    "for s. c. algebra element in dense vector rep. and integer",
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsInt ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] * y );
    end );

InstallMethod( \/,
    "for s. c. algebra element and scalar",
    IsElmsCoeffs,
    [ IsSCAlgebraObj, IsScalar ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) / y );
    end );

InstallMethod( \/,
    "for s. c. algebra element in dense vector rep. and scalar",
    IsElmsCoeffs,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsScalar ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] / y );
    end );

InstallMethod( ZeroOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    x -> ObjByExtRep( FamilyObj( x ), Zero( ExtRepOfObj( x ) ) ) );

InstallMethod( AdditiveInverseOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    x -> ObjByExtRep( FamilyObj( x ),
                      AdditiveInverse( ExtRepOfObj( x ) ) ) );

InstallOtherMethod( OneOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( x )
    local F, one;
    F:= FamilyObj( x );
    one:= IdentityFromSCTable( F!.sctable );
    if one <> fail then
      one:= ObjByExtRep( F, one );
    fi;
    return one;
    end );

InstallOtherMethod( InverseOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( x )
    local one, F;
    one:= One( x );
    if one <> fail then
      F:= FamilyObj( x );
      one:= QuotientFromSCTable( F!.sctable, ExtRepOfObj( one ),
                                             ExtRepOfObj( x ) );
      if one <> fail then
        one:= ObjByExtRep( F, one );
      fi;
    fi;
    return one;
    end );


#############################################################################
##
#M  \in( <a>, <A> )
##
InstallMethod( \in,
    "for s. c. algebra element, and full s. c. algebra",
    IsElmsColls,
    [ IsSCAlgebraObj, IsFullSCAlgebra ],
    function( a, A )
    return IsSubset( LeftActingDomain( A ), ExtRepOfObj( a ) );
    end );


#############################################################################
##
#F  AlgebraByStructureConstants( <R>, <sctable> )
#F  AlgebraByStructureConstants( <R>, <sctable>, <name> )
#F  AlgebraByStructureConstants( <R>, <sctable>, <names> )
#F  AlgebraByStructureConstants( <R>, <sctable>, <name1>, <name2>, ... )
##
##  is an algebra $A$ over the ring <R>, defined by the structure constants
##  table <sctable> of length $n$.
##
##  The generators of $A$ are linearly independent abstract space generators
##  $x_1, x_2, \ldots, x_n$ which are multiplied according to the formula
##  $ x_i x_j = \sum_{k=1}^n c_{ijk} x_k$
##  where `$c_{ijk}$ = <sctable>[i][j][1][i_k]'
##  and `<sctable>[i][j][2][i_k] = k'.
##
BindGlobal( "AlgebraByStructureConstantsArg",
    function( arglist, filter, one_coeffs... )
    local T,      # structure constants table
          n,      # dimensions of structure matrices
          R,      # coefficients ring
          zero,   # zero of `R'
          names,  # names of the algebra generators
          Fam,    # the family of algebra elements
          A,      # the algebra, result
          gens,   # algebra generators of `A'
          one;    # multiplicative identity, if available

    # Check the argument list.
    if not 1 < Length( arglist ) and IsRing( arglist[1] )
                                 and IsList( arglist[2] ) then
      Error( "usage: AlgebraByStructureConstantsArg([<R>,<sctable>]) or \n",
             "AlgebraByStructureConstantsArg([<R>,<sctable>,<name1>,...])" );
    fi;

    # Check the s.~c. table.
#T really do this?
    R    := arglist[1];
    zero := Zero( R );
    T    := arglist[2];

    if zero = Last(T) then
      T:= Immutable( T );
    else
      if Last(T) = 0 then
        T:= ReducedSCTable( T, One( zero ) );
      else
        Error( "<R> and <T> are not compatible" );
      fi;
    fi;

    if Length( T ) = 2 then
      n:= 0;
    else
      n:= Length( T[1] );
    fi;

