1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Alexander Hulpke, Heiko Theißen.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file contains the operations for cosets of permutation groups
##
#############################################################################
##
#F MinimizeExplicitTransversal( <U>, <maxmoved> ) . . . . . . . . . . local
##
InstallGlobalFunction( MinimizeExplicitTransversal, function( U, maxmoved )
local explicit, lenflock, flock, lenblock, index, s;
if IsBound( U.explicit )
and IsBound( U.stabilizer ) then
explicit := U.explicit;
lenflock := U.stabilizer.index * U.lenblock / Length( U.orbit );
flock := U.flock;
lenblock := U.lenblock;
index := U.index;
ChangeStabChain( U, [ 1 .. maxmoved ] );
for s in [ 1 .. Length( explicit ) ] do
explicit[ s ] := MinimalElementCosetStabChain( U, explicit[ s ] );
od;
Sort( explicit );
U.explicit := explicit;
U.lenflock := lenflock;
U.flock := flock;
U.lenblock := lenblock;
U.index := index;
fi;
end );
#############################################################################
##
#F RightTransversalPermGroupConstructor( <filter>, <G>, <U> ) . constructor
##
MAX_SIZE_TRANSVERSAL := 100000;
# so far only orbits and perm groups -- TODO: Other deduced actions
InstallGlobalFunction(ActionRefinedSeries,function(G,U)
local o,A,ser,act,i;
o:=List(Orbits(U,MovedPoints(G)),Set);
SortBy(o,Length);
A:=G;
ser:=[A];
act:=[0]; # dummy entry
i:=1;
while i<=Length(o) and Size(A)>Size(U) do
A:=Stabilizer(A,o[i],OnSets);
if Size(A)<Size(Last(ser)) then
Add(ser,A);
Add(act,[o[i],OnSets]);
fi;
i:=i+1;
od;
if Size(A)>Size(U) then
Add(ser,U);
Add(act,fail);
fi;
# refine large step?
for i in [1..Length(ser)-1] do
if IndexNC(ser[i],ser[i+1])>MAX_SIZE_TRANSVERSAL then
A:=IntermediateGroup(ser[i],ser[i+1]:cheap);
if A<>fail then
# refine with action
o:=ActionRefinedSeries(ser[i],A);
ser:=Concatenation(ser{[1..i]},o[1]{[1..Length(o[1])-1]},
ser{[i+1..Length(ser)]});
act:=Concatenation(act{[1..i]},o[2]{[1..Length(o[2])-1]},
act{[i+1..Length(act)]});
else
# no refinement, next step
i:=i+1;
fi;
else
# no refinement needed, next step
i:=i+1;
fi;
od;
# make ascending like AscendingSeries
return [Reversed(ser),Reversed(act)];
end);
BindGlobal( "RightTransversalPermGroupConstructor", function( filter, G, U )
local GC, UC, noyet, orbs, domain, GCC, UCC, ac, nc, bpt, enum, i,
actions,nct;
GC := CopyStabChain( StabChainImmutable( G ) );
UC := CopyStabChain( StabChainImmutable( U ) );
noyet:=ValueOption("noascendingchain")<>true;
if not IsTrivial( G ) then
orbs := ShallowCopy( OrbitsDomain( U, MovedPoints( G ) ) );
Sort( orbs, function( o1, o2 )
return Length( o1 ) < Length( o2 ); end );
domain := Concatenation( orbs );
GCC:=GC;
UCC:=UC;
while Length( GCC.genlabels ) <> 0
or Length( UCC.genlabels ) <> 0 do
#Print(SizeStabChain(GCC),"/",SizeStabChain(UCC),":",
# SizeStabChain(GCC)/SizeStabChain(UCC),"\n");
if noyet and (
(SizeStabChain(GCC)/SizeStabChain(UCC) >MAX_SIZE_TRANSVERSAL) or
(Length(UCC.genlabels)=0 and
SizeStabChain(GCC)>MAX_SIZE_TRANSVERSAL)
) then
# first get a factorization through actions
ac:=ActionRefinedSeries(G,U);
actions:=ac[2];
ac:=ac[1];
# go in biggish steps through the chain
nc:=[ac[1]];
nct:=[actions[1]];
for i in [3..Length(ac)] do
