File: ctblauto.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1120 lines) | stat: -rw-r--r-- 41,199 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains functions to calculate automorphisms of matrices,
##  e.g., the character matrices of character tables, and functions to
##  calculate permutations transforming the rows of a matrix to the rows of
##  another matrix.
##
##  *Note*:
##  The methods in this file do not use the partition backtrack techniques.
##  It would be desirable to translate them.
##


#############################################################################
##
#F  FamiliesOfRows( <mat>, <maps> )
##
InstallGlobalFunction( FamiliesOfRows, function( mat, maps )
    local j, k,          # loop variables
          famreps,       # (sorted) representatives for families
          permutations,  # list of perms for each family
          families,      # list of members of each family
          copyrow,       # sorted row
          permrow,       # permutation to sort the row
          pos,           # position in `famreps'
          famlengths,    # list of lengths of the families
          perm,          # permutation to sort
          row;           # loop over `maps'

    famreps:= [ ShallowCopy( mat[1] ) ];
    permutations:= [ [ Sortex( famreps[1] ) ] ];
    families:= [ [ 1 ] ];

    for j in [ 2 .. Length( mat ) ] do

      # Get a sorted version of the `j'-th row.
      copyrow := ShallowCopy( mat[j] );
      permrow := Sortex( copyrow );
      pos     := PositionSorted( famreps, copyrow );

      if IsBound( famreps[ pos ] ) and famreps[ pos ] = copyrow then

        # We have found a member of the `pos'-th family.
        Add( permutations[ pos ], permrow );
        Add( families[ pos ], j );

      else

        # We have found a member of a new family.
        for k in Reversed( [ pos .. Length( famreps ) ] ) do
          famreps[ k+1 ]:= famreps[k];
          permutations[ k+1 ]:= permutations[k];
          families[ k+1 ]:= families[k];
        od;
        famreps[ pos ]:= copyrow;
        permutations[ pos ]:= [ permrow ];
        families[ pos ]:= [ j ];

       fi;

    od;

    # Each row in `maps' is treated as a family of its own.
    j:= Length( mat );
    for row in maps do
      j:= j+1;
      Add( famreps, ShallowCopy( row ) );
      Add( permutations, [ Sortex( Last(famreps) ) ] );
      Add( families, [ j ] );
    od;

    # Sort the families according to their length, and adjust the data.
    famlengths:= [];
    for k in [ 1 .. Length( famreps ) ] do
      famlengths[k]:= Length( permutations[k] );
    od;
    perm:= Sortex( famlengths );
    famreps      := Permuted( famreps,      perm );
    permutations := Permuted( permutations, perm );
    families     := Permuted( families,     perm );

    # Return the result.
    return rec( famreps      := famreps,
                permutations := permutations,
                families     := families      );
end );


#############################################################################
##
#F  MatAutomorphismsFamily( <chainG>, <K>, <family>, <permutations> )
##
##  Let <chainG> be a stabilizer chain for a group $G$,
##  <K> a list of generators for a subgroup $K$ of $G$,
##  <family> a ...,
##  and <permutations> ... .
##
##  `MatAutomorphismsFamily' returns a stabilizer chain for the closure of
##  $K$ ...
##
##  for a family <rows> of rows with representative (i.e., sorted vector)
##  <famrep> and corresponding permutations
##  `Sortex(<rows>[j])=<permutations>[j]',
##  the group of column permutations in the group with stabilizer chain
##  <chainG> is computed that acts on
##  the set <rows>.
##
##  <family> is a list that distributes the columns into families:
##  Stabilizing <family> is equivalent to stabilizing <famrep>; so the
##  elements of <permutations> must be computed with respect to <family>, too.
##  Two columns <i>, <j> lie in the same family iff
##  `<family>[<i>] = <family>[<j>'.
##  (More precisely, <family>[i] is the list of all positions lying in the
##  same family as i.)
##
##  <K> is a list of permutation generators for a known subgroup of the
##  required group.
##
##  Note: The returned group has a base compatible with the base of $G$,
##        i.e. not a reduced base (used for "TransformingPermutationFamily")
##
BindGlobal( "MatAutomorphismsFamily",
    function( chainG, K, family, permutations )
    local famlength,             # number of rows in the family
          nonbase,               # points not in the base of `chainG'
          stabilizes,            # local function to check generators of $G$
          gen,                   # loop over `chainG.generators'
          chainK,                # compatible stabilizer chain of $K$
          allowed,               # new parameter for the backtrack search
          ElementPropertyCoset,  # local function to search in a coset
          FindSubgroupProperty;  # local function to extend the stab. chain

    famlength:= Length( permutations );

    # Select an optimal base that allows us to prune the tree efficiently.
    nonbase:= Difference( [ 1 .. Length( family) ],
                          BaseStabChain( chainG ) );

    # Call a modified version of `SubgroupProperty'.
    # Besides the parameter `K', we introduce the new parameter `allowed',
    # a list of same length as `permutations';
    # `allowed[<i>]' is the list of all <x> in `permutations' where the
    # constructed permutation can lie in
    # `permutations[<i>] * Stab( family> ) / <x>'.
    # Initially this is `permutations' itself, but `allowed' is updated
    # whenever an image of a base point is chosen.