    # Construct names of generators (used for printing only).
    if   Length( arglist ) = 2 then
      names:= List( [ 1 .. n ],
                    x -> Concatenation( "v.", String(x) ) );
      MakeImmutable( names );
    elif Length( arglist ) = 3 and IsString( arglist[3] ) then
      names:= List( [ 1 .. n ],
                    x -> Concatenation( arglist[3], String(x) ) );
      MakeImmutable( names );
    elif Length( arglist ) = 3 and IsHomogeneousList( arglist[3] )
                               and Length( arglist[3] ) = n
                               and ForAll( arglist[3], IsString ) then
      names:= Immutable( arglist[3] );
    elif Length( arglist ) = 2 + n then
      names:= Immutable( arglist{ [ 3 .. Length( arglist ) ] } );
    else
      Error( "usage: AlgebraByStructureConstantsArg([<R>,<sctable>]) or \n",
             "AlgebraByStructureConstantsArg([<R>,<sctable>,<name1>,...])" );
    fi;

    # If the coefficients know to be additively commutative then
    # also the s.c. algebra will know this.
    if IsAdditivelyCommutativeElementFamily( FamilyObj( zero ) ) then
      filter:= filter and IsAdditivelyCommutativeElement;
    fi;

    # Construct the family of elements of our algebra.
    # If the elements family of `R' has a uniquely determined zero element,
    # then all coefficients in this family are admissible.
    # Otherwise only coefficients from `R' itself are allowed.
    Fam:= NewFamily( "SCAlgebraObjFamily", filter );
    if Zero( ElementsFamily( FamilyObj( R ) ) ) <> fail then
      SetFilterObj( Fam, IsFamilyOverFullCoefficientsFamily );
    else
      Fam!.coefficientsDomain:= R;
    fi;

    Fam!.sctable   := T;
    Fam!.names     := names;
    Fam!.zerocoeff := zero;

    # Construct the default type of the family.
    Fam!.defaultTypeDenseCoeffVectorRep :=
        NewType( Fam, IsSCAlgebraObj and IsDenseCoeffVectorRep );

    SetCharacteristic( Fam, Characteristic( R ) );
    SetCoefficientsFamily( Fam, ElementsFamily( FamilyObj( R ) ) );

    # Make the generators and the algebra.
    if 0 < n then
      SetZero( Fam, ObjByExtRep( Fam, List( [ 1 .. n ], x -> zero ) ) );
      gens:= Immutable( List( IdentityMat( n, R ),
                              x -> ObjByExtRep( Fam, x ) ) );
      A:= FLMLORByGenerators( R, gens );
      UseBasis( A, gens );
    else
      SetZero( Fam, ObjByExtRep( Fam, EmptyRowVector( FamilyObj(zero) ) ) );
      gens:= Immutable( [] );
      A:= FLMLORByGenerators( R, gens, Zero( Fam ) );
      SetIsTrivial( A, true );
      SetDimension( A, 0 );
    fi;
    if Length( one_coeffs ) = 1 then
      # We want to construct an algebra-with_one.
      one:= ObjByExtRep( Fam, one_coeffs[1] );
      SetOne( Fam, one );
      SetOne( A, one );
      SetFilterObj( A, IsMagmaWithOne );
      SetGeneratorsOfAlgebraWithOne( A, gens );
    fi;
    Fam!.basisVectors:= gens;
#T where is this needed?

    # Store the algebra in the family of the elements,
    # for accessing the full algebra, e.g., in `DefaultFieldOfMatrixGroup'.
    Fam!.fullSCAlgebra:= A;

    SetIsFullSCAlgebra( A, true );

    # Return the algebra.
    return A;
end );

InstallGlobalFunction( AlgebraByStructureConstants, function( arg )
    return AlgebraByStructureConstantsArg( arg, IsSCAlgebraObj );
end );

InstallGlobalFunction( AlgebraWithOneByStructureConstants, function( arg )
    local onecoeffs;
    onecoeffs := Remove(arg);
    return AlgebraByStructureConstantsArg( arg, IsSCAlgebraObj, onecoeffs );
end );

InstallGlobalFunction( LieAlgebraByStructureConstants, function( arg )
    local A;
    A:= AlgebraByStructureConstantsArg( arg, IsSCAlgebraObj and IsJacobianElement );
    SetIsLieAlgebra( A, true );
    return A;
end );