if Size(ac[i])/Size(Last(nc))>MAX_SIZE_TRANSVERSAL then
Add(nc,ac[i-1]);
Add(nct,actions[i-1]);
fi;
od;
Add(nc,Last(ac));
Add(nct,Last(actions));
if Length(nc)>2 then
ac:=[];
for i in [Length(nc),Length(nc)-1..2] do
Info(InfoCoset,4,"Recursive [",Size(nc[i]),",",Size(nc[i-1]));
Add(ac,RightTransversal(nc[i],nc[i-1]
# do not try to factor again
:noascendingchain));
od;
return FactoredTransversal(G,U,ac);
fi;
noyet:=false;
fi;
bpt := First( domain, p -> not IsFixedStabilizer( GCC, p ) );
ChangeStabChain( GCC, [ bpt ], true ); GCC := GCC.stabilizer;
ChangeStabChain( UCC, [ bpt ], false ); UCC := UCC.stabilizer;
od;
fi;
AddCosetInfoStabChain(GC,UC,LargestMovedPoint(G));
MinimizeExplicitTransversal(UC,LargestMovedPoint(G));
enum := Objectify( NewType( FamilyObj( G ),
filter and IsList and IsDuplicateFreeList
and IsAttributeStoringRep ),
rec( group := G,
subgroup := U,
stabChainGroup := GC,
stabChainSubgroup := UC ) );
return enum;
end );
#############################################################################
##
#R IsRightTransversalPermGroupRep( <obj> ) . right transversal of perm group
##
DeclareRepresentation( "IsRightTransversalPermGroupRep",
IsRightTransversalRep,
[ "stabChainGroup", "stabChainSubgroup" ] );
InstallMethod( \[\],
"for right transversal of perm. group, and pos. integer",
true,
[ IsList and IsRightTransversalPermGroupRep, IsPosInt ], 0,
function( cs, num )
return CosetNumber( cs!.stabChainGroup, cs!.stabChainSubgroup, num );
end );
InstallMethod( PositionCanonical,
"for right transversal of perm. group, and permutation",
IsCollsElms,
[ IsList and IsRightTransversalPermGroupRep, IsPerm ], 0,
function( cs, elm )
return NumberCoset( cs!.stabChainGroup,
cs!.stabChainSubgroup,
elm );
end );
#############################################################################
##
#M RightTransversalOp( <G>, <U> ) . . . . . . . . . . . . . for perm groups
##
InstallMethod( RightTransversalOp,
"for two perm. groups",
IsIdenticalObj,
[ IsPermGroup, IsPermGroup ], 0,
function( G, U )
return RightTransversalPermGroupConstructor(
IsRightTransversalPermGroupRep, G, U );
end );
#############################################################################
##
#F AddCosetInfoStabChain( <G>, <U>, <maxmoved> ) . . . . . . add coset info
##
InstallGlobalFunction( AddCosetInfoStabChain, function( G, U, maxmoved )
local orb, pimg, img, vert, s, t, index,
block, B, blist, pos, sliced, lenflock, i, j,
ss, tt,t1,t1lim,found,tl,vimg,
sel,shortsel,gorpo,pisel,prepi,transinv;
# iterated image
vimg:=function(point,list)
local i;
for i in list do
point:=point^i;
od;
return point;
end;
Info(InfoCoset,5,"AddCosetInfoStabChain [",
SizeStabChain(G),",",SizeStabChain(U),"]");
if IsEmpty( G.genlabels ) then
U.index := 1;
U.explicit := [ U.identity ];
U.lenflock := 1;
U.flock := U.explicit;
else
AddCosetInfoStabChain( G.stabilizer, U.stabilizer, maxmoved );
# U.index := [G_1:U_1];
U.index := U.stabilizer.index * Length( G.orbit ) / Length( U.orbit );
Info(InfoCoset,5,"U.index=",U.index);
# block := 1 ^ <U,G_1>; is a block for G.
block := OrbitPerms( Concatenation( U.generators,
G.stabilizer.generators ), G.orbit[ 1 ] );
U.lenblock := Length( block );
lenflock := Length( G.orbit ) / U.lenblock;