    # Find a subgroup $U$ of $G$ which preserves the property <prop>,
    # i.e., $prop( x )$ implies $prop( x * u )$ for all $x \in G, u \in U$.
    # (Note:  This subgroup is changed in the algorithm, be careful!)
    # Make this subgroup as large as possible with reasonable effort!

    # Improvement in our special situation:
    # We may add those generators <gen> of $G$ that stabilize the whole row
    # family, i.e. for which holds
    # `<family>[i] = <family>[ i^ ( x^-1 * gen * x ) ]'.

    stabilizes:= function( family, gen, x )
      local i;
      for i in [ 1 .. Length( family ) ] do
        if family[ i^x ] <> family[ ( i^gen )^x ] then
          return false;
        fi;
      od;
      return true;
    end;

    K:= SSortedList( K );
    for gen in chainG.generators do
      if ForAll( permutations, x -> stabilizes( family, gen, x ) ) then
        AddSet( K, gen );
      fi;
    od;

    # Make the bases of the stabilizer chains compatible.
    chainK:= StabChainOp( GroupByGenerators( K, () ),
                          rec( base    := BaseStabChain( chainG ),
                               reduced := false ) );

    # Initialize `allowed'.
    allowed:= ListWithIdenticalEntries( famlength, permutations );

    # Search through the whole group $G = G * Id$ for an element with <prop>.

    # Search for an element in a coset $S * s$ of some stabilizer $S$ of $G$.
    # $L$ fixes $S*s$, i.e., $S*s*L = S*s$ and is a subgroup of the wanted
    # subgroup $K$, thus $prop( x )$ implies $prop( x*l )$ for all $l \in L$.

    # `S' is a stabilizer chain for $S$,
    # `L' is a list of generators for $L$.
    ElementPropertyCoset := function( S, s, L, allowed )

      local i, j, points, p, ss, LL, elm, newallowed, union;

      # If $S$ is the trivial group check whether $s$ has the property,
      # i.e., also the non-base points are mapped correctly.

      if IsEmpty( S.generators ) then
        for i in [ 1 .. famlength ] do
          for p in nonbase do
            allowed[i]:= Filtered( allowed[i],
                           x -> ( p^s )^x in family[ p^permutations[i] ] );
          od;
          if IsEmpty( allowed[i] ) then
            return fail;
          fi;
        od;
        return s;
      fi;

      # Make `points' a subset of $S.orbit ^ s$ of those points which
      # correspond to cosets that might contain elements satisfying <prop>.
      # Make this set as small as possible with reasonable effort!
      points:= SSortedList( OnTuples( S.orbit, s ) );

      # Improvement in our special situation:
      # For the basepoint `$b$ = S.orbit[1]' we have
      # $b \pi \in orbit \cap \bigcap_{i}
      # \bigcup_{\pi_j \in `allowed[i]'} [ family( b \pi_i ) ] \pi_j^{-1}$

      for i in [ 1 .. famlength ] do
        union:= [];
        for j in allowed[i] do
          UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
                                 x -> x / j ) );
        od;
        IntersectSet( points, union );
      od;

      # run through the points, i.e., through the cosets of the stabilizer.
      while not IsEmpty( points ) do

        # Take a point $p$.
        p:= points[1];

        # Find a coset representative,
        # i.e., $ss \in S$ with $S.orbit[1]^ss = p$.
        ss:= s;
        while S.orbit[1]^ss <> p do
          ss:= LeftQuotient( S.transversal[p/ss], ss );
        od;

        # Find a subgroup $LL$ of $L$ which fixes $S.stabilizer * ss$,
        # i.e., an approximation (subgroup) $LL$ of $Stabilizer( L, p )$.
        # note that $LL$ preserves <prop> since it is a subgroup of $L$.
        # Compute a better approximation, for example using base change.
        # `LL' is a list of generators of $LL$.
        LL:= Filtered( L, l -> p^l = p );

        # Search the coset $S.stabilizer * ss$ and return if successful.

        # In our special situation, we adjust `allowed':
        newallowed:= [];
        for i in [ 1 .. famlength ] do
          newallowed[i]:= Filtered( allowed[i], x -> p^x in
                              family[ S.orbit[1]^permutations[i] ] );
        od;

        elm:= ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
        if elm <> fail then return elm; fi;

        # If there was no element in $S.stab * Rep(p)$ satisfying <prop>
        # there can be none in $S.stab * Rep(p^l) = S.stab * Rep(p) * l$
        # for any $l \in L$ because $L$ preserves the property <prop>.
        # Thus we can remove the entire $L$ orbit of $p$ from the points.
        SubtractSet( points, OrbitPerms( L, p ) );

      od;

      # there is no element with the property <prop> in the coset  $S * s$.
      return fail;
    end;

    # Make $L$ the subgroup with the property of some stabilizer $S$ of $G$.
    # Upon entry $L$ is already a subgroup of this wanted subgroup.