InstallGlobalFunction( RestrictedLieAlgebraByStructureConstants, function( arg )
    local A, fam, pmap, i, j, v;
    A := AlgebraByStructureConstantsArg( arg{[1..Length(arg)-1]}, IsSCAlgebraObj and IsRestrictedJacobianElement );
    SetIsLieAlgebra( A, true );
    SetIsRestrictedLieAlgebra( A, true );
    fam := FamilyObj(Representative(A));
    fam!.pMapping := [];
    pmap := Last(arg);
    while Length(pmap)<>Dimension(A) do
        Error("Pth power images list should have length ",Dimension(A));
    od;
    for i in [1..Length(pmap)] do
        v := List(pmap,i->fam!.zerocoeff);
        for j in [2,4..Length(pmap[i])] do
            v[pmap[i][j]] := One(v[1])*pmap[i][j-1];
        od;
        v := ObjByExtRep(fam,v);
#        while AdjointMatrix(Basis(A),A.(i))^Characteristic(A)<>AdjointMatrix(Basis(A),v) do
#            Error("p-mapping at position ",i," doesn't satisfy the axioms of a restricted Lie algebra");
#        od;
        Add(fam!.pMapping,v);
    od;
    SetPthPowerImages(Basis(A),fam!.pMapping);
    return A;
end );

#############################################################################
##
#M  \.( <A>, <n> )  . . . . . . . access to generators of a full s.c. algebra
##
InstallAccessToGenerators( IsSCAlgebraObjCollection and IsFullSCAlgebra,
    "s.c. algebra containing the whole family",
    GeneratorsOfAlgebra );


#############################################################################
##
#F  QuaternionAlgebra( <F>[, <a>, <b>] )
##
InstallGlobalFunction( QuaternionAlgebra, function( arg )
    local F, a, b, e, z, stored, filter, A;

    if   Length( arg ) = 1 and IsRing( arg[1] ) then
      F:= arg[1];
      a:= AdditiveInverse( One( F ) );
      b:= a;
    elif Length( arg ) = 1 and IsCollection( arg[1] ) then
      F:= Field( arg[1] );
      a:= AdditiveInverse( One( F ) );
      b:= a;
    elif Length( arg ) = 3 and IsRing( arg[1] ) then
      F:= arg[1];
      a:= arg[2];
      b:= arg[3];
    elif Length( arg ) = 3 and IsCollection( arg[1] ) then
      F:= Field( arg[1] );
      a:= arg[2];
      b:= arg[3];
    else
      Error( "usage: QuaternionAlgebra( <F>[, <a>, <b>] ) for a ring <F>" );
    fi;
    e:= One( F );
    if e = fail then
      Error( "<F> must have an identity element" );
    fi;
    z:= Zero( F );

    # Generators in the right family may be already available.
    stored := GET_FROM_SORTED_CACHE( QuaternionAlgebraData, [ a, b, FamilyObj( F ) ],
    function()
      # Construct a filter describing element properties,
      # which will be stored in the family.
      filter:= IsSCAlgebraObj and IsQuaternion;
      if HasIsAssociative( F ) and IsAssociative( F ) then
        filter:= filter and IsAssociativeElement;
      fi;
      if     IsNegRat( a ) and IsNegRat( b )
#T it suffices if the parameters are real and negative
         and IsCyclotomicCollection( F ) and IsField( F )
         and ForAll( GeneratorsOfDivisionRing( F ),
                     x -> x = ComplexConjugate( x ) ) then
        filter:= filter and IsZDFRE;
      fi;

      # Construct the algebra.
      return AlgebraByStructureConstantsArg(
              [ F,
                [ [ [[1],[e]], [[2],[ e]], [[3],[ e]], [[4],[   e]] ],
                  [ [[2],[e]], [[1],[ a]], [[4],[ e]], [[3],[   a]] ],
                  [ [[3],[e]], [[4],[-e]], [[1],[ b]], [[2],[  -b]] ],
                  [ [[4],[e]], [[3],[-a]], [[2],[ b]], [[1],[-a*b]] ],
                  0, z ],
                "e", "i", "j", "k" ],
              filter, [ e, z, z, z ] );
    end );

    A:= AlgebraWithOne( F, GeneratorsOfAlgebra( stored ), "basis" );
    SetGeneratorsOfAlgebra( A, GeneratorsOfAlgebraWithOne( A ) );
    SetIsFullSCAlgebra( A, true );