# For small indices, permutations are multiplied, so we need a
# multiplied transversal.
if IsBound( U.stabilizer.explicit )
and U.lenblock * maxmoved <= MAX_SIZE_TRANSVERSAL
and U.index * maxmoved <= MAX_SIZE_TRANSVERSAL * lenflock then
U.explicit := [ ];
U.flock := [ G.identity ];
tt := [ ]; tt[ G.orbit[ 1 ] ] := G.identity;
for t in G.orbit do
tt[ t ] := tt[ t ^ G.transversal[ t ] ] /
G.transversal[ t ];
od;
fi;
# flock := { G.transversal[ B[1] ] | B in block system };
blist := BlistList( G.orbit, block );
pos := Position( blist, false );
while pos <> fail do
img := G.orbit[ pos ];
B := block{ [ 1 .. U.lenblock ] };
sliced := [ ];
while img <> G.orbit[ 1 ] do
Add( sliced, G.transversal[ img ] );
img := img ^ G.transversal[ img ];
od;
for i in Reversed( [ 1 .. Length( sliced ) ] ) do
for j in [ 1 .. Length( B ) ] do
B[ j ] := B[ j ] / sliced[ i ];
od;
od;
Append( block, B );
if IsBound( U.explicit ) then
Add( U.flock, tt[ B[ 1 ] ] );
fi;
#UniteBlist( blist, BlistList( G.orbit, B ) );
UniteBlistList(G.orbit, blist, B );
pos := Position( blist, false, pos );
od;
G.orbit := block;
# Let <s> loop over the transversal elements in the stabilizer.
U.repsStab := List( [ 1 .. U.lenblock ], x ->
BlistList( [ 1 .. U.stabilizer.index ], [ ] ) );
U.repsStab[ 1 ] := BlistList( [ 1 .. U.stabilizer.index ],
[ 1 .. U.stabilizer.index ] );
index := U.stabilizer.index * lenflock;
s := 1;
# For large indices, store only the numbers of the transversal
# elements needed.
if not IsBound( U.explicit ) then
# If the stabilizer is the topmost level with explicit
# transversal, this must contain minimal coset representatives.
MinimizeExplicitTransversal( U.stabilizer, maxmoved );
# if there are over 200 points, do a cheap test first.
t1lim:=Length(G.orbit);
if t1lim>200 then
t1lim:=50;
fi;
sel:=Filtered([1..Maximum(G.orbit)],x->IsBound(U.translabels[x]));
shortsel:=Length(sel)<t1lim;
if shortsel then
# inverse transversal elements
t1:=ShallowCopy(G.generators);
Add(t1,G.identity);
vert:=List(t1,x->x^-1);
# inverses of transversal, stored compact
# TODO: Instead of `Position`, use translabels entry
#transinv:=List(G.transversal,x->vert[Position(t1,x)]);
transinv:=[];
for i in [1..Length(G.transversal)] do
if IsBound(G.transversal[i]) then
t:=Position(t1,G.transversal[i]);
if t=fail then
Add(t1,G.transversal[i]);
Add(vert,G.transversal[i]^-1);
t:=Length(t1);
fi;
transinv[i]:=vert[t];
fi;
od;
# Position in orbit
gorpo:=[];
for i in [1..Length(G.orbit)] do
gorpo[G.orbit[i]]:=i;
od;
fi;
orb := G.orbit{ [ 1 .. U.lenblock ] };
pimg := [ ];
while index < U.index do
pimg{ orb } := CosetNumber( G.stabilizer, U.stabilizer, s,
orb );
t := 2;
if shortsel then
# test for the few wrong values, mapping backwards
pisel:=Filtered([1..Length(pimg)],
x->IsBound(pimg[x]) and pimg[x] in sel);
while t <= U.lenblock and index < U.index do
# For this point in the block, find the images of the
# earlier points under the representative.
vert := G.orbit{ [ 1 .. t-1 ] };
img := G.orbit[ t ];
tl:=[];
while img <> G.orbit[ 1 ] do
Add(tl,transinv[img]);
img := img ^ G.transversal[ img ];
od;
prepi:=pisel;
for t1 in [Length(tl),Length(tl)-1..1] do
prepi:=OnTuples(prepi,tl[t1]);
od;