    # `S' and `L' are stabilizer chains.
    FindSubgroupProperty := function( S, L, allowed )

      local i, j, points, p, ss, LL, elm, newallowed, union;

      # If $S$ is the trivial group, then so is $L$ and we are ready.
      if IsEmpty( S.generators ) then return; fi;

      # Improvement in our special situation:
      # Adjust `allowed' (we search in the stabilizer of `S.orbit[1]').

      newallowed:= [];
      for i in [ 1 .. famlength ] do
        newallowed[i]:= Filtered( allowed[i],
                                  x -> S.orbit[1]^x in
                                 family[ S.orbit[1]^permutations[i] ] );
      od;

      # Make $L.stab$ the full subgroup of $S.stab$ satisfying <prop>.
      FindSubgroupProperty( S.stabilizer, L.stabilizer, newallowed );

      # Add the generators of `L.stabilizer' to `L.generators',
      # update `orbit' and `transversal':
      for elm in L.stabilizer.generators do
        if not elm in L.generators then
          AddGeneratorsExtendSchreierTree( L, [ elm ] );
        fi;
      od;

      # Make `points' a subset of $S.orbit$ of those points which
      # correspond to cosets that might contain elements satisfying <prop>.
      # Make this set as small as possible with reasonable effort!
      points := SSortedList( S.orbit );

      # Improvement in our special situation:
      # For the basepoint `$b$ = S.orbit[1]', we have
      # $b \pi \in orbit \cap \bigcap_{i}
      # \bigcup_{j \in `allowed[i]'} [ family[ b \pi_i ] ] \pi_j^{-1}$.
      for i in [ 1 .. famlength ] do
        union:= [];
        for j in allowed[i] do
          UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
                                 x -> x / j ) );
        od;
        IntersectSet( points, union );
      od;

      # Suppose that $x \in S.stab * Rep(S.orbit[1]^l)$ satisfies <prop>,
      # since $S.stab*Rep(S.orbit[1]^l)=S.stab*l$ we have $x/l \in S.stab$.
      # Because $l \in L$ it follows that $x/l$ satisfies <prop> also, and
      # since $L.stab$ is the full subgroup of $S.stab$ satisfying <prop>
      # it follows that $x/l \in L.stab$ and so $x \in L.stab * l \<= L$.
      # thus we can remove the entire $L$ orbit of $p$ from the points.
      SubtractSet( points, OrbitPerms( L.generators, S.orbit[1] ) );

      # Run through the points, i.e., through the cosets of the stabilizer.
      while not IsEmpty( points ) do

        # Take a point $p$.
        p:= points[1];

        # Find a coset representative,
        # i.e., $ss  \in  S, S.orbit[1]^ss = p$.
        ss:= S.identity;
        while S.orbit[1]^ss <> p do
          ss:= LeftQuotient( S.transversal[p/ss], ss );
        od;

        # Find a subgroup $LL$ of $L$ which fixes $S.stabilizer * ss$,
        # i.e., an approximation (subgroup) $LL$ of $Stabilizer( L, p )$.
        # Note that $LL$ preserves <prop> since it is a subgroup of $L$.
        # Compute a better approximation, for example using base change.
        LL:= Filtered( L.generators, l -> p^l = p );

        # Search the coset $S.stabilizer * ss$ and add if successful.

        # Adjust `allowed'.
        newallowed:= [];
        for i in [ 1 .. famlength ] do
          newallowed[i]:= Filtered( allowed[i], x -> p^x in
                                   family[ S.orbit[1]^permutations[i] ] );
        od;

        elm:= ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
        if elm <> fail then
          AddGeneratorsExtendSchreierTree( L, [ elm ] );
        fi;

        # If there was no element in $S.stab * Rep(p)$ satisfying  <prop>
        # there can be none in  $S.stab * Rep(p^l) = S.stab * Rep(p) * l$
        # for any $l \in L$ because $L$ preserves  the  property  <prop>.
        # Thus we can remove the entire $L$ orbit of $p$ from the points.
        # <<this must be reformulated>>
        SubtractSet( points, OrbitPerms( L.generators, p ) );

      od;

      # There is no element with the property <prop> in the coset $S * s$.
      return;
    end;

    FindSubgroupProperty( chainG, chainK, allowed );
    return chainK;
end );


#############################################################################
##
#M  MatrixAutomorphisms( <mat>[, <maps>, <subgroup>] )
##
InstallMethod( MatrixAutomorphisms,
    "for a matrix",
    [ IsMatrix ],
    mat -> MatrixAutomorphisms( mat, [], Group( () ) ) );

InstallMethod( MatrixAutomorphisms,
    "for matrix, list of maps, and subgroup",
    [ IsMatrix, IsList, IsPermGroup ],
    function( mat, maps, subgroup )
    local fam,             # result of `FamiliesOfRows'
          nonfixedpoints,  # positions of not nec. fixed columns
          i, j, k,         # loop variables
          row,             # one row in `mat'
          colfam,          # current set of columns
          values,          # values of `row' on `colfam'
          G,               # current aut. group resp. its stabilizer chain

          famreps,
          permutations,
          support,
          family,
          famrep;