    # A quaternion algebra with negative parameters over a real field
    # is a division ring.
    if     IsNegRat( a ) and IsNegRat( b )
       and IsCyclotomicCollection( F ) and IsField( F )
       and ForAll( GeneratorsOfDivisionRing( F ),
                   x -> x = ComplexConjugate( x ) ) then
      SetFilterObj( A, IsDivisionRing );
#T better use `DivisionRingByGenerators'?
      SetGeneratorsOfDivisionRing( A, GeneratorsOfAlgebraWithOne( A ) );
    fi;

    # Return the quaternion algebra.
    return A;
end );


#############################################################################
##
#M  OneOp( <quat> ) . . . . . . . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( OneOp,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    quat -> ObjByExtRep( FamilyObj( quat ),
                         [ 1, 0, 0, 0 ] * One( ExtRepOfObj( quat )[1] ) ) );


#############################################################################
##
#M  InverseOp( <quat> ) . . . . . . . . . . . . . . . . . .  for a quaternion
##
##  Let $a$ and $b$ be the parameters from which the algebra of <quat> was
##  constructed.
##  The inverse of $c_1 e + c_2 i + c_3 j + c_4 k$ is
##  $c_1/z e - c_2/z i - c_3/z j - c_4/z k$
##  where $z = c_1^2 - c_2^2 a - c_3^2 b + c_4^2 a b$.
##
InstallMethod( InverseOp,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local data, z, a, b;
    data:= ExtRepOfObj( quat );
    a:= FamilyObj( quat )!.sctable[2][2][2][1];
    b:= FamilyObj( quat )!.sctable[3][3][2][1];
    z:= data[1]^2 - data[2]^2 * a - data[3]^2 * b + data[4]^2 * a * b;
    if IsZero( z ) then
      return fail;
    fi;
    return ObjByExtRep( FamilyObj( quat ),
               [ data[1]/z, AdditiveInverse( data[2]/z ),
                            AdditiveInverse( data[3]/z ),
                            AdditiveInverse( data[4]/z ) ] );
    end );


#############################################################################
##
#M  ComplexConjugate( <quat> )  . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( ComplexConjugate,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local v;

    v:= ExtRepOfObj( quat );
    return ObjByExtRep( FamilyObj( quat ), [ v[1], -v[2], -v[3], -v[4] ] );
    end );


#############################################################################
##
#M  RealPart( <quat> )  . . . . . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( RealPart,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local v, z;

    v:= ExtRepOfObj( quat );
    z:= Zero( v[1] );
    return ObjByExtRep( FamilyObj( quat ), [ v[1], z, z, z ] );
    end );


#############################################################################
##
#M  ImaginaryPart( <quat> ) . . . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( ImaginaryPart,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local v, z, a;

    v:= ExtRepOfObj( quat );
    z:= Zero( v[1] );
    a:= FamilyObj( quat )!.sctable[2][2][2][1];  # the first parameter
    return ObjByExtRep( FamilyObj( quat ), [ v[2], z, -v[4], -v[3]/a ] );
    end );


#############################################################################
##
#F  ComplexificationQuat( <vector> )
#F  ComplexificationQuat( <matrix> )
##
InstallGlobalFunction( ComplexificationQuat, function( matrixorvector )
    local result,
          i, e,
          M,
          m,
          n,
          j, k,
          v,
          coeff;

    result:= [];
    i:= E(4);
    e:= 1;

    if   IsQuaternionCollColl( matrixorvector ) then

      M:= matrixorvector;
      m:= Length( M );
      n:= Length( M[1] );
      for j in [ 1 .. 2*m ] do
        result[j]:= [];
      od;
      for j in [ 1 .. m ] do
        for k in [ 1 .. n ] do
          coeff:= ExtRepOfObj( M[j][k] );
          result[  j  ][  k  ]:=   e * coeff[1] + i * coeff[2];
          result[  j  ][ n+k ]:=   e * coeff[3] + i * coeff[4];
          result[ m+j ][  k  ]:= - e * coeff[3] + i * coeff[4];
          result[ m+j ][ n+k ]:=   e * coeff[1] - i * coeff[2];
        od;
      od;

    elif IsQuaternionCollection( matrixorvector ) then

      v:= matrixorvector;
      n:= Length( v );
      for j in [ 1 .. n ] do
        coeff:= ExtRepOfObj( v[j] );
        result[  j  ]:= e * coeff[1] + i * coeff[2];
        result[ n+j ]:= e * coeff[3] + i * coeff[4];
      od;

    else
      Error( "<matrixorvector> must be a vector or matrix of quaternions" );
    fi;

    return result;
end );