# If $Ust = Us't'$ then $1t'/t/s in 1U$. Also if $1t'/t/s
# in 1U$ then $st/t' = u.g_1$ with $u in U, g_1 in G_1$
# and $g_1 = u_1.s'$ with $u_1 in U_1, s' in S_1$, so
# $Ust = Us't'$.
#if ForAll( [ 1 .. t-1 ], i -> not
# vert[ i ] in prepi ) then
if not ForAny(gorpo{prepi},x->x>=1 and x<=t-1) then
U.repsStab[ t ][ s ] := true;
index := index + lenflock;
fi;
t := t + 1;
od;
else
while t <= U.lenblock and index < U.index do
# do not test all points first if not necessary
# (test only at most t1lim points, if the test succeeds,
# test the rest)
# this gives a major speedup.
t1:=Minimum(t-1,t1lim);
# For this point in the block, find the images of the
# earlier points under the representative.
vert := G.orbit{ [ 1 .. t1 ] };
img := G.orbit[ t ];
while img <> G.orbit[ 1 ] do
vert := OnTuples( vert, G.transversal[ img ] );
img := img ^ G.transversal[ img ];
od;
# If $Ust = Us't'$ then $1t'/t/s in 1U$. Also if $1t'/t/s
# in 1U$ then $st/t' = u.g_1$ with $u in U, g_1 in G_1$
# and $g_1 = u_1.s'$ with $u_1 in U_1, s' in S_1$, so
# $Ust = Us't'$.
if ForAll( [ 1 .. t1 ], i -> not IsBound
( U.translabels[ pimg[ vert[ i ] ] ] ) ) then
# do all points
if t1<t-1 then
img := G.orbit[ t ];
if t<=10*t1lim then
vert := G.orbit{ [ 1 .. t - 1 ] };
while img <> G.orbit[ 1 ] do
vert := OnTuples( vert, G.transversal[ img ] );
img := img ^ G.transversal[ img ];
od;
found:=ForAll( [ t1+1 .. t - 1 ], i -> not IsBound
( U.translabels[ pimg[ vert[ i ] ] ] ) );
else
# avoid calculating tons of images of a long list
# instead calculate images on the fly
# this implicitly assumes that, if we get to so
# long a list, failure will happen quickly.
tl:=[];
while img <> G.orbit[ 1 ] do
Add(tl,G.transversal[img]);
img := img ^ G.transversal[ img ];
od;
found:=ForAll( [ t1+1 .. t - 1 ], i -> not IsBound
( U.translabels[ pimg[ vimg(G.orbit[ i ],tl) ] ] ) );
fi;
if found then
U.repsStab[ t ][ s ] := true;
index := index + lenflock;
fi;
else
U.repsStab[ t ][ s ] := true;
index := index + lenflock;
fi;
fi;
t := t + 1;
od;
fi;
s := s + 1;
od;
# For small indices, store a transversal explicitly.
else
for ss in U.stabilizer.flock do
Append( U.explicit, U.stabilizer.explicit * ss );
od;
while index < U.index do
t := 2;
while t <= U.lenblock and index < U.index do
ss := U.explicit[ s ] * tt[ G.orbit[ t ] ];
if ForAll( [ 1 .. t - 1 ], i -> not IsBound
( U.translabels[ G.orbit[ i ] / ss ] ) ) then
U.repsStab[ t ][ s ] := true;
Add( U.explicit, ss );
index := index + lenflock;
fi;
t := t + 1;
od;
s := s + 1;
od;
Unbind( U.stabilizer.explicit );
Unbind( U.stabilizer.flock );
fi;
fi;
end );
#############################################################################
##
#F NumberCoset( <G>, <U>, <r> ) . . . . . . . . . . . . . . coset to number
##
InstallGlobalFunction( NumberCoset, function( G, U, r )
local num, b, t, u, g1, pnt, bpt;
if IsEmpty( G.genlabels ) or U.index = 1 then
return 1;
fi;
# Find the block number of $r$.
bpt := G.orbit[ 1 ];
b := QuoInt( Position( G.orbit, bpt ^ r ) - 1, U.lenblock );