    # Step 0:
    # Check the arguments.

    if IsPermGroup( subgroup ) then
      subgroup:= SSortedList( GeneratorsOfGroup( subgroup ) );
    elif     IsList( subgroup )
         and ( IsEmpty( subgroup ) or IsPermCollection( subgroup ) ) then
      subgroup:= ShallowCopy( subgroup );
    else
      Error( "<subgroup> must be a permutation group" );
    fi;

    # Step 1:
    # Distribute the rows into row families.

    fam:= FamiliesOfRows( mat, maps );
    mat:= Concatenation( mat, maps );

    # Step 2:
    # Distribute the columns into families using only the fact that
    # row families of length 1 must be fixed by every automorphism.

    nonfixedpoints:= [ [ 1 .. Length( mat[1] ) ] ];
    i:= 1;
    while i <= Length( fam.famreps ) and Length( fam.families[i] ) = 1 do
      row:= mat[ fam.families[i][1] ];
      for j in [ 1 .. Length( nonfixedpoints ) ] do

        # Split `nonfixedpoints[j]' according to the entries of the vector.
        colfam:= nonfixedpoints[j];
        values:= Set( row{ colfam } );
        nonfixedpoints[j]:= Filtered( colfam, x -> row[x] = values[1] );
        for k in [ 2 .. Length( values ) ] do
          Add( nonfixedpoints, Filtered( colfam, x -> row[x] = values[k] ) );
        od;

      od;
      nonfixedpoints:= Filtered( nonfixedpoints, x -> 1 < Length(x) );
      i:= i+1;
    od;

    # Step 3:
    # Refine the column families using the fact that members of a family
    # must have the same sorted column in the restriction to every row
    # family.
    # Since trivial row families are already examined, we consider only
    # nontrivial ones.

    while i <= Length( fam.famreps ) do
      row:= MutableTransposedMat( mat{ fam.families[i] } );
      for j in row do
        Sort( j );
      od;
      for j in [ 1 .. Length( nonfixedpoints ) ] do
        colfam:= nonfixedpoints[j];
        values:= SSortedList( row{ colfam } );
        nonfixedpoints[j]:= Filtered( colfam, x -> row[x] = values[1] );
        for k in [ 2 .. Length( values ) ] do
          Add( nonfixedpoints, Filtered( colfam, x -> row[x] = values[k] ) );
        od;
      od;
      nonfixedpoints:= Filtered( nonfixedpoints, x -> 1 < Length(x) );
      i:= i+1;
    od;

    if IsEmpty( nonfixedpoints ) then
      Info( InfoMatrix, 2,
            "MatAutomorphisms: return trivial group without hard test" );
      return GroupByGenerators( [], () );
    fi;

    # Step 4:
    # Compute a direct product of symmetric groups that covers the
    # group of matrix automorphisms.

    G:= [];
    for i in nonfixedpoints do
      Add( G, ( i[1], i[2] ) );
      if 2 < Length( i ) then
        Add( G, MappingPermListList( i,
                    Concatenation( i{[2..Length(i)]}, [ i[1] ] ) ) );
      fi;
    od;
    G:= GroupByGenerators( G );

    # Step 5:
    # Enter the backtrack search for permutation groups.

    permutations:= fam.permutations;
    famreps:= fam.famreps;
    G:= StabChain( G );

    Info( InfoMatrix, 2,
          "MatAutomorphisms: There are ", Length( permutations ),
          " families (",
          Number( permutations, x -> Length(x) =1 ),
          " trivial)" );

    for i in [ 1 .. Length( famreps ) ] do
      if 1 < Length( permutations[i] ) then

        Info( InfoMatrix, 2,
              "MatAutomorphismsFamily called for family no. ", i );

        # First convert <famreps>[i] to `family': `family[<k>]' is the list
        # of all positions <j> in <famreps>[i] with
        # `<famreps>[i][<k>] = <famreps>[i][<j>]'.
        # So each permutation stabilizing <famreps>[i] will have to map <k>
        # to a point in `<family>[<k>]'.
        # (Note that <famreps>[i] is sorted.)

        famrep:= famreps[i];
        support:= Length( famrep );
        family:= [ ];
        j:= 1;
        while j <= support do
          family[j]:= [ j ];
          k:= j+1;
          while k <= support and famrep[k] = famrep[j] do
            Add( family[j], k );
            family[k]:= family[j];
            k:= k+1;
          od;
          j:= k;
        od;
        G:= MatAutomorphismsFamily( G, subgroup, family, permutations[i] );
        ReduceStabChain( G );

      fi;
    od;

    return GroupStabChain( G );
    end );