#############################################################################
##
#F  OctaveAlgebra( <F> )
##
InstallGlobalFunction( OctaveAlgebra, F -> AlgebraByStructureConstants(
    F,
    [ [ [[1],[1]],[[],[]],[[3],[1]],[[],[]],[[5],[1]],[[],[]],[[],[]],
        [[8],[1]] ],
      [ [[],[]],[[2],[1]],[[],[]],[[4],[1]],[[],[]],[[6],[1]],[[7],[1]],
        [[],[]] ],
      [ [[],[]],[[3],[1]],[[],[]],[[1],[1]],[[7],[1]],[[],[]],[[],[]],
        [[6],[1]] ],
      [ [[4],[1]],[[],[]],[[2],[1]],[[],[]],[[],[]],[[8],[1]],[[5],[1]],
        [[],[]] ],
      [ [[],[]],[[5],[1]],[[7],[-1]],[[],[]],[[],[]],[[1],[1]],[[],[]],
        [[4],[-1]] ],
      [ [[6],[1]],[[],[]],[[],[]],[[8],[-1]],[[2],[1]],[[],[]],[[3],[-1]],
        [[],[]] ],
      [ [[7],[1]],[[],[]],[[],[]],[[5],[-1]],[[],[]],[[3],[1]],[[],[]],
        [[2],[-1]] ],
      [ [[],[]],[[8],[1]],[[6],[-1]],[[],[]],[[4],[1]],[[],[]],[[1],[-1]],
        [[],[]] ],
      0, 0 ],
    "s1", "t1", "s2", "t2", "s3", "t3", "s4", "t4" ) );


#############################################################################
##
#M  NiceFreeLeftModuleInfo( <V> )
#M  NiceVector( <V>, <v> )
#M  UglyVector( <V>, <r> )
##
InstallHandlingByNiceBasis( "IsSCAlgebraObjSpace", rec(
    detect := function( R, gens, V, zero )
      return IsSCAlgebraObjCollection( V );
      end,

    NiceFreeLeftModuleInfo := ReturnTrue,

    NiceVector := function( V, v )
      return ExtRepOfObj( v );
      end,

    UglyVector := function( V, r )
      local F;
      F:= ElementsFamily( FamilyObj( V ) );
      if Length( r ) <> Length( F!.names ) then
        return fail;
      fi;
      return ObjByExtRep( F, r );
      end ) );


#############################################################################
##
#M  MutableBasis( <R>, <gens> )
#M  MutableBasis( <R>, <gens>, <zero> )
##
##  We choose a mutable basis that stores a mutable basis for a nice module.
##
InstallMethod( MutableBasis,
    "for ring and collection of s. c. algebra elements",
    [ IsRing, IsSCAlgebraObjCollection ],
    MutableBasisViaNiceMutableBasisMethod2 );

InstallOtherMethod( MutableBasis,
    "for ring, (possibly empty) list, and zero element",
    [ IsRing, IsList, IsSCAlgebraObj ],
    MutableBasisViaNiceMutableBasisMethod3 );


#############################################################################
##
#M  Coefficients( <B>, <v> )  . . . . . . coefficients w.r.t. canonical basis
##
InstallMethod( Coefficients,
    "for canonical basis of full s. c. algebra",
    IsCollsElms,
    [ IsBasis and IsCanonicalBasisFullSCAlgebra, IsSCAlgebraObj ],
    function( B, v )
    return ExtRepOfObj( v );
    end );


#############################################################################
##
#M  LinearCombination( <B>, <coeffs> )  . . . . . . . . . for canonical basis
##
InstallMethod( LinearCombination,
    "for canonical basis of full s. c. algebra",
    [ IsBasis and IsCanonicalBasisFullSCAlgebra, IsRowVector ],
    function( B, coeffs )
    return ObjByExtRep( ElementsFamily( FamilyObj( B ) ), coeffs );
    end );


#############################################################################
##
#M  BasisVectors( <B> ) . . . . . . for canonical basis of full s.~c. algebra
##
InstallMethod( BasisVectors,
    "for canonical basis of full s. c. algebra",
    [ IsBasis and IsCanonicalBasisFullSCAlgebra ],
    B -> ElementsFamily( FamilyObj(
             UnderlyingLeftModule( B ) ) )!.basisVectors );