# For small indices, look at the explicit transversal.
if IsBound( U.explicit ) then
return b * U.lenflock + Position( U.explicit,
MinimalElementCosetStabChain( U, r / U.flock[ b + 1 ] ) );
fi;
pnt := G.orbit[ b * U.lenblock + 1 ];
while pnt <> bpt do
r := r * G.transversal[ pnt ];
pnt := pnt ^ G.transversal[ pnt ];
od;
# Now $r$ stabilises the block. Find the first $t in G/G_1$ such that $Ur
# = Ust$ for $s in G_1$. In this code, G.orbit[ <t> ] = bpt ^ $t$.
num := b * U.stabilizer.index * U.lenblock / Length( U.orbit );
# \_________This is [<U,G_1>:U] = U.lenflock_________/
t := 1;
pnt := G.orbit[ t ] / r;
while not IsBound( U.translabels[ pnt ] ) do
num := num + SizeBlist( U.repsStab[ t ] );
t := t + 1;
pnt := G.orbit[ t ] / r;
od;
# $r/t = u.g_1$ with $u in U, g_1 in G_1$, hence $t/r.u = g_1^-1$.
u := U.identity;
while pnt ^ u <> bpt do
u := u * U.transversal[ pnt ^ u ];
od;
g1 := LeftQuotient( u, r ); # Now <g1> = $g_1.t = u mod r$.
while bpt ^ g1 <> bpt do
g1 := g1 * G.transversal[ bpt ^ g1 ];
od;
# The number of $r$ is the number of $g_1$ plus an offset <num> for
# the earlier values of $t$.
return num + SizeBlist( U.repsStab[ t ]{ [ 1 ..
NumberCoset( G.stabilizer, U.stabilizer, g1 ) ] } );
end );
#############################################################################
##
#F CosetNumber( <arg> ) . . . . . . . . . . . . . . . . . . number to coset
##
InstallGlobalFunction( CosetNumber, function( arg )
local G, U, num, tup, b, t, rep, pnt, bpt, index, len;
# Get the arguments.
G := arg[ 1 ]; U := arg[ 2 ]; num := arg[ 3 ];
if Length( arg ) > 3 then tup := arg[ 4 ];
else tup := false; fi;
if num = 1 then
if tup = false then return G.identity;
else return tup; fi;
fi;
# Find the block $b$ addressed by <num>.
if IsBound( U.explicit ) then
index := U.lenflock;
else
index := U.stabilizer.index * U.lenblock / Length( U.orbit );
# \_________This is [<U,G_1>:U] = U.lenflock_________/
fi;
b := QuoInt( num - 1, index );
num := ( num - 1 ) mod index + 1;
# For small indices, look at the explicit transversal.
if IsBound( U.explicit ) then
if tup = false then
return U.explicit[ num ] * U.flock[ b + 1 ];
else
return List( tup, t -> t / U.flock[ b + 1 ] / U.explicit[ num ] );
fi;
fi;
# Otherwise, find the point $t$ addressed by <num>.
t := 1;
len := SizeBlist( U.repsStab[ t ] );
while num > len do
num := num - len;
t := t + 1;
len := SizeBlist( U.repsStab[ t ] );
od;
if len < U.stabilizer.index then
num := PositionNthTrueBlist( U.repsStab[ t ], num );
fi;