#############################################################################
##
#M  TableAutomorphisms( <tbl>, <characters> )
#M  TableAutomorphisms( <tbl>, <characters>, \"closed\" )
#M  TableAutomorphisms( <tbl>, <characters>, <subgroup> )
##
InstallMethod( TableAutomorphisms,
    "for a character table and a list of characters",
    [ IsCharacterTable, IsList ],
    function( tbl, characters )
    return TableAutomorphisms( tbl, characters, Group( () ) );
    end );

InstallMethod( TableAutomorphisms,
    "for a character table, a list of characters, and a string",
    [ IsCharacterTable, IsList, IsString ],
    function( tbl, characters, closed )

    if closed = "closed" then
      return TableAutomorphisms( tbl, characters,
                 GroupByGenerators( GaloisMat( TransposedMat( characters )
                     ).generators, () ) );
    else
      return TableAutomorphisms( tbl, characters, Group( () ) );
    fi;
    end );

InstallMethod( TableAutomorphisms,
    "for a character table, a list of characters, and a perm. group",
    [ IsCharacterTable, IsList, IsPermGroup ],
    function( tbl, characters, subgroup )
    local maut,         # matrix automorphisms of `characters'
                        # that respect element orders and centralizer orders
          gens,         # generators of `maut'
          nccl,         # no. of conjugacy classes of `tbl'
          powermap,     # list of relevant power maps
          admissible;   # generators that commute with all power maps

    # Compute the matrix automorphisms.
    maut:= MatrixAutomorphisms( characters,
                                [ OrdersClassRepresentatives( tbl ),
                                  SizesCentralizers( tbl ) ],
                                subgroup );
    gens:= GeneratorsOfGroup( maut );
    nccl:= NrConjugacyClasses( tbl );

    # Check whether all generators commute with all power maps.
    powermap:= List( PrimeDivisors( Size( tbl ) ),
                     p -> PowerMap( tbl, p ) );
    admissible:= Filtered( gens,
                           perm -> ForAll( powermap,
                                         x -> ForAll( [ 1 .. nccl ],
                                         y -> x[ y^perm ] = x[y]^perm ) ) );

    # If not all matrix automorphisms are admissible then
    # we compute the admissible subgroup with a second backtrack search
    # inside the group of matrix automorphisms, with the group generated
    # by the admissible matrix automorphisms as known subgroup.
    if Length( admissible ) <> Length( gens ) then

      Info( InfoMatrix, 2,
            "TableAutomorphisms: ",
            "not all matrix automorphisms admissible" );
      admissible:= SubgroupProperty( maut,
                       perm -> ForAll( powermap,
                                 x -> ForAll( [ 1 .. nccl ],
                                        y -> x[ y^perm ] = x[y]^perm ) ),
                                     GroupByGenerators( admissible, () ) );

    else
      admissible:= GroupByGenerators( admissible, () );
    fi;

    # Return the result.
    return admissible;
    end );


#############################################################################
##
#F  TransformingPermutationFamily( <G>,<K>,<fam1>,<fam2>,<bij_col>,<family> )
##
##  computes a transforming permutation of columns for equivalent families
##  of rows of two matrices.
##  (The parameters can be computed from the matrices <mat1>, <mat2> using
##  "FamiliesOfRows").
##
##  `TransformingPermutationFamily' returns either `false' or a record
##  with fields `permutation' and `group'.
##
##  <G>: group with the property that the transforming permutation lies in
##       the coset `<bij_col> * <G>'
##  <K>: a subgroup of the group of matrix automorphisms of <fam2> which is
##       contained in <G>, e.g. Aut( <mat2> )
##
##       Note: The bases of <G> and <K> must be compatible!!
##
##  <fam1>: the permutations mapping the rows of the family in <mat1> to the
##          representative (the so-called famrep)
##  <fam2>: the permutations mapping the rows of the family in mat2 to the
##          famrep
##  <bij_col>: permutation corresponding to the bijection of columns in mat1
##             and mat2
##  <family>: map that distributes the columns into families; two columns
##            <i>, <j> are in the same family iff
##            `<family>[<i>] = <family>[<j>]'.
##            <G> must stabilize <family>.
##            Note: Stabilizing the famrep is
##            equivalent to respecting <family>, so the calculation of
##            <fam1> and <fam2> must respect <family>, too!
##
BindGlobal( "TransformingPermutationFamily",
    function( chainG, K, fam1, fam2, bij_col, family )
    local permutations,           # translate `fam1' with `bij_col'
          allowed,                # list of lists of admissible points
          ElementPropertyCoset,   # local function to loop over a coset
          nonbase;                # list of nonbase points

    # Step a:
    # Replace permutations `p' in `fam1' by `bij_col^(-1) * p',
    # initialize `allowed'.

    permutations:= List( fam1, x -> LeftQuotient( bij_col, x ) );
    allowed:= ListWithIdenticalEntries( Length( fam1 ), fam2 );

    # Step b:
    # Define the local function `ElementProperty'.
    # It is exactly the same function as the one in `MatAutomorphismsFamily',
    # so we put it in here without comments.