#############################################################################
##
#M  Basis( <A> )  . . . . . . . . . . . . . . . basis of a full s.~c. algebra
##
InstallMethod( Basis,
    "for full s. c. algebra (delegate to `CanonicalBasis')",
    [ IsFreeLeftModule and IsSCAlgebraObjCollection and IsFullSCAlgebra ],
    CANONICAL_BASIS_FLAGS,
    CanonicalBasis );


#############################################################################
##
#M  CanonicalBasis( <A> ) . . . . . . . . . . . basis of a full s.~c. algebra
##
InstallMethod( CanonicalBasis,
    "for full s. c. algebras",
    [ IsFreeLeftModule and IsSCAlgebraObjCollection and IsFullSCAlgebra ],
    function( A )
    local B;
    B:= Objectify( NewType( FamilyObj( A ),
                                IsCanonicalBasisFullSCAlgebra
                            and IsAttributeStoringRep
                            and IsFiniteBasisDefault
                            and IsCanonicalBasis ),
                   rec() );
    SetUnderlyingLeftModule( B, A );
    SetStructureConstantsTable( B,
        ElementsFamily( FamilyObj( A ) )!.sctable );
    return B;
    end );


#############################################################################
##
#M  IsCanonicalBasisFullSCAlgebra( <B> )
##
InstallMethod( IsCanonicalBasisFullSCAlgebra,
    "for a basis",
    [ IsBasis ],
    function( B )
    local A;
    A:= UnderlyingLeftModule( B );
    return     IsSCAlgebraObjCollection( A )
           and IsFullSCAlgebra( A )
           and IsCanonicalBasis( B );
    end );

#T change implementation: bases of their own right, as for Gaussian row spaces,
#T if the algebra is Gaussian


#############################################################################
##
#M  Intersection2( <V>, <W> )
##
##  Contrary to the generic case that is handled by `Intersection2Spaces',
##  we know initially a (finite dimensional) common coefficient space,
##  so we can avoid the intermediate construction of such a space.
##
InstallMethod( Intersection2,
    "for two spaces in a common s.c. algebra",
    IsIdenticalObj,
    [ IsVectorSpace and IsSCAlgebraObjCollection,
      IsVectorSpace and IsSCAlgebraObjCollection ],
    function( V, W )
    local F,       # coefficients field
          gensV,   # list of generators of 'V'
          gensW,   # list of generators of 'W'
          Fam,     # family of an element
          inters;  # intersection, result

    F:= LeftActingDomain( V );
    if F <> LeftActingDomain( W ) then
      # The generic method is good enough for this.
      TryNextMethod();
    fi;

    gensV:= GeneratorsOfLeftModule( V );
    gensW:= GeneratorsOfLeftModule( W );
    if IsEmpty( gensV ) or IsEmpty( gensW ) then
      inters:= [];
    else
      gensV:= List( gensV, ExtRepOfObj );
      gensW:= List( gensW, ExtRepOfObj );
      if not (     ForAll( gensV, v -> IsSubset( F, v ) )
               and ForAll( gensW, v -> IsSubset( F, v ) ) ) then
        # We are not in a Gaussian situation.
        TryNextMethod();
      fi;
      Fam:= ElementsFamily( FamilyObj( V ) );
      inters:= List( SumIntersectionMat( gensV, gensW )[2],
                     x -> ObjByExtRep( Fam, x ) );
    fi;

    # Construct the intersection space, if possible with a parent,
    # and with as much structure as possible.
    if IsEmpty( inters ) then
      inters:= TrivialSubFLMLOR( V );
    elif IsFLMLOR( V ) and IsFLMLOR( W ) then
      inters:= FLMLOR( F, inters, "basis" );
    else
      inters:= VectorSpace( F, inters, "basis" );
    fi;
    if     HasParent( V ) and HasParent( W )
       and IsIdenticalObj( Parent( V ), Parent( W ) ) then
      SetParent( inters, Parent( V ) );
    fi;

    # Run implications by the subset relation.
    UseSubsetRelation( V, inters );
    UseSubsetRelation( W, inters );

    # Return the result.
    return inters;
    end );

# analogous for closure?