# Find the representative $s$ in the stabilizer addressed by <num> and
# return $st$.
rep := G.identity;
bpt := G.orbit[ 1 ];
if tup = false then
pnt := G.orbit[ b * U.lenblock + 1 ];
while pnt <> bpt do
rep := rep * G.transversal[ pnt ];
pnt := pnt ^ G.transversal[ pnt ];
od;
pnt := G.orbit[ t ];
while pnt <> bpt do
rep := rep * G.transversal[ pnt ];
pnt := pnt ^ G.transversal[ pnt ];
od;
return CosetNumber( G.stabilizer, U.stabilizer, num ) / rep;
else
pnt := G.orbit[ b * U.lenblock + 1 ];
while pnt <> bpt do
tup := OnTuples( tup, G.transversal[ pnt ] );
pnt := pnt ^ G.transversal[ pnt ];
od;
pnt := G.orbit[ t ];
while pnt <> bpt do
tup := OnTuples( tup, G.transversal[ pnt ] );
pnt := pnt ^ G.transversal[ pnt ];
od;
return CosetNumber( G.stabilizer, U.stabilizer, num, tup );
fi;
end );
#############################################################################
##
#M AscendingChainOp(<G>,<pnt>) . . . approximation of
##
InstallMethod( AscendingChainOp, "PermGroup", IsIdenticalObj,
[IsPermGroup,IsPermGroup],0,
function(G,U)
local s,c,mp,o,i,step,a;
s:=G;
c:=[G];
repeat
mp:=MovedPoints(s);
o:=ShallowCopy(OrbitsDomain(s,mp));
SortBy(o,Length);
i:=1;
step:=false;
while i<=Length(o) and step=false do
if not IsTransitive(U,o[i]) then
Info(InfoCoset,2,"AC: orbit");
o:=ShallowCopy(OrbitsDomain(U,o[i]));
SortBy(o,Length);
# union of same length -- smaller index
a:=Union(Filtered(o,x->Length(x)=Length(o[1])));
if Length(a)=Sum(o,Length) then
a:=Set(o[1]);
fi;
s:=Stabilizer(s,a,OnSets);
step:=true;
elif Index(G,U)>NrMovedPoints(U)
and IsPrimitive(s,o[i]) and not IsPrimitive(U,o[i]) then
Info(InfoCoset,2,"AC: blocks");
s:=Stabilizer(s,Set(MaximalBlocks(U,o[i]),Set),
OnSetsDisjointSets);
step:=true;
else
i:=i+1;
fi;
od;
if step then
Add(c,s);
fi;
until step=false or Index(s,U)=1; # we could not refine better
if Index(s,U)>1 then
Add(c,U);
fi;
Info(InfoCoset,2,"Indices",List([1..Length(c)-1],i->Index(c[i],c[i+1])));
return RefinedChain(G,Reversed(c));
end);
InstallMethod(CanonicalRightCosetElement,"Perm",IsCollsElms,
[IsPermGroup,IsPerm],0,
function(U,e)
return MinimalElementCosetStabChain(MinimalStabChain(U),e);
end);
InstallMethod(\<,"RightCosets of perm group",IsIdenticalObj,
[IsRightCoset and IsPermCollection,IsRightCoset and IsPermCollection],0,
function(a,b)
# for permutation groups the canonical rep is the smallest element of the
# coset
if ActingDomain(a)<>ActingDomain(b) then
return ActingDomain(a)<ActingDomain(b);
fi;
return CanonicalRepresentativeOfExternalSet(a)
<CanonicalRepresentativeOfExternalSet(b);
end);
InstallMethod(Intersection2, "perm cosets", IsIdenticalObj,
[IsRightCoset and IsPermCollection,IsRightCoset and IsPermCollection],0,
function(cos1,cos2)
local H1, H2, x1, x2, shift, sigma, listMoved_H1, listMoved_H2,
listMoved_sigma, U, repr, H1_sigma, H2_sigma, H12, swap, rho, diff;
# We set cosInt = cos1 \cap cos2 = H1 x1 \cap H2 x2
H1:=ActingDomain(cos1);
H2:=ActingDomain(cos2);
x1:=Representative(cos1);
x2:=Representative(cos2);
if H1=H2 then
if cos1=cos2 then
return cos1;
else
return [];
fi;
fi;
# We are using that
# H1*x1 \cap H2*x2 = (H1 \cap H2*x2/x1)*x1 = (H1 \cap H2*sigma)*shift,
# where shift and sigma are defined as below:
shift:=x1;
sigma:=x2 / x1;
# Reducing as much as possible in advance by using various relatively
# cheap to compute criteria
while true do
listMoved_H1:=MovedPoints(H1);
listMoved_H2:=MovedPoints(H2);
listMoved_sigma:=MovedPoints(sigma);