    ElementPropertyCoset := function ( S, s, L, allowed )

      local i, j, points, p, ss, LL, elm, newallowed, union;

      if IsEmpty( S.generators ) then
        for i in [ 1 .. Length( permutations ) ] do
          for p in nonbase do
            allowed[i]:= Filtered( allowed[i],
                           x -> ( p^s )^x in family[ p^permutations[i] ] );
          od;
          if IsEmpty( allowed[i] ) then
            return fail;
          fi;
        od;
        return s;
      fi;

      points:= SSortedList( OnTuples( S.orbit, s ) );

      for i in [ 1 .. Length( permutations ) ] do
        union:= [];
        for j in allowed[i] do
          UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
                                 x -> x / j ) );
        od;
        IntersectSet( points, union );
      od;

      while not IsEmpty( points ) do

        p:= points[1];
        ss:= s;
        while S.orbit[1]^ss <> p do
          ss:= LeftQuotient( S.transversal[p/ss], ss );
        od;

        LL:= Filtered( L, l -> p^l = p );

        newallowed:= [];
        for i in [ 1 .. Length( allowed ) ] do
          newallowed[i]:= Filtered( allowed[i], x -> p^x in
                              family[ S.orbit[1]^permutations[i] ] );
        od;

        elm := ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
        if elm <> fail then return elm; fi;

        SubtractSet( points, OrbitPerms( L, p ) );

      od;

      return fail;
    end;

    # Compute a stabilizer chain for $G$.
    # Select an optimal base that allows us to prune  the  tree  efficiently!
    nonbase:= Difference( [ 1 .. Length( family ) ],
                          BaseStabChain( chainG ) );

    # Find a subgroup  $K$  of  $G$  which  preserves  the  property  <prop>,
    # i.e., $prop( x )$ implies $prop( x * k )$  for all  $x \in G, k \in K$.
    # Make this  subgroup  as  large  as  possible  with  reasonable  effort!

    # Search through the whole group $G = G * Id$ for an element with <prop>.
    return ElementPropertyCoset( chainG, (), K, allowed );
    end );


#############################################################################
##
#M  TransformingPermutations( <mat1>, <mat2> )
##
InstallMethod( TransformingPermutations,
    "for two matrices",
    [ IsMatrix, IsMatrix ],
    function( mat1, mat2 )
    local i, j, k,        # loop variables
          fam1,
          fam2,
          bijection,
          bij_col,        # current bijection of columns of the matrices
          G,
          family,
          nonfixedpoints,
          famrep,
          support,
          subgrp,
          trans,
          image,
          preimage,
          row1,
          row2,
          values;

    # Step 0:
    # Handle trivial cases.
    if Length( mat1 ) <> Length( mat2 ) then
      return fail;
    elif IsEmpty( mat1 ) then
      return rec( columns := (),
                  rows    := (),
                  group   := GroupByGenerators( [], () ) );
    fi;

    # Step 1:
    # Set up and check the bijection of row families using the fact that
    # sorted rows must be equal.
    # (Note that this is only a bijection of the representatives;
    # we do not need a physical bijection of the rows themselves)
    # Note that `FamiliesOfRows' first sorts families according to
    # the representative, and then sorts this list *stable* (using `Sortex')
    # according to the length of the family, so the bijection must
    # be the identity.

#T check invariants first (matrix dimensions!)
    fam1:= FamiliesOfRows( mat1, [] );
    fam2:= FamiliesOfRows( mat2, [] );
    if fam1.famreps <> fam2.famreps then
      Info( InfoMatrix, 2,
            "TransformingPermutations: no bijection of row families" );
      return fail;
    fi;

    # Step 2:
    # Initialize a bijection of column families using that row
    # families of length 1 must be in bijection, i.e. the column
    # families are constant on these rows.
    # We will have `bij_col[1][i]' in bijection with `bij_col[2][i]'.

    bij_col:= [];
    bij_col[1]:= [ [ 1 .. Length( mat1[1] ) ] ]; # trivial column families
    bij_col[2]:= [ [ 1 .. Length( mat1[1] ) ] ];

    for i in [ 1 .. Length( fam1.famreps ) ] do
      if Length( fam1.families[i] ) = 1 then
        row1:= mat1[ fam1.families[i][1] ];
        row2:= mat2[ fam2.families[i][1] ];
        for j in [ 1 .. Length( bij_col[1] ) ] do
          preimage:= bij_col[1][j];
          image:=    bij_col[2][j];
          values:= SSortedList( row1{ preimage } );
          if values <> SSortedList( row2{ image } ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          bij_col[1][j]:= Filtered( preimage, x -> row1[x] = values[1] );
          bij_col[2][j]:= Filtered( image, x -> row2[x] = values[1] );
          if Length( bij_col[1][j] ) <> Length( bij_col[2][j] ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          for k in [ 2 .. Length( values ) ] do
            Add( bij_col[1], Filtered( preimage,
                                       x -> row1[x] = values[k] ) );
            Add( bij_col[2], Filtered( image,
                                       x -> row2[x] = values[k] ) );
            if Length( Last(bij_col[1]) )
               <> Length( Last(bij_col[2]) ) then
              Info( InfoMatrix, 2,
                    "TransformingPermutations: ",
                    "no bijection of column families" );
              return fail;
            fi;
          od;
        od;
      fi;
    od;

    # Step 3:
    # Refine the column families and the bijection using that members
    # of a column family must have the same sorted column in the
    # restriction to every row family. Since the trivial row families
    # are already examined, now only use the nontrivial row families.
    # Except that now the values are sorted lists, the algorithm is
    # the same as in step 2.

    for i in [ 1 .. Length( fam1.famreps ) ] do
      if Length( fam1.families[i] ) > 1 then
        row1:= MutableTransposedMat( mat1{ fam1.families[i] } );
        row2:= MutableTransposedMat( mat2{ fam2.families[i] } );
        for j in row1 do Sort( j ); od;
        for j in row2 do Sort( j ); od;
        for j in [ 1 .. Length( bij_col[1] ) ] do
          preimage:= bij_col[1][j];
          image:=    bij_col[2][j];
          values:= SSortedList( row1{ preimage } );
          if values <> SSortedList( row2{ image } ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          bij_col[1][j]:= Filtered( preimage,
                                    x -> row1[x] = values[1] );
          bij_col[2][j]:= Filtered( image,
                                    x -> row2[x] = values[1] );
          if Length( bij_col[1][j] ) <> Length( bij_col[2][j] ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          for k in [ 2 .. Length( values ) ] do
            Add( bij_col[1], Filtered( preimage,
                                       x -> row1[x] = values[k] ) );
            Add( bij_col[2], Filtered( image,
                                       x -> row2[x] = values[k] ) );
            if Length( Last(bij_col[1]) )
               <> Length( Last(bij_col[2]) ) then
              Info( InfoMatrix, 2,
                    "TransformingPermutations: ",
                    "no bijection of column families" );
              return fail;
            fi;
          od;
        od;
      fi;
    od;

    # Choose an arbitrary bijection of columns
    # that respects the bijection of column families.

    bijection:= [];
    for i in [ 1 .. Length( bij_col[1] ) ] do
      for j in [ 1 .. Length( bij_col[1][i] ) ] do
        bijection[ bij_col[1][i][j] ]:= bij_col[2][i][j];
      od;
    od;
    nonfixedpoints:= Filtered( bij_col[2], x -> 1 < Length(x) );

    # Step 4:
    # Compute a direct prouct of symmetric groups that covers the
    # group of table automorphisms of mat2, using column families
    # given by `bij_col[2]'.

    G:= [];
    for i in nonfixedpoints do
      Add( G, ( i[1], i[2] ) );
      if 2 < Length( i ) then
        Add( G, MappingPermListList( i,
                    Concatenation( i{[2..Length(i)]}, [ i[1] ] ) ) );
      fi;
    od;
    G:= StabChain( GroupByGenerators( G, () ) );

    # Step 5:
    # Enter the backtrack search for permutation groups.

    Info( InfoMatrix, 2,
          "TransformingPermutations: start of backtrack search" );

    bij_col:= PermList( bijection );

    # Now loop over the row families;
    # first convert `famreps[i]' to `family';
    # `family[<k>]' is the list of all
    # positions <j> in `famreps[i]' with
    # `famreps[i][<k>] = famreps[i][<j>]'.
    # So each permutation stabilizing `famreps[i]' will have to map
    # <k> to a point in `family[<k>]'.
    # (Note that `famreps[i]' is sorted.)

    for i in [ 1 .. Length( fam1.famreps ) ] do
      if Length( fam1.permutations[i] ) > 1 then
        famrep:= fam1.famreps[i];
        support:= Length( famrep );
        family:= [ ];
        j:= 1;
        while j <= support do
          family[j]:= [ j ];
          k:= j+1;
          while k <= support and famrep[k] = famrep[j] do
            Add( family[j], k );
            family[k]:= family[j];
            k:= k+1;
          od;
          j:= k;
        od;
        subgrp:= MatAutomorphismsFamily( G, [], family,
                                         fam2.permutations[i] );
        trans:= TransformingPermutationFamily( G, subgrp.generators,
                               fam1.permutations[i],
                               fam2.permutations[i], bij_col,
                               family );
        if trans = fail then
          return fail;
        fi;
        G:= subgrp;
        ReduceStabChain( G );
        bij_col:= bij_col * trans;
      fi;
    od;

    # Return the result.
    return rec( columns := bij_col,
                rows    := Sortex( List( mat1, x -> Permuted( x, bij_col ) ) )
                           / Sortex( ShallowCopy( mat2 ) ),
                group   := GroupStabChain( G ) );
    end );