# If the coset intersection is non-empty, then there is h1 \in H1 and
# h2 \in H2 such that h1 = h2*sigma. Therefore sigma is contained in
# the group generated by H1 and H2. A necessary condition for this is
# that the points moved by sigma are a subset of the points moved by
# H1 and H2.
if not IsSubset(Union(listMoved_H1, listMoved_H2), listMoved_sigma) then
return [];
fi;
# Suppose x is an element of H1 \cap H2*sigma. Then for any positive
# integer n, we know that n^x is contained in n^H1 but also in
# (n^H2)^\sigma. Thus if the intersection of n^H1 and (n^H2)^\sigma is
# empty, then the intersection of the cosets is also empty. Clearly
# the orbit intersection contains n whenever n is fixed by sigma, so
# we only have to consider this for n moved by sigma.
if ForAny(listMoved_sigma, n -> IsEmpty(Intersection(Orbit(H1,n), OnTuples(Orbit(H2,n),sigma)))) then
return [];
fi;
# If there are points that are moved by sigma and by H2 but not by H1,
# then there must be an element in H2 which matches the action of sigma
# on these points, or else the intersection is empty
diff:=Difference(Intersection(listMoved_H2, listMoved_sigma), listMoved_H1);
if Length(diff) > 0 then
repr:=RepresentativeAction(H2, diff, OnTuples(diff, Inverse(sigma)), OnTuples);
if repr=fail then
return [];
fi;
# Since repr is in H2, we can replace sigma by repr*sigma
# without changing the coset H2*sigma. The new sigma then fixes
# all points in diff, as does H1. Hence replacing H2 by the
# stabilizer in H2 of diff does not change H1 \cap H2 sigma.
sigma:=repr * sigma;
H2:=Stabilizer(H2, diff, OnTuples);
continue;
fi;
# Mirror to the previous check:
# If there are points that are moved by sigma and by H1 but not by H2,
# then there must be an element in H1 which matches the action of sigma
# on these points, or else the intersection is empty
diff:=Difference(Intersection(listMoved_H1, listMoved_sigma), listMoved_H2);
if Length(diff) > 0 then
repr:=RepresentativeAction(H1, diff, OnTuples(diff, sigma), OnTuples);
if repr=fail then
return [];
fi;
# Again this is similar to the case before, except that we are adjusting
# H1 now and thus also need to take `shift` into account. The situation
# is as follows:
#
# cosInt = (H1 \cap H2 sigma) shift
# = (H1 sigma^{-1} \cap H2) sigma shift
# = (Stab_{H1}(diff) repr sigma^{-1} \cap H2) sigma shift
# = (Stab_{H1}(diff) \cap H2 sigma repr^{-1} ) repr shift
H1:=Stabilizer(H1, diff, OnTuples);
sigma:=sigma / repr;
shift:=repr * shift;
continue;
fi;
# easy termination criterion: reduction to group intersection
if sigma in H2 then
U:=Intersection(H1, H2);
return RightCoset(U, shift);
fi;
# easy termination criterion: reduction to group intersection
if sigma in H1 then
# cosInt = (H1 \cap H2 sigma) shift
# = (H1 sigma^{-1} \cap H2) sigma shift
U:=Intersection(H1, H2);
return RightCoset(U, sigma * shift);
fi;
# any element of H1 which moves points not moved by sigma or anything
# in H2 can not be in the intersection, so we may as well remove them
# by a stabilizer computation
diff:=Difference(listMoved_H1, Union(listMoved_H2, listMoved_sigma));
if Length(diff) > 0 then
H1:=Stabilizer(H1, diff, OnTuples);
continue;
fi;
# the same but with the roles of H1 and H2 reversed
diff:=Difference(listMoved_H2, Union(listMoved_H1, listMoved_sigma));
if Length(diff) > 0 then
H2:=Stabilizer(H2, diff, OnTuples);
continue;
fi;
# More general but more expensive than previous check
H1_sigma:=ClosureGroup(H1, sigma);
if not IsSubgroup(H1_sigma, H2) then
H2:=Intersection(H1_sigma, H2);
continue;
fi;
H2_sigma:=ClosureGroup(H2, sigma);
if not IsSubgroup(H2_sigma, H1) then
H1:=Intersection(H2_sigma, H1);
continue;
fi;
# No more reduction tricks available
break;
od;
# A final termination criterion
H12:=ClosureGroup(H1, H2);
if not sigma in H12 then
return [];
fi;