#############################################################################
##
#M  TransformingPermutationsCharacterTables( <tbl1>, <tbl2> )
##
InstallMethod( TransformingPermutationsCharacterTables,
    "for two character tables",
    [ IsCharacterTable, IsCharacterTable ],
    function( tbl1, tbl2 )
    local primes,        # prime divisors of the order of each table
          irr1, irr2,    # lists of irreducible characters of the tables
          trans,         # result record
          gens,          # generators of the matrix automorphisms of `tbl2'
          nccl,          # no. of conjugacy classes
          powermap1,     # list of power maps of `tbl1'
          powermap2,     # list of power maps of `tbl2'
          admissible,    # group of table automorphisms of `tbl2'
          pi, pi2,       # admissible column transformations
          prop,          # property used in `ElementProperty'
          orders1,       # element orders of `tbl1'
          orders2;       # element orders of `tbl2'

    # Shortcuts:
    # - If the group orders differ then return `fail'.
    # - If irreducibles are stored in the two tables and coincide,
    #   and if the power maps are known and equal then return the identity.
    primes:= PrimeDivisors( Size( tbl1 ) );
    if Size( tbl1 ) <> Size( tbl2 ) then
      return fail;
    elif HasIrr( tbl1 ) and HasIrr( tbl2 ) and Irr( tbl1 ) = Irr( tbl2 )
         and ForAll( primes, p -> IsBound( ComputedPowerMaps( tbl1 )[p] ) and
                                  IsBound( ComputedPowerMaps( tbl1 )[p] ) and
                                  ComputedPowerMaps( tbl1 )[p] =
                                  ComputedPowerMaps( tbl2 )[p] ) then
      if HasAutomorphismsOfTable( tbl1 ) then
        return rec( columns:= (),
                    rows:= (),
                    group:= AutomorphismsOfTable( tbl1 ) );
      else
        return rec( columns:= (),
                    rows:= (),
                    group:= AutomorphismsOfTable( tbl2 ) );
      fi;
    fi;

# change: TransformingPermutations: should not access Irr until
#         it is checked that centralizers and element orders match!
    irr1:= Irr( tbl1 );
    irr2:= Irr( tbl2 );

    # Compute the transformations between the matrices of irreducibles.
    trans:= TransformingPermutations( irr1, irr2 );
#T improve this: use element orders already here!
#T e.g. check sorted lists of el. orders as an invariant
    if trans = fail then
      return fail;
    fi;
    gens:= GeneratorsOfGroup( trans.group );
    nccl:= NrConjugacyClasses( tbl2 );

    # Compute the subgroup of table automorphisms of `tbl2' if it is not
    # yet stored.
    # Note that we know the group of matrix automorphisms already,
    # so we use the same method as in `TableAutomorphisms'.

    powermap1:= List( primes, p -> PowerMap( tbl1, p ) );
    powermap2:= List( primes, p -> PowerMap( tbl2, p ) );

    if HasAutomorphismsOfTable( tbl2 ) then
      admissible:= AutomorphismsOfTable( tbl2 );
    else

      admissible:= Filtered( gens,
                           perm -> ForAll( powermap2,
                                         x -> ForAll( [ 1 .. nccl ],
                                         y -> x[ y^perm ] = x[y]^perm ) ) );

      if Length( admissible ) = Length( gens ) then
        admissible:= trans.group;
      else
        Info( InfoCharacterTable, 2,
              "TransformingPermutationsCharTables: ",
              "not all matrix automorphisms admissible" );
        admissible:= SubgroupProperty( trans.group,
                         perm -> ForAll( powermap2,
                                   x -> ForAll( [ 1 .. nccl ],
                                          y -> x[y^perm] = x[y]^perm ) ),
                                       GroupByGenerators( admissible, () ) );
      fi;

      # Store the automorphisms.
      SetAutomorphismsOfTable( tbl2, admissible );

    fi;

    pi:= trans.columns;

    orders1:= OrdersClassRepresentatives( tbl1 );
    orders2:= OrdersClassRepresentatives( tbl2 );

    if ForAll( [ 1 .. Length( primes ) ],
               x -> ForAll( [ 1 .. nccl ],
                    y -> powermap2[x][ y^pi ] = powermap1[x][y]^pi ) )
       and Permuted( orders1, pi ) = orders2 then

      # `pi' itself respects the mappings.
      trans.group:= admissible;

    else

      # Look if there is a coset of `trans.group' over `admissible' that
      # consists of transforming permutations.
      prop:= s -> ForAll( [ 1 .. Length( primes ) ],
                          x -> ForAll( [ 1 .. nccl ], y ->
                powermap2[x][ (y^pi)^s ] = ( powermap1[x][y]^pi )^s ) )
             and Permuted( orders1, pi*s ) = orders2;

      pi2:= ElementProperty( trans.group, prop,
                TrivialSubgroup( trans.group ), admissible );
      if pi2 = fail then
        return fail;
      else
        trans:= rec( columns:= pi * pi2,
                     rows:= Sortex( List( irr1,
                                          x -> Permuted( x, pi * pi2 ) ) )
                            / Sortex( ShallowCopy( irr2 ) ),
                     group:= admissible  );
      fi;

    fi;

    # Return the result.
    return trans;
    end );