# We are now inspired by the algorithm from
# Lazlo Babai, Coset Intersection in Moderately Exponential Time
#
# We use the algorithm from Page 10 of coset analysis and we reformulate
# it here in order to avoid errors:
# --- The naive algorithm for computing H1 \cap H2 sigma is to iterate
# over elements of H1 and testing if one belongs to H2 sigma. If we find
# one such z then the result is the coset RightCoset(U, z). If not
# then it is empty.
# --- Since the result is independent of the cosets U, what we can
# do is iterate over the RightCosets(H1, U). The algorithm is the
# one of Proposition 3.2
# for r in RightCosets(H1, U) do
# if r in H1*sigma then
# return RightCoset(U, r * shift)
# fi;
# od;
# --- (TODO for future work): The question is how to make it faster.
# One idea is to use an ascending chain between U and H1.
# Section 3.4 of above paper gives statement related to that but not a
# useful algorithm. The question deserves further exploration.
#
# We select the smallest group for that computation in order to have
# as few cosets as possible
if Order(H2) < Order(H1) then
# cosInt = (H1 \cap H2 sigma) shift
# = (H1 sigma^{-1} \cap H2) sigma shift
swap:=H1;
H1:=H2;
H2:=swap;
shift:=sigma * shift;
sigma:=Inverse(sigma);
fi;
# So now Order(H1) <= Order(H2)
U:=Intersection(H1, H2);
for rho in RightTransversal(H1, U) do
if rho / sigma in H2 then
return RightCoset(U, rho * shift);
fi;
od;
return [];
end);
#############################################################################
##
#F FactorCosetAction( <G>, <U>, [<N>] ) operation on the right cosets Ug
## with possibility to indicate kernel
##
BindGlobal("DoFactorCosetActionPerm",function(arg)
local G,u,op,h,N,rt,ac,actions,hom,i,q;
G:=arg[1];
u:=arg[2];
if Length(arg)>2 then
N:=arg[3];
else
N:=false;
fi;
if IsList(u) and Length(u)=0 then
u:=G;
Error("only trivial operation ? I Set u:=G;");
fi;
if IsSubset(u, G) then
return DoFactorCosetAction(G, u, G);
fi;
if N=false then
N:=Core(G,u);
fi;
ac:=ActionRefinedSeries(G,u);
actions:=ac[2];
ac:=ac[1];
hom:=false;
for i in [2..Length(ac)] do
if actions[i-1]<>fail
# allow 2GB memory use for writing down orbit
and SIZE_OBJ(actions[i-1][1])*IndexNC(ac[i],ac[i-1])<2*10^9 then
op:=rec();
h:=Orbit(ac[i],actions[i-1][1],actions[i-1][2]:permutations:=op);
if IsBound(op.permutations) then
rt:=List(op.permutations,PermList);
q:=Group(rt);
SetSize(q,IndexNC(G,N));
h:=GroupHomomorphismByImagesNC(ac[i],Group(rt),
op.generators,rt);
else
h:=ActionHomomorphism(ac[i],h,actions[i-1][2],"surjective");
fi;
else
rt:=RightTransversal(ac[i],ac[i-1]);
if not IsRightTransversalRep(rt) then
# the right transversal has no special `PositionCanonical' method.
rt:=List(rt,i->RightCoset(ac[i-1],i));
fi;
h:=ActionHomomorphism(ac[i],rt,OnRight,"surjective");
fi;
Unbind(op);
Unbind(rt);
if i=2 then
hom:=h;
else
hom:=KuKGenerators(ac[i],h,hom);;
q:=Group(hom);
StabChainOptions(q).limit:=Size(ac[i]);
hom:=GroupHomomorphismByImagesNC(ac[i],q,GeneratorsOfGroup(ac[i]),hom);;
fi;
od;
op:=Image(hom,G);
SetSize(op,IndexNC(G,N));
# and note our knowledge
SetKernelOfMultiplicativeGeneralMapping(hom,N);
AddNaturalHomomorphismsPool(G,N,hom);
return hom;
end);
InstallMethod(FactorCosetAction,"by right transversal operation",
IsIdenticalObj,[IsPermGroup,IsPermGroup],0,
function(G,U)
return DoFactorCosetActionPerm(G,U);
end);
InstallOtherMethod(FactorCosetAction,
"by right transversal operation, given kernel",IsFamFamFam,
[IsPermGroup,IsPermGroup,IsPermGroup],0,
function(G,U,N)
return DoFactorCosetActionPerm(G,U,N);
end);